These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: File format: R workspace file; “Simulated_Dataset.RData”. Metadata (including data dictionary) • y: Vector of binary responses (1: adverse outcome, 0: control) • x: Matrix of covariates; one row for each simulated individual • z: Matrix of standardized pollution exposures • n: Number of simulated individuals • m: Number of exposure time periods (e.g., weeks of pregnancy) • p: Number of columns in the covariate design matrix • alpha_true: Vector of “true” critical window locations/magnitudes (i.e., the ground truth that we want to estimate) Code Abstract We provide R statistical software code (“CWVS_LMC.txt”) to fit the linear model of coregionalization (LMC) version of the Critical Window Variable Selection (CWVS) method developed in the manuscript. We also provide R code (“Results_Summary.txt”) to summarize/plot the estimated critical windows and posterior marginal inclusion probabilities. Description “CWVS_LMC.txt”: This code is delivered to the user in the form of a .txt file that contains R statistical software code. Once the “Simulated_Dataset.RData” workspace has been loaded into R, the text in the file can be used to identify/estimate critical windows of susceptibility and posterior marginal inclusion probabilities. “Results_Summary.txt”: This code is also delivered to the user in the form of a .txt file that contains R statistical software code. Once the “CWVS_LMC.txt” code is applied to the simulated dataset and the program has completed, this code can be used to summarize and plot the identified/estimated critical windows and posterior marginal inclusion probabilities (similar to the plots shown in the manuscript). Optional Information (complete as necessary) Required R packages: • For running “CWVS_LMC.txt”: • msm: Sampling from the truncated normal distribution • mnormt: Sampling from the multivariate normal distribution • BayesLogit: Sampling from the Polya-Gamma distribution • For running “Results_Summary.txt”: • plotrix: Plotting the posterior means and credible intervals Instructions for Use Reproducibility (Mandatory) What can be reproduced: The data and code can be used to identify/estimate critical windows from one of the actual simulated datasets generated under setting E4 from the presented simulation study. How to use the information: • Load the “Simulated_Dataset.RData” workspace • Run the code contained in “CWVS_LMC.txt” • Once the “CWVS_LMC.txt” code is complete, run “Results_Summary.txt”. Format: Below is the replication procedure for the attached data set for the portion of the analyses using a simulated data set: Data The data used in the application section of the manuscript consist of geocoded birth records from the North Carolina State Center for Health Statistics, 2005-2008. In the simulation study section of the manuscript, we simulate synthetic data that closely match some of the key features of the birth certificate data while maintaining confidentiality of any actual pregnant women. Availability Due to the highly sensitive and identifying information contained in the birth certificate data (including latitude/longitude and address of residence at delivery), we are unable to make the data from the application section publically available. However, we will make one of the simulated datasets available for any reader interested in applying the method to realistic simulated birth records data. This will also allow the user to become familiar with the required inputs of the model, how the data should be structured, and what type of output is obtained. While we cannot provide the application data here, access to the North Carolina birth records can be requested through the North Carolina State Center for Health Statistics, and requires an appropriate data use agreement. Description Permissions: These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is associated with the following publication: Warren, J., W. Kong, T. Luben, and H. Chang. Critical Window Variable Selection: Estimating the Impact of Air Pollution on Very Preterm Birth. Biostatistics. Oxford University Press, OXFORD, UK, 1-30, (2019).
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains counts and measures for individuals from the 2013, 2018, and 2023 Censuses. Data is available by statistical area 1.
The variables included in this dataset are for the census usually resident population count (unless otherwise stated). All data is for level 1 of the classification.
The variables for part 2 of the dataset are:
Download lookup file for part 2 from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Te Whata
Under the Mana Ōrite Relationship Agreement, Te Kāhui Raraunga (TKR) will be publishing Māori descent and iwi affiliation data from the 2023 Census in partnership with Stats NZ. This will be available on Te Whata, a TKR platform.
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Population counts
Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
Study participation time series
In the 2013 Census study participation was only collected for the census usually resident population count aged 15 years and over.
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Concept descriptions and quality ratings
Data quality ratings for 2023 Census variables has additional details about variables found within totals by topic, for example, definitions and data quality.
Disability indicator
This data should not be used as an official measure of disability prevalence. Disability prevalence estimates are only available from the 2023 Household Disability Survey. Household Disability Survey 2023: Final content has more information about the survey.
Activity limitations are measured using the Washington Group Short Set (WGSS). The WGSS asks about six basic activities that a person might have difficulty with: seeing, hearing, walking or climbing stairs, remembering or concentrating, washing all over or dressing, and communicating. A person was classified as disabled in the 2023 Census if there was at least one of these activities that they had a lot of difficulty with or could not do at all.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Measures
Measures like averages, medians, and other quantiles are calculated from unrounded counts, with input noise added to or subtracted from each contributing value
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.
Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.
This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data.
The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.
For more information:
NNDSS Supports the COVID-19 Response | CDC.
The deidentified data in the “COVID-19 Case Surveillance Public Use Data” include demographic characteristics, any exposure history, disease severity indicators and outcomes, clinical data, laboratory diagnostic test results, and presence of any underlying medical conditions and risk behaviors. All data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf.
COVID-19 case reports have been routinely submitted using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19 included. Current versions of these case definitions are available here: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/.
All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for laboratory-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. Case reporting using this new form is ongoing among U.S. states and territories.
To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.
CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:
To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<5) records and indirect identifiers (e.g., date of first positive specimen). Suppression includes rare combinations of demographic characteristics (sex, age group, race/ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.
For questions, please contact Ask SRRG (eocevent394@cdc.gov).
COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset shows an individual’s statistical area 3 (SA3) of usual residence and the SA3 of their place of study, for the census usually resident population count who are studying (part time or full time), by main means of travel to education from the 2018 and 2023 Censuses.
The main means of travel to education categories are:
Main means of travel to education is the usual method a person used to travel the longest distance to their place of study.
Educational institution address is the physical location of the individual’s place of study. Educational institutions include early childhood education, primary school, secondary school, and tertiary education institutions. For individuals who study at home, their educational institution address is the same as their usual residence address.
Educational institution address is coded to the most detailed geography possible from the available information. This dataset only includes travel to education information for individuals whose educational institution address is available at SA3 level. The sum of the counts for each region in this dataset may not equal the census usually resident population count who are studying (part time or full time) for that region. Educational institution address – 2023 Census: Information by concept has more information.
This dataset can be used in conjunction with the following spatial files by joining on the SA3 code values:
Download data table using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Population counts
Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data).
Educational institution address time series
Educational institution address time series data should be interpreted with care at lower geographic levels, such as statistical area 2 (SA2). Methodological improvements in 2023 Census resulted in greater data accuracy, including a greater proportion of people being counted at lower geographic areas compared to the 2018 Census. Educational institution address – 2023 Census: Information by concept has more information.
Rows excluded from the dataset
Rows show SA3 of usual residence by SA3 of educational institution address. Rows with a total population count of less than six have been removed to reduce the size of the dataset, given only a small proportion of SA3-SA3 combinations have commuter flows.
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Main means of travel to education quality rating
Main means of travel to education is rated as moderate quality.
Main means of travel to education – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Educational institution address quality rating
Educational institution address is rated as moderate quality.
Educational institution address – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.
Symbol
-999 Confidential
Inconsistencies in definitions
Please note that there may be differences in definitions between census classifications and those used for other data collections.
Data Dictionary template for Tempe Open Data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 Cases by Population Characteristics Over Time’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/a3291d85-0076-43c5-a59c-df49480cdc6d on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Note: On January 22, 2022, system updates to improve the timeliness and accuracy of San Francisco COVID-19 cases and deaths data were implemented. You might see some fluctuations in historic data as a result of this change. Due to the changes, starting on January 22, 2022, the number of new cases reported daily will be higher than under the old system as cases that would have taken longer to process will be reported earlier.
A. SUMMARY This dataset shows San Francisco COVID-19 cases by population characteristics and by specimen collection date. Cases are included on the date the positive test was collected.
Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how cases have been distributed among different subgroups. This information can reveal trends and disparities among groups.
Data is lagged by five days, meaning the most recent specimen collection date included is 5 days prior to today. Tests take time to process and report, so more recent data is less reliable.
B. HOW THE DATASET IS CREATED Data on the population characteristics of COVID-19 cases and deaths are from: * Case interviews * Laboratories * Medical providers
These multiple streams of data are merged, deduplicated, and undergo data verification processes. This data may not be immediately available for recently reported cases because of the time needed to process tests and validate cases. Daily case totals on previous days may increase or decrease. Learn more.
Data are continually updated to maximize completeness of information and reporting on San Francisco residents with COVID-19.
Data notes on each population characteristic type is listed below.
Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. * The population estimates for the "Other" or “Multi-racial” groups should be considered with caution. The Census definition is likely not exactly aligned with how the City collects this data. For that reason, we do not recommend calculating population rates for these groups.
Sexual orientation * Sexual orientation data is collected from individuals who are 18 years old or older. These individuals can choose whether to provide this information during case interviews. Learn more about our data collection guidelines. * The City began asking for this information on April 28, 2020.
Gender * The City collects information on gender identity using these guidelines.
Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.
Transmission type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.
Homelessness
Persons are identified as homeless based on several data sources:
* self-reported living situation
* the location at the time of testing
* Department of Public Health homelessness and health databases
* Residents in Single-Room Occupancy hotels are not included in these figures.
These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.
Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing
--- Original source retains full ownership of the source dataset ---
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The database for this study (Briganti et al. 2018; the same for the Braun study analysis) was composed of 1973 French-speaking students in several universities or schools for higher education in the following fields: engineering (31%), medicine (18%), nursing school (16%), economic sciences (15%), physiotherapy, (4%), psychology (11%), law school (4%) and dietetics (1%). The subjects were 17 to 25 years old (M = 19.6 years, SD = 1.6 years), 57% were females and 43% were males. Even though the full dataset was composed of 1973 participants, only 1270 answered the full questionnaire: missing data are handled using pairwise complete observations in estimating a Gaussian Graphical Model, meaning that all available information from every subject are used.
The feature set is composed of 28 items meant to assess the four following components: fantasy, perspective taking, empathic concern and personal distress. In the questionnaire, the items are mixed; reversed items (items 3, 4, 7, 12, 13, 14, 15, 18, 19) are present. Items are scored from 0 to 4, where “0” means “Doesn’t describe me very well” and “4” means “Describes me very well”; reverse-scoring is calculated afterwards. The questionnaires were anonymized. The reanalysis of the database in this retrospective study was approved by the ethical committee of the Erasmus Hospital.
Size: A dataset of size 1973*28
Number of features: 28
Ground truth: No
Type of Graph: Mixed graph
The following gives the description of the variables:
Feature FeatureLabel Domain Item meaning from Davis 1980
001 1FS Green I daydream and fantasize, with some regularity, about things that might happen to me.
002 2EC Purple I often have tender, concerned feelings for people less fortunate than me.
003 3PT_R Yellow I sometimes find it difficult to see things from the “other guy’s” point of view.
004 4EC_R Purple Sometimes I don’t feel very sorry for other people when they are having problems.
005 5FS Green I really get involved with the feelings of the characters in a novel.
006 6PD Red In emergency situations, I feel apprehensive and ill-at-ease.
007 7FS_R Green I am usually objective when I watch a movie or play, and I don’t often get completely caught up in it.(Reversed)
008 8PT Yellow I try to look at everybody’s side of a disagreement before I make a decision.
009 9EC Purple When I see someone being taken advantage of, I feel kind of protective towards them.
010 10PD Red I sometimes feel helpless when I am in the middle of a very emotional situation.
011 11PT Yellow sometimes try to understand my friends better by imagining how things look from their perspective
012 12FS_R Green Becoming extremely involved in a good book or movie is somewhat rare for me. (Reversed)
013 13PD_R Red When I see someone get hurt, I tend to remain calm. (Reversed)
014 14EC_R Purple Other people’s misfortunes do not usually disturb me a great deal. (Reversed)
015 15PT_R Yellow If I’m sure I’m right about something, I don’t waste much time listening to other people’s arguments. (Reversed)
016 16FS Green After seeing a play or movie, I have felt as though I were one of the characters.
017 17PD Red Being in a tense emotional situation scares me.
018 18EC_R Purple When I see someone being treated unfairly, I sometimes don’t feel very much pity for them. (Reversed)
019 19PD_R Red I am usually pretty effective in dealing with emergencies. (Reversed)
020 20FS Green I am often quite touched by things that I see happen.
021 21PT Yellow I believe that there are two sides to every question and try to look at them both.
022 22EC Purple I would describe myself as a pretty soft-hearted person.
023 23FS Green When I watch a good movie, I can very easily put myself in the place of a leading character.
024 24PD Red I tend to lose control during emergencies.
025 25PT Yellow When I’m upset at someone, I usually try to “put myself in his shoes” for a while.
026 26FS Green When I am reading an interesting story or novel, I imagine how I would feel if the events in the story were happening to me.
027 27PD Red When I see someone who badly needs help in an emergency, I go to pieces.
028 28PT Yellow Before criticizing somebody, I try to imagine how I would feel if I were in their place
More information about the dataset is contained in empathy_description.html file.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains counts for territorial authority local board area (TALB) of usual residence by TALB of usual residence address one year ago and five years ago, and by life cycle age group, for the census usually resident population count, 2023 Census.
This dataset compares usual residence at the 2023 Census with usual residence one and five years earlier to show population mobility and internal migration patterns of people within New Zealand.
‘Usual residence address’ is the address of the dwelling where a person considers that they usually live.
‘Usual residence one year ago address’ identifies an individual’s usual residence on 7 March 2022, which may be different to their current usual residence on census night 2023 (7 March 2023).
‘Usual residence five years ago address’ identifies an individual’s usual residence on 6 March 2018, which may be different to their current usual residence on census night 2023 (7 March 2023).
Note: This dataset only includes usual residence address information for individuals whose usual residence address one year ago and five years ago is available at TALB.
Life cycle age groups are categorised as:
This dataset can be used in conjunction with the following spatial files by joining on the TALB code values:
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Population counts
Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.
Rows excluded from the dataset
Rows show TALB of usual residence by TALB of usual residence one year ago and five years ago, by life cycle age group. Cells with a number less than six have been confidentialised. Responses to categories unable to be mapped, such as response unidentifiable, not stated, and Auckland (not further defined), have also been excluded from this dataset.
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Age quality rating
Age is rated as very high quality.
Age – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Census usually resident population quality rating
The census usually resident population count is rated as very high quality.
Census usually resident population count – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Usual residence address quality rating
Usual residence address is rated as high quality.
Usual residence address – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Usual residence one year ago quality rating
Usual residence one year ago area is rated as high quality.
Usual residence one year ago – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Usual residence five years ago quality rating
Usual residence five years ago area is rated as high quality.
Usual residence five years ago – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Symbol
-999 Confidential
Inconsistencies in definitions
Please note that there may be differences in definitions between census classifications and those used for other data collections.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 4 rows and is filtered where the book is The Cambridge dictionary of statistics. It features 7 columns including author, publication date, language, and book publisher.
The Overview of Health Disparities analysis is a component of the Healthy People 2020 (HP2020) Final Review. The analysis included 611 objectives in HP2020. This file contains summary level information used for the evaluation of changes in disparities during HP2020, including calculations for the disparities measures and the disparities change categories for all objectives and population characteristics in the analysis. See Technical Notes for the Healthy People 2020 Overview of Health Disparities (https://www.cdc.gov/nchs/healthy_people/hp2020/health-disparities-technical-notes.htm) for additional information and criteria for objectives, data years, and population characteristics included in the analysis and statistical formulas and definitions for the disparities measures. Data for additional years during the HP2020 tracking period that are not included in the Overview of Health Disparities are available on the HP2020 website (https://www.healthypeople.gov/2020/). Note that “rate” as used may refer to a statistical rate expressed per unit population or a proportion, depending on how the HP2020 objective was defined.
Occupation data for 2021 and 2022 data files
The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.
Latest edition information
For the second edition (September 2023), the variables NSECM20, NSECMJ20, SC2010M, SC20SMJ, SC20SMN, SOC20M and SOC20O have been replaced with new versions. Further information on the SOC revisions can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Map shows the percentage change in number of occupied and unoccupied private dwellings between the 2018 and 2023 Censuses.Download lookup file from Stats NZ ArcGIS Online or Stats NZ geographic data service.FootnotesGeographical boundariesStatistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018. Caution using time series Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data). About the 2023 Census dataset For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings. Data quality The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.Quality rating of a variable The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable. Dwelling occupancy status quality rating Dwelling occupancy status is rated as high quality. Dwelling occupancy status – 2023 Census: Information by concept has more information, for example, definitions and data quality.Dwelling type quality rating Dwelling type is rated as moderate quality. Dwelling type – 2023 Census: Information by concept has more information, for example, definitions and data quality.Using data for good Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.Confidentiality The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.Symbol-998 Not applicable-999 Confidential
This dataset contains two tables on the percent of household overcrowding (> 1.0 persons per room) and severe overcrowding (> 1.5 persons per room) for California, its regions, counties, and cities/towns. Data is from the U.S. Department of Housing and Urban Development (HUD), Comprehensive Housing Affordability Strategy (CHAS) and U.S. Census American Community Survey (ACS). The table is part of a series of indicators in the Healthy Communities Data and Indicators Project (HCI) of the Office of Health Equity: Healthy Communities Data and Indicators Project of the Office of Health Equity. Residential crowding has been linked to an increased risk of infection from communicable diseases, a higher prevalence of respiratory ailments, and greater vulnerability to homelessness among the poor. Residential crowding reflects demographic and socioeconomic conditions. Older-adult immigrant and recent immigrant communities, families with low income and renter-occupied households are more likely to experience household crowding. A form of residential overcrowding known as "doubling up"—co-residence with family members or friends for economic reasons—is the most commonly reported prior living situation for families and individuals before the onset of homelessness. More information about the data table and a data dictionary can be found in the About/Attachments section.The household crowding table is part of a series of indicators in the Healthy Communities Data and Indicators Project (HCI) of the Office of Health Equity. The goal of HCI is to enhance public health by providing data, a standardized set of statistical measures, and tools that a broad array of sectors can use for planning healthy communities and evaluating the impact of plans, projects, policy, and environmental changes on community health. The creation of healthy social, economic, and physical environments that promote healthy behaviors and healthy outcomes requires coordination and collaboration across multiple sectors, including transportation, housing, education, agriculture and others. Statistical metrics, or indicators, are needed to help local, regional, and state public health and partner agencies assess community environments and plan for healthy communities that optimize public health. More information on HCI can be found here: https://www.cdph.ca.gov/Programs/OHE/CDPH%20Document%20Library/Accessible%202%20CDPH_Healthy_Community_Indicators1pager5-16-12.pdf The format of the household overcrowding tables is based on the standardized data format for all HCI indicators. As a result, this data table contains certain variables used in the HCI project (e.g., indicator ID, and indicator definition). Some of these variables may contain the same value for all observations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This template covers section 2.5 Resource Fields: Entity and Attribute Information of the Data Discovery Form cited in the Open Data DC Handbook (2022). It completes documentation elements that are required for publication. Each field column (attribute) in the dataset needs a description clarifying the contents of the column. Data originators are encouraged to enter the code values (domains) of the column to help end-users translate the contents of the column where needed, especially when lookup tables do not exist.
A. SUMMARY This archived dataset includes data for population characteristics that are no longer being reported publicly. The date on which each population characteristic type was archived can be found in the field “data_loaded_at”. B. HOW THE DATASET IS CREATED Data on the population characteristics of COVID-19 cases are from: * Case interviews * Laboratories * Medical providers These multiple streams of data are merged, deduplicated, and undergo data verification processes. Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. * The population estimates for the "Other" or “Multi-racial” groups should be considered with caution. The Census definition is likely not exactly aligned with how the City collects this data. For that reason, we do not recommend calculating population rates for these groups. Gender * The City collects information on gender identity using these guidelines. Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing Facility (SNF) is a type of long-term care facility that provides care to individuals, generally in their 60s and older, who need functional assistance in their daily lives. * This dataset includes data for COVID-19 cases reported in Skilled Nursing Facilities (SNFs) through 12/31/2022, archived on 1/5/2023. These data were identified where “Characteristic_Type” = ‘Skilled Nursing Facility Occupancy’. Sexual orientation * The City began asking adults 18 years old or older for their sexual orientation identification during case interviews as of April 28, 2020. Sexual orientation data prior to this date is unavailable. * The City doesn’t collect or report information about sexual orientation for persons under 12 years of age. * Case investigation interviews transitioned to the California Department of Public Health, Virtual Assistant information gathering beginning December 2021. The Virtual Assistant is only sent to adults who are 18+ years old. Learn more about our data collection guidelines pertaining to sexual orientation. Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death. Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation * the location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures. These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions. Single Room Occupancy (SRO) tenancy * SRO buildings are defined by the San Francisco Housing Code as having six or more "residential guest rooms" which may be attached to shared bathrooms, kitchens, and living spaces. * The details of a person's living arrangements are verified during case interviews. Transmission Type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown. C. UPDATE PROCESS This dataset has been archived and will no longer update as of 9/11/2023. D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco po
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The New York City Airbnb 2019 Open Data is a dataset containing varius details about a listed unit, when the goal is to predict the rental price of a unit.
This dataset contains the details for units listed in NYC during 2019, was adapted from the following open kaggle dataset: https://www.kaggle.com/datasets/dgomonov/new-york-city-airbnb-open-data. This, in turn was downloaded from the Airbnb data repository http://insideairbnb.com/get-the-data.
This dataset is licensed under the CC0 1.0 Universal License (https://creativecommons.org/publicdomain/zero/1.0/).
The typical ML task in this dataset is to build a model that predicts the average rental price of a unit.
This dataset provides a data dictionary for PLACES and 500 Cities releases. For each measure, the data dictionary provides the measure ID, measure full and short name, measure category ID and name, year of BRFSS data used to generate the estimate by release year, and frequency BRFSS collects data about the measure.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The NIHR is one of the main funders of public health research in the UK. Public health research falls within the remit of a range of NIHR Research Programmes, NIHR Centres of Excellence and Facilities, plus the NIHR Academy. NIHR awards from all NIHR Research Programmes and the NIHR Academy that were funded between January 2006 and the present extraction date are eligible for inclusion in this dataset. An agreed inclusion/exclusion criteria is used to categorise awards as public health awards (see below). Following inclusion in the dataset, public health awards are second level coded to one of the four Public Health Outcomes Framework domains. These domains are: (1) wider determinants (2) health improvement (3) health protection (4) healthcare and premature mortality.More information on the Public Health Outcomes Framework domains can be found here.This dataset is updated quarterly to include new NIHR awards categorised as public health awards. Please note that for those Public Health Research Programme projects showing an Award Budget of £0.00, the project is undertaken by an on-call team for example, PHIRST, Public Health Review Team, or Knowledge Mobilisation Team, as part of an ongoing programme of work.Inclusion criteriaThe NIHR Public Health Overview project team worked with colleagues across NIHR public health research to define the inclusion criteria for NIHR public health research awards. NIHR awards are categorised as public health awards if they are determined to be ‘investigations of interventions in, or studies of, populations that are anticipated to have an effect on health or on health inequity at a population level.’ This definition of public health is intentionally broad to capture the wide range of NIHR public health awards across prevention, health improvement, health protection, and healthcare services (both within and outside of NHS settings). This dataset does not reflect the NIHR’s total investment in public health research. The intention is to showcase a subset of the wider NIHR public health portfolio. This dataset includes NIHR awards categorised as public health awards from NIHR Research Programmes and the NIHR Academy. This dataset does not currently include public health awards or projects funded by any of the three NIHR Research Schools or any of the NIHR Centres of Excellence and Facilities. Therefore, awards from the NIHR Schools for Public Health, Primary Care and Social Care, NIHR Public Health Policy Research Unit and the NIHR Health Protection Research Units do not feature in this curated portfolio.DisclaimersUsers of this dataset should acknowledge the broad definition of public health that has been used to develop the inclusion criteria for this dataset. This caveat applies to all data within the dataset irrespective of the funding NIHR Research Programme or NIHR Academy award.Please note that this dataset is currently subject to a limited data quality review. We are working to improve our data collection methodologies. Please also note that some awards may also appear in other NIHR curated datasets. Further informationFurther information on the individual awards shown in the dataset can be found on the NIHR’s Funding & Awards website here. Further information on individual NIHR Research Programme’s decision making processes for funding health and social care research can be found here.Further information on NIHR’s investment in public health research can be found as follows: NIHR School for Public Health here. NIHR Public Health Policy Research Unit here. NIHR Health Protection Research Units here. NIHR Public Health Research Programme Health Determinants Research Collaborations (HDRC) here. NIHR Public Health Research Programme Public Health Intervention Responsive Studies Teams (PHIRST) here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Survey based Harmonized Indicators (SHIP) files are harmonized data files from household surveys that are conducted by countries in Africa. To ensure the quality and transparency of the data, it is critical to document the procedures of compiling consumption aggregation and other indicators so that the results can be duplicated with ease. This process enables consistency and continuity that make temporal and cross-country comparisons consistent and more reliable. Four harmonized data files are prepared for each survey to generate a set of harmonized variables that have the same variable names. Invariably, in each survey, questions are asked in a slightly different way, which poses challenges on consistent definition of harmonized variables. The harmonized household survey data present the best available variables with harmonized definitions, but not identical variables. The four harmonized data files are a) Individual level file (Labor force indicators in a separate file): This file has information on basic characteristics of individuals such as age and sex, literacy, education, health, anthropometry and child survival. b) Labor force file: This file has information on labor force including employment/unemployment, earnings, sectors of employment, etc. c) Household level file: This file has information on household expenditure, household head characteristics (age and sex, level of education, employment), housing amenities, assets, and access to infrastructure and services. d) Household Expenditure file: This file has consumption/expenditure aggregates by consumption groups according to Purpose (COICOP) of Household Consumption of the UN.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset compares usual residence at the 2023 Census with usual residence one and five years earlier to show population mobility and internal migration patterns of people within New Zealand.‘Usual residence address’ is the address of the dwelling where a person considers that they usually live.‘Usual residence one year ago address’ identifies an individual’s usual residence on 7 March 2022, which may be different to their current usual residence on census night 2023 (7 March 2023).‘Usual residence five years ago address’ identifies an individual’s usual residence on 6 March 2018, which may be different to their current usual residence on census night 2023 (7 March 2023).Note: This dataset only includes usual residence address information for individuals whose usual residence address one year ago and five years ago is available at TALB. Life cycle age groups are categorised as:under 15 years15–29 years30–64 years65 years and over.This dataset can be used in conjunction with the following spatial file by joining on the TALB code values:Territorial authority local board 2023 (generalised)FootnotesGeographical boundaries Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.Subnational census usually resident population The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city. Population counts Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts. Rows excluded from the dataset Rows show TALB of usual residence by TALB of usual residence one year ago and five years ago, by life cycle age group. Cells with a number less than six have been confidentialised. Responses to categories unable to be mapped, such as response unidentifiable, not stated, and Auckland (not further defined), have also been excluded from this dataset.About the 2023 Census dataset For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings. Data quality The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.Quality rating of a variableThe quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable. Age quality ratingAge is rated as very high quality. Age – 2023 Census: Information by concept has more information, for example, definitions and data quality.Census usually resident population quality ratingThe census usually resident population count is rated as very high quality. Census usually resident population count – 2023 Census: Information by concept has more information, for example, definitions and data quality.Usual residence address quality ratingUsual residence address is rated as high quality. Usual residence address – 2023 Census: Information by concept has more information, for example, definitions and data quality.Usual residence one year ago quality ratingUsual residence one year ago area is rated as high quality. Usual residence one year ago – 2023 Census: Information by concept has more information, for example, definitions and data quality.Usual residence five years ago quality ratingUsual residence five years ago area is rated as high quality. Usual residence five years ago – 2023 Census: Information by concept has more information, for example, definitions and data quality.Using data for good Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.Confidentiality The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.Symbol-999 ConfidentialInconsistencies in definitions Please note that there may be differences in definitions between census classifications and those used for other data collections.
These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: File format: R workspace file; “Simulated_Dataset.RData”. Metadata (including data dictionary) • y: Vector of binary responses (1: adverse outcome, 0: control) • x: Matrix of covariates; one row for each simulated individual • z: Matrix of standardized pollution exposures • n: Number of simulated individuals • m: Number of exposure time periods (e.g., weeks of pregnancy) • p: Number of columns in the covariate design matrix • alpha_true: Vector of “true” critical window locations/magnitudes (i.e., the ground truth that we want to estimate) Code Abstract We provide R statistical software code (“CWVS_LMC.txt”) to fit the linear model of coregionalization (LMC) version of the Critical Window Variable Selection (CWVS) method developed in the manuscript. We also provide R code (“Results_Summary.txt”) to summarize/plot the estimated critical windows and posterior marginal inclusion probabilities. Description “CWVS_LMC.txt”: This code is delivered to the user in the form of a .txt file that contains R statistical software code. Once the “Simulated_Dataset.RData” workspace has been loaded into R, the text in the file can be used to identify/estimate critical windows of susceptibility and posterior marginal inclusion probabilities. “Results_Summary.txt”: This code is also delivered to the user in the form of a .txt file that contains R statistical software code. Once the “CWVS_LMC.txt” code is applied to the simulated dataset and the program has completed, this code can be used to summarize and plot the identified/estimated critical windows and posterior marginal inclusion probabilities (similar to the plots shown in the manuscript). Optional Information (complete as necessary) Required R packages: • For running “CWVS_LMC.txt”: • msm: Sampling from the truncated normal distribution • mnormt: Sampling from the multivariate normal distribution • BayesLogit: Sampling from the Polya-Gamma distribution • For running “Results_Summary.txt”: • plotrix: Plotting the posterior means and credible intervals Instructions for Use Reproducibility (Mandatory) What can be reproduced: The data and code can be used to identify/estimate critical windows from one of the actual simulated datasets generated under setting E4 from the presented simulation study. How to use the information: • Load the “Simulated_Dataset.RData” workspace • Run the code contained in “CWVS_LMC.txt” • Once the “CWVS_LMC.txt” code is complete, run “Results_Summary.txt”. Format: Below is the replication procedure for the attached data set for the portion of the analyses using a simulated data set: Data The data used in the application section of the manuscript consist of geocoded birth records from the North Carolina State Center for Health Statistics, 2005-2008. In the simulation study section of the manuscript, we simulate synthetic data that closely match some of the key features of the birth certificate data while maintaining confidentiality of any actual pregnant women. Availability Due to the highly sensitive and identifying information contained in the birth certificate data (including latitude/longitude and address of residence at delivery), we are unable to make the data from the application section publically available. However, we will make one of the simulated datasets available for any reader interested in applying the method to realistic simulated birth records data. This will also allow the user to become familiar with the required inputs of the model, how the data should be structured, and what type of output is obtained. While we cannot provide the application data here, access to the North Carolina birth records can be requested through the North Carolina State Center for Health Statistics, and requires an appropriate data use agreement. Description Permissions: These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is associated with the following publication: Warren, J., W. Kong, T. Luben, and H. Chang. Critical Window Variable Selection: Estimating the Impact of Air Pollution on Very Preterm Birth. Biostatistics. Oxford University Press, OXFORD, UK, 1-30, (2019).