https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer
Browse LSEG's Global Equity Indices, discover our range of data, indices & benchmarks. Our Data Catalogue offers unrivaled data and delivery mechanisms.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
These data have been created by the Joint Nature Conservation Committee (JNCC) as part of a Defra NCEA project to produce a regional, and ultimately national, system for detecting a change in habitat conditions at a land parcel level. The first stage of the project is focused on Yorkshire, UK, and therefore the dataset includes granules and scenes covering Yorkshire and surrounding areas only. The dataset contains the following indices derived from Defra and JNCC Sentinel-1 Analysis Ready Data.
RVI and RVIv files are generated for Sentinel-1 orbit 132 (ascending) every 12 days.
Indices have been generated using the Defra and JNCC Sentinel-1 and Sentinel-2 ARD for the granules and scenes described above. As the project continues, JNCC will expand the geographical coverage of this dataset and will provide continuous updates as ARD becomes available.
Cbonds collects and normalizes indices data, offering daily updated and historical data on over 40,000 indices, including macroeconomic indicators, yield curves and spreads, currency markets, stock and funds markets, and commodities. Using the Indices API, you can access an index's holdings, such as its assets, sectors, and weight, as well as basic data on the asset. You can obtain end-of-day, and historical API indicator prices in CSV, XLS, and JSON formats. Cbonds provides a free Indices API for a limited test period of two weeks or for a longer period with a limited number of instruments.
To investigate the issue of inflation-hedging to find appropriate hedging assets against inflation by using the VAR or VECM model. We have collected data encompassing housing price indices, stock indices, price indexes, and money supply from five countries: the United States, Hong Kong, South Korea, Singapore, and Taiwan. The housing price index focuses on the transaction prices of listed residential houses in the metropolitan area as the benchmark, the stock price index is the ordinary stock market index of various countries, the price index is the consumer price index (CPI), and the money supply is M2 aggregate. The time period for obtaining data on the housing price index and stock price index is not the same.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Considerable research has been done on the complex stock market, however, there is very little systematic work on the impact of crisis on global stock markets. For filling in these gaps, we propose a complex network method, which analyzes the effects of the 2008 global financial crisis on global main stock index from 2005 to 2010. Firstly, we construct three weighted networks. The physics-derived technique of minimum spanning tree is utilized to investigate the networks of three stages. Regional clustering is found in each network. Secondly, we construct three average threshold networks and find the small-world property in the network before and during the crisis. Finally, the dynamical change of the network community structure is deeply analyzed with different threshold. The result indicates that for large thresholds, the network before and after the crisis has a significant community structure. Though this analysis, it would be helpful to investors for making decisions regarding their portfolios or to regulators for monitoring the key nodes to ensure the overall stability of the global stock market.
https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
Dive into Market Research Intellect's Index Fund Market Report, valued at USD 5.0 trillion in 2024, and forecast to reach USD 10.0 trillion by 2033, growing at a CAGR of 8.5% from 2026 to 2033.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘National indices by special aggregate. IPC (API identifier: 22353)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from http://data.europa.eu/88u/dataset/urn-ine-es-tabla-t3-8-22353 on 07 January 2022.
--- Dataset description provided by original source is as follows ---
Table of INEBase National indices by special aggregate. Monthly. Autonomous Communities and Cities. Consumer Price Index (CPI)
--- Original source retains full ownership of the source dataset ---
https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer
Explore LSEG's Indices, Constituents and Weightings (ICW), and find real time content for all major indices from exchange to vendor offerings.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Sentinel Hub NBR description: To detect burned areas, the NBR-RAW index is the most appropriate choice. Using bands 8 and 12 it highlights burnt areas in large fire zones greater than 500 acres. To observe burn severity, you may subtract the post-fire NBR image from the pre-fire NBR image. Darker pixels indicate burned areas.
NBR = (NIR – SWIR) / (NIR + SWIR)
Sentinel-2 NBR = (B08 - B12) / (B08 + B12)
These data have been created by the Joint Nature Conservation Committee (JNCC) as part of a Defra Natural Capital & Ecosystem Assessment (NCEA) project to produce a regional, and ultimately national, system for detecting a change in habitat condition at a land parcel level. The first stage of the project is focused on Yorkshire, UK, and therefore the dataset includes granules and scenes covering Yorkshire and surrounding areas only. The dataset contains the following indices derived from Defra and JNCC Sentinel-2 Analysis Ready Data.
NDVI, NDMI, NDWI, NBR, and EVI files are generated for the following Sentinel-2 granules: • T30UWE • T30UXF • T30UWF • T30UXE • T31UCV • T30UYE • T31UCA
As the project continues, JNCC will expand the geographical coverage of this dataset and will provide continuous updates as ARD becomes available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘National indices by heading. IPC (API identifier: 22348)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from http://data.europa.eu/88u/dataset/urn-ine-es-tabla-t3-8-22348 on 08 January 2022.
--- Dataset description provided by original source is as follows ---
Table of INEBase National indices by heading. Monthly. Consumer Price Index (CPI)
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Index population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Index across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Index was 157, a 1.29% increase year-by-year from 2022. Previously, in 2022, Index population was 155, an increase of 1.31% compared to a population of 153 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Index decreased by 3. In this period, the peak population was 211 in the year 2019. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Index Population by Year. You can refer the same here
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Time Series Analysis is an important part in Data science toolkit. This dataset was created from Yahoo Finance with the help of their official API yfinance.
This dataset contains closing price of Top 4 indexes recorded over daily frame from 1994 to 2021 October (27 years).
Column | Description |
---|---|
Date | Date from 7th January 1994 to 28th October 2021 in format yyyy/mm/dd |
spx | The S&P 500 Index, or Standard & Poor's 500 Index, is a market-capitalization-weighted index of 500 leading publicly traded companies in the U.S |
dax | The DAX—also known as the Deutscher Aktien Index—is a stock index that represents 40 of the largest and most liquid German companies that trade on the Frankfurt Exchange |
ftse | The Financial Times Stock Exchange (FTSE), now known as FTSE Russell Group, is a British financial organization that specializes in providing index offerings for the global financial markets |
nikkie | The Nikkei is short for Japan's Nikkei 225 Stock Average, the leading and most-respected index of Japanese stocks. |
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The objective of the study is to explore the relationship between country governance practices along with political stability and Economic policy uncertainty, and stock market performance of two different economies, Pakistan and Kurdistan region of Iraq. To meet our objectives, we used the 25 years past data from 1996 to 2021. Data is collected from the DataStream database. The regression analysis is used as the method of estimation for linear and moderation effect. Our results show that regulatory quality, rules of law and political stability has significant positive relationship with stock market performance of Pakistan, but all the governance indicators have significant positive relationship with stock market performance of the Kurdistan Region of Iraq. Moreover, political stability has significant moderating impact between the governance practices and the performance of the stock markets of both economies indicating that the governance practices perform well with the political stability that leads to rise in the stock market indices of selected countries. Economic policy uncertainty has significant negative moderation impact due to creating the risk in both economies that decrease the performance of the stock markets of the selected economies. Finally, our study advocated some implications for the investors to increase their confidence on the stock of high political stability and low economic policy uncertainty economies. Government can take significant measures to control the uncertainty of the policy and portfolio managers can adjust their risk on the ground of the political stability and efficient governance practices countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data have been filtered, e.g. by removing null records.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer
View LSEG's FTSE Russell Data, and gain a comprehensive range of indices, as well as benchmarking, analytics, and data solutions.
Trend Departure Index (TDI) is computed as: (number of quantiles for which the trend result departs from the result for the associated reference site) / (total number of quantiles). In a Quantile-Kendall analysis for the annual time frame, the denominator, or total number of quantiles, is 365. TDI varies from 0 to 1; a TDI of 0 indicates the trend results for the site are identical to the reference site and any value larger than 0 indicates some departure compared to the reference condition. The larger the number (the closer to 1) the more departure or deviation relative to the reference site in trend across all the quantiles for the site.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data