Digital flood-inundation maps for a 10.2-mile reach of the Wabash River at Memorial Bridge at Vincennes, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Wabash River at Memorial Bridge at Vincennes, Indiana (station number 03343010). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (VCNI3). Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using stage-discharge relation at the Wabash River at Memorial Bridge at Vincennes, Ind., streamgage. The calibrated hydraulic model was then used to compute 19 water-surface profiles for flood stages referenced to the streamgage datum and ranging from 10.0 feet, or near bankfull, to 28 feet, the highest stage of the stage-discharge rating curve. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar] data having a 0.98-foot vertical accuracy and 4.9-foot horizontal resolution) to delineate the area flooded at each water level.
Digital flood-inundation maps for a 6.5-mile reach of the Salamonie River at Portland, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Salamonie River at Portland, Indiana (station 03324200). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System web interface at https://doi.org/10.5066/F7P55KJN or the National Weather Service Advanced Hydrologic Prediction Service (site PORI3) at https:/water.weather.gov/ahps/. Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the current stage-discharge relation at the Salamonie River at Portland, Indiana, streamgage. The hydraulic model then was used to compute nine water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from 10.7 ft or near bankfull to 18.7 ft, which equals the highest point on the streamgage rating curve. The simulated water-surface profiles then were combined with a geographic information system digital elevation model (derived from light detection and ranging data having a 0.49-ft root mean square error and 4.9-ft horizontal resolution, resampled to a 10-ft grid) to delineate the area flooded at each stage. The availability of these maps, along with information regarding current stage from the USGS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, and for postflood recovery efforts.
Digital flood-inundation maps for a 1.9-mile reach of Cedar Creek at 18th Street at Auburn, Indiana, from the First Street Bridge, downstream to the streamgage at 18th Street, then ending approximately 1100 ft downstream of the Baltimore and Ohio railroad bridge, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on Cedar Creek at 18th Street at Auburn, Indiana (station number 04179520). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, although forecasts of flood hydrographs are not available at this site (ABBI3). Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at Cedar Creek at 18th Street at Auburn, Ind., streamgage and the documented high-water marks from the flood of March 11, 2009. The calibrated hydraulic model was then used to compute seven water-surface profiles for flood stages referenced to the streamgage datum and ranging from 7 feet, or near bankfull, to 13 feet. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar] data having a 0.98-foot vertical accuracy and 4.9-foot horizontal resolution) to delineate the area flooded at each water level.
Digital flood-inundation maps for a 7.5-mile reach of the White River at Noblesville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 03349000, White River at Noblesville, Ind. Real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site NBLI3). Flood profiles were computed for the stream reach by means of a one-dimensional, step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 03349000, White River at Noblesville, Ind. and documented high-water marks from the floods of September 4, 2003 and May 6, 2017. The hydraulic model was then used to compute 15 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 10.0 ft (the NWS “action stage”) to 24.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 2 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar] data having a 0.98-foot vertical accuracy and 4.9-foott horizontal resolution) to delineate the area flooded at each stage. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
Digital flood-inundation maps for a 3.2-mile reach of North Fork Salt Creek at Nashville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 03371650, North Fork Salt Creek at Nashville, Ind. Real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/ (NWS site NFSI3). Flood profiles were computed for the stream reach by means of a one-dimensional, step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 03371650, North Fork Salt Creek at Nashville, Ind. The hydraulic model was then used to compute 12 water-surface profiles for flood stages at 1-foot (ft) intervals, except for the highest profile of 22.9 ft, referenced to the streamgage datum ranging from 12.0 ft (the NWS “action stage”) to 22.9 ft, which is the highest stage of the current USGS stage-discharge rating curve and 1.9 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar] data having a 0.98-foot vertical accuracy and 4.9-foot horizontal resolution) to delineate the area flooded at each stage. The availability of these maps, along with information regarding current stage from the USGS streamgage, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
Digital flood-inundation maps for a 9.5-mile reach of the Patoka River in and near the city of Jasper, southwestern Indiana, from the streamgage near County Road North 175 East, downstream to State Road 162, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage Patoka River at Jasper, Indiana (station number 03375500). The Patoka streamgage is located at the upstream end of the 9.5 mile river reach. Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, although flood forecasts or the stages for action and minor, moderate, and major flood stages are not currently (2017) available at this site (JPRI3). Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at the Patoka River at Jasper, Ind., streamgage and the documented high-water marks from the flood of April 30, 2017. The calibrated hydraulic model was then used to compute 5 water-surface profiles for flood stages referenced to the streamgage datum and ranging from 15 feet, or near bankfull, to 19 feet. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar] data having a 0.98-foot vertical accuracy and 4.9-foot horizontal resolution) to delineate the area flooded at each water level.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Digital flood-inundation maps for about an 8-mile reach of the Little Calumet River, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Program website at https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at three USGS streamgages: Little Calumet River at South Holland, Illinois (USGS station 05536290); Little Calumet River at Munster, Indiana (USGS station 05536195); and Thorn Creek at Thornton, Illinois (USGS station 05536275). Near-real-time stages at these streamgages may be obtained on the internet from the USGS National Water Information System at https://doi.org/10.5066/F7P55KJN or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at https://water. ...
Digital flood-inundation maps for a 6.6-mile reach of the St. Joseph River at Elkhart, Indiana were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 04101000, St. Joseph River at Elkhart, Ind. Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site EKMI3). Flood profiles were computed for the USGS streamgage 04101000, St. Joseph River at Elkhart, Ind., reach by means of a one-dimensional step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 04101000, St. Joseph River at Elkhart, Ind. The hydraulic model was then used to compute 6 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 23.0 ft (the NWS “action stage”) to 28.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 1 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar]) data having a 0.49-ft root mean squared error and 4.9-ft horizontal resolution) to delineate the area flooded at each stage. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
The following is excerpted from an unpublished report by Michael Brower (2004): "Using the MesoMap system, TrueWind has produced maps of mean wind speed in Indiana for heights of 30, 50, 70, and 100 m above ground, as well as a map of wind power at 50 m. TrueWind has also produced data files of the predicted wind speed frequency distribution and speed and energy by direction. The maps and data files are provided on a CD with the ArcReader software, which will enable users to view, print, copy, and query the maps and wind rose data. "The MesoMap system consists of an integrated set of atmospheric simulation models, databases, and computers and storage systems. At the core of MesoMap is MASS (Mesoscale Atmospheric Simulation System), a numerical weather model, which simulates the physics of the atmosphere. MASS is coupled to a simpler wind flow model, WindMap, which is used to refine the spatial resolution of MASS and account for localized effects of terrain and surface roughness. MASS simulates weather conditions over a region for 366 historical days randomly selected from a 15-year period. When the runs are finished, the results are input into WindMap. In this project, the MASS model was run on a grid spacing of 1.7 km and WindMap on a grid spacing of 200 m. "The wind maps show that the best wind resource in Indiana is found in the northcentral part of the state. The mean wind speed at 50 m height between Indianapolis, Kokomo, and Lafayette, and to the northwest of Lafayette, is predicted to be in the range of 6.5 to 7 m/s, and the mean wind power is predicted to be about 250 to 350 W/m2, or NREL class 2 to 3. In the rest of northern Indiana, the wind speed tends to be around 0.5 m/s lower, and the wind power is a solid class 2. In southern Indiana, a wind speed of 4.5 to 6 m/s and a wind power class of 1 to 2 prevails. The main reason for this wind resource distribution pattern is that the land is much more forested in the southern half of the state than in the northern half. Topography also plays a role, as does the track of the jet stream."
The following is excerpted from an unpublished report by Michael Brower (2004): 'Using the MesoMap system, TrueWind has produced maps of mean wind speed in Indiana for heights of 30, 50, 70, and 100 m above ground, as well as a map of wind power at 50 m. TrueWind has also produced data files of the predicted wind speed frequency distribution and speed and energy by direction. The maps and data files are provided on a CD with the ArcReader software, which will enable users to view, print, copy, and query the maps and wind rose data. 'The MesoMap system consists of an integrated set of atmospheric simulation models, databases, and computers and storage systems. At the core of MesoMap is MASS (Mesoscale Atmospheric Simulation System), a numerical weather model, which simulates the physics of the atmosphere. MASS is coupled to a simpler wind flow model, WindMap, which is used to refine the spatial resolution of MASS and account for localized effects of terrain and surface roughness. MASS simulates weather conditions over a region for 366 historical days randomly selected from a 15-year period. When the runs are finished, the results are input into WindMap. In this project, the MASS model was run on a grid spacing of 1.7 km and WindMap on a grid spacing of 200 m. 'The wind maps show that the best wind resource in Indiana is found in the northcentral part of the state. The mean wind speed at 50 m height between Indianapolis, Kokomo, and Lafayette, and to the northwest of Lafayette, is predicted to be in the range of 6.5 to 7 m/s, and the mean wind power is predicted to be about 250 to 350 W/m2, or NREL class 2 to 3. In the rest of northern Indiana, the wind speed tends to be around 0.5 m/s lower, and the wind power is a solid class 2. In southern Indiana, a wind speed of 4.5 to 6 m/s and a wind power class of 1 to 2 prevails. The main reason for this wind resource distribution pattern is that the land is much more forested in the southern half of the state than in the northern half. Topography also plays a role, as does the track of the jet stream.'
A two-dimensional model and digital flood-inundation maps were developed for a 30-mile reach of the Wabash River near the Interstate 64 (I-64) Bridge near Grayville, Illinois. The flood-inundation maps, which can be accessed through the U.S. Geological Survey (USGS) Flood Inundation Mapping Science web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Wabash River at Mount Carmel, Ill (USGS station number 03377500). Near-real-time stages at this streamgage may be obtained on the internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS AHPS site MCRI2). The NWS AHPS forecasts peak stage information that may be used with the maps developed in this study to show predicted areas of flood inundation. Flood elevations were computed for the Wabash River reach by means of a two-dimensional, finite-volume numerical modeling application for river hydraulics. The hydraulic model was calibrated by using global positioning system measurements of water-surface elevation and the current stage-discharge relation at both USGS streamgage 03377500, Wabash River at Mount Carmel, Ill., and USGS streamgage 03378500, Wabash River at New Harmony, Indiana. The calibrated hydraulic model was then used to compute 27 water-surface elevations for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from less than the action stage (9 ft) to the highest stage (35 ft) of the current stage-discharge rating curve. The simulated water-surface elevations were then combined with a geographic information system digital elevation model, derived from light detection and ranging data, to delineate the area flooded at each water level. The availability of these maps, along with information on the internet regarding current stage from the USGS streamgage at Mount Carmel, Ill., and forecasted stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood-response activities such as evacuations and road closures, as well as for postflood recovery efforts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A table listing the deregulation status of electricity and natural gas markets across all 50 U.S. states and the District of Columbia as of March 17, 2025. Includes notes on partial deregulation and market specifics.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Digital flood-inundation maps for a 10.2-mile reach of the Wabash River at Memorial Bridge at Vincennes, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Wabash River at Memorial Bridge at Vincennes, Indiana (station number 03343010). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (VCNI3). Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using stage-discharge relation at the Wabash River at Memorial Bridge at Vincennes, Ind., streamgage. The calibrated hydraulic model was then used to compute 19 water-surface profiles for flood stages referenced to the streamgage datum and ranging from 10.0 feet, or near bankfull, to 28 feet, the highest stage of the stage-discharge rating curve. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar] data having a 0.98-foot vertical accuracy and 4.9-foot horizontal resolution) to delineate the area flooded at each water level.