Facebook
TwitterFrom 2017 to 2018, there were almost 8 infant deaths per 1,000 live births among women aged 20 to 24 years who were obese before pregnancy in the United States. This statistic illustrates the rate of infant mortality in the United States from 2017 to 2018, by maternal pre-pregnancy body mass index and age.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Mortality Rate: Infant: Male: per 1000 Live Births data was reported at 6.000 Ratio in 2017. This records a decrease from the previous number of 6.200 Ratio for 2015. United States US: Mortality Rate: Infant: Male: per 1000 Live Births data is updated yearly, averaging 6.800 Ratio from Dec 1990 (Median) to 2017, with 5 observations. The data reached an all-time high of 10.400 Ratio in 1990 and a record low of 6.000 Ratio in 2017. United States US: Mortality Rate: Infant: Male: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Infant mortality rate, male is the number of male infants dying before reaching one year of age, per 1,000 male live births in a given year.; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Weighted average; Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys.
Facebook
TwitterThe infant mortality rate due to birth defects (IMDB) among male infants in 2017 was 11 deaths per 10,000 live births. The statistic illustrates the rate of infant mortality attributable due to birth defects (IMDB) in the U.S., by infant gender.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Mortality Rate: Infant: Female: per 1000 Live Births data was reported at 5.000 Ratio in 2017. This records a decrease from the previous number of 5.200 Ratio for 2015. United States US: Mortality Rate: Infant: Female: per 1000 Live Births data is updated yearly, averaging 5.700 Ratio from Dec 1990 (Median) to 2017, with 5 observations. The data reached an all-time high of 8.300 Ratio in 1990 and a record low of 5.000 Ratio in 2017. United States US: Mortality Rate: Infant: Female: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Infant mortality rate, female is the number of female infants dying before reaching one year of age, per 1,000 female live births in a given year.; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Weighted average; Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Mortality Rate: Under-5: Male: per 1000 Live Births data was reported at 7.200 Ratio in 2017. This records a decrease from the previous number of 7.400 Ratio for 2015. United States US: Mortality Rate: Under-5: Male: per 1000 Live Births data is updated yearly, averaging 8.000 Ratio from Dec 1990 (Median) to 2017, with 5 observations. The data reached an all-time high of 12.500 Ratio in 1990 and a record low of 7.200 Ratio in 2017. United States US: Mortality Rate: Under-5: Male: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Under-five mortality rate, male is the probability per 1,000 that a newborn male baby will die before reaching age five, if subject to male age-specific mortality rates of the specified year.; ; Estimates Developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Weighted average; Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys.
Facebook
TwitterThis dataset of U.S. mortality trends since 1900 highlights childhood mortality rates by age group for age at death. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Age groups for childhood death rates are based on age at death. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Facebook
TwitterIn 2017, the infant mortality attributable to birth defects (IMDB) amounted to 11 deaths per 10,000 live births. The statistic illustrates the rate of infant mortality attributable to birth defects (IMDB) in the U.S. in 2003 and 2017.
Facebook
TwitterIn 2022, the infant mortality rate in the United States was 5.4 out of every 1,000 live births. This is a significant decrease from 1960, when infant mortality was at around 26 deaths out of every 1,000 live births. What is infant mortality? The infant mortality rate is the number of deaths of babies under the age of one per 1,000 live births. There are many causes for infant mortality, which include birth defects, low birth weight, pregnancy complications, and sudden infant death syndrome. In order to decrease the high rates of infant mortality, there needs to be an increase in education and medicine so babies and mothers can receive the proper treatment needed. Maternal mortality is also related to infant mortality. If mothers can attend more prenatal visits and have more access to healthcare facilities, maternal mortality can decrease, and babies have a better chance of surviving in their first year. Worldwide infant mortality rates Infant mortality rates vary worldwide; however, some areas are more affected than others. Afghanistan suffered from the highest infant mortality rate in 2024, and the following 19 countries all came from Africa, with the exception of Pakistan. On the other hand, Slovenia had the lowest infant mortality rate that year. High infant mortality rates can be attributed to lack of sanitation, technological advancements, and proper natal care. In the United States, Massachusetts had the lowest infant mortality rate, while Mississippi had the highest in 2022. Overall, the number of neonatal and post neonatal deaths in the United States has been steadily decreasing since 1995.
Facebook
Twitter"Infant mortality is the death of an infant before his or her first birthday. The infant mortality rate is the number of infant deaths for every 1,000 live births. In addition to giving us key information about maternal and infant health, the infant mortality rate is an important marker of the overall health of a society. In 2017, the infant mortality rate in the United States was 5.8 deaths per 1,000 live births." For more information, see the US CDC website.Estimates developed by the UN Inter-agency Group for Child Mortality Estimation ( UNICEF, WHO, World Bank, UN DESA Population Division )
Infant Mortality source: World Bank. See: https://data.worldbank.org/indicator/SP.DYN.IMRT.IN
Facebook
TwitterThis dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Number of Death: Infant data was reported at 22,943.000 Person in 2017. This records a decrease from the previous number of 23,037.000 Person for 2016. United States US: Number of Death: Infant data is updated yearly, averaging 38,212.000 Person from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 109,480.000 Person in 1960 and a record low of 22,943.000 Person in 2017. United States US: Number of Death: Infant data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Number of infants dying before reaching one year of age.; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Sum;
Facebook
TwitterFrom 2000 to 2017, the infant mortality rate for all maternal age groups in the United States declined. The age group at highest risk were those aged under 20 years, with those aged between 30 and 34 years having the lowest risk of infant death during this time period. This statistic illustrates infant mortality per 1,000 births from 2000 to 2017 in the U.S., by maternal age group.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: Sudden infant death syndrome (SIDS) is one of the leading causes of infant mortality in the United States (US). The extent to which SIDS manifests with an underlying neuropathological mechanism is highly controversial. SIDS correlates with markers of poor prenatal and postnatal care, generally rooted in the lack of access and quality of healthcare endemic to select racial and ethnic groups, and thus can be viewed in the context of health disparities. However, some evidence suggests that at least a subset of SIDS cases may result from a neuropathological mechanism. To explain these issues, a triple-risk hypothesis has been proposed, whereby an underlying biological abnormality in an infant facing an extrinsic risk during a critical developmental period SIDS is hypothesized to occur. Each SIDS decedent is thus thought to have a unique combination of these risk factors leading to their death. This article reviews the neuropathological literature of SIDS and uses machine learning tools to identify distinct subtypes of SIDS decedents based on epidemiological data.Methods: We analyzed US Period Linked Birth/Infant Mortality Files from 1990 to 2017 (excluding 1992–1994). Using t-SNE, an unsupervised machine learning dimensionality reduction algorithm, we identified clusters of SIDS decedents. Following identification of these groups, we identified changes in the rates of SIDS at the state level and across three countries.Results: Through t-SNE and distance based statistical analysis, we identified three groups of SIDS decedents, each with a unique peak age of death. Within the US, SIDS is geographically heterogeneous. Following this, we found low birth weight and normal birth weight SIDS rates have not been equally impacted by implementation of clinical guidelines. We show that across countries with different levels of cultural heterogeneity, reduction in SIDS rates has also been distinct between decedents with low vs. normal birth weight.Conclusions: Different epidemiological and extrinsic risk factors exist based on the three unique SIDS groups we identified with t-SNE and distance based statistical measurements. Clinical guidelines have not equally impacted the groups, and normal birth weight infants comprise more of the cases of SIDS even though low birth weight infants have a higher SIDS rate.
Facebook
TwitterIn 2022, the rate of sudden infant death syndrome among Hispanics in the United States was around ** per 100,000 live births. This statistic shows the rates of sudden unexpected infant death (SUID) in the U.S. from 2017 to 2022, by race and ethnicity.
Facebook
TwitterBy data.world's Admin [source]
The data was obtained from multiple sources. Data from 1985-2002 were downloaded from the National Bureau for Economic Research through the National Center for Health Statistics' National Vital Statistics System. Data from 2003-2015 were sourced using aggregators provided by CDC's WONDER tool, utilizing Year, Month, State, and County filters. It is worth noting that geolocation information for individual babies born after 2005 is not released due to privacy concerns; therefore, all data has been aggregated by month.
The spatial applicability of this dataset is limited to the United States at the county level. It covers a temporal range spanning January 1, 1985 - December 31, 2015. Each row in the dataset represents aggregated birth counts within a specific county for a particular month and year.
Additional notes highlight that this dataset expands on data presented in an essay called The Timing of Baby Making published by The Pudding website in May 2017. While only data ranging from1995-2015 were displayed in the essay itself, this dataset includes an extra ten years of birth data. Furthermore, any non-US residents have been excluded from this dataset.
The provided metadata gives a detailed breakdown of the columns in the dataset, including their descriptions and data types. The included variables allow researchers to analyze births at both individual county and state levels over time. Finally, the dataset is available under the MIT License for public use
Here is a guide on how to effectively use this dataset:
Step 1: Understanding the Columns
The dataset consists of several columns that provide specific information about each birth record. Let's understand what each column represents:
- State: The state (including District of Columbia) where the mother lives.
- County: The county where the mother lives, coded using the FIPS County Code.
- Month: The month in which the birth took place (1 = January, 2 = February, etc.).
- Year: The four-digit year of the birth.
- countyBirths: The calculated sum of births that occurred to mothers living in a county for a given month. If the sum was less than 9, it is listed as NA as per NCHS reporting guidelines.
- stateBirths: The calculated sum of births that occurred to mothers living in a state for a given month. It includes all birth counts, even those from counties with fewer than 9 births.
Step 2: Exploring Birth Trends by State and County
You can analyze birth trends by focusing on specific states or counties within specific time frames. Here's how you can do it:
Filter by State or County:
- Select rows based on your chosen state using the State column. Each number corresponds to a specific state (e.g.,
01= Alabama).- Further narrow down your analysis by selecting specific counties using their respective FIPS codes mentioned in the County column.
Analyze Monthly Variation:
- Calculate monthly total births within your desired location(s) by grouping data based on the Month column.
- Compare the number of births between different months to identify any seasonal trends or patterns.
Visualize Birth Trends:
- Create line charts or bar plots to visualize how the number of births changes over time.
- Plot a line or bar for each month across multiple years to identify any significant changes in birth rates.
Step 3: Comparison and Calculation
You can utilize this dataset to compare birth rates between states, counties, and regions. Here are a few techniques you can try:
- State vs. County Comparison:
- Calculate the total births within each state by aggregating
- Analyzing birth trends: This dataset can be used to analyze and understand the trends in birth rates across different states and counties over the period of 1985 to 2015. Researchers can study factors that may influence these trends, such as socioeconomic factors, healthcare access, or cultural changes.
- Identifying seasonal variations: The dataset includes information on the month of birth for each entry. This data can be utilized to identify any seasonal variations in births across different locations in the US. Understanding these variations can help in planning resources and healthcare services accordingly.
- Studying geographical patterns: By analyzing the county-level data, researchers can explore geographical patterns of childbirth throughout the United States. They can identify regions with high or low birth rates and...
Facebook
TwitterThis dataset includes teen birth rates for females by age group, race, and Hispanic origin in the United States since 1960. Data availability varies by race and ethnicity groups. All birth data by race before 1980 are based on race of the child. Since 1980, birth data by race are based on race of the mother. For race, data are available for Black and White births since 1960, and for American Indians/Alaska Native and Asian/Pacific Islander births since 1980. Data on Hispanic origin are available since 1989. Teen birth rates for specific racial and ethnic categories are also available since 1989. From 2003 through 2015, the birth data by race were based on the “bridged” race categories (5). Starting in 2016, the race categories for reporting birth data changed; the new race and Hispanic origin categories are: Non-Hispanic, Single Race White; Non-Hispanic, Single Race Black; Non-Hispanic, Single Race American Indian/Alaska Native; Non-Hispanic, Single Race Asian; and, Non-Hispanic, Single Race Native Hawaiian/Pacific Islander (5,6). Birth data by the prior, “bridged” race (and Hispanic origin) categories are included through 2018 for comparison. National data on births by Hispanic origin exclude data for Louisiana, New Hampshire, and Oklahoma in 1989; New Hampshire and Oklahoma in 1990; and New Hampshire in 1991 and 1992. Birth and fertility rates for the Central and South American population includes other and unknown Hispanic. Information on reporting Hispanic origin is detailed in the Technical Appendix for the 1999 public-use natality data file (see ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/DVS/natality/Nat1999doc.pdf). SOURCES NCHS, National Vital Statistics System, birth data (see https://www.cdc.gov/nchs/births.htm); public-use data files (see https://www.cdc.gov/nchs/data_access/VitalStatsOnline.htm); and CDC WONDER (see http://wonder.cdc.gov/). REFERENCES National Office of Vital Statistics. Vital Statistics of the United States, 1950, Volume I. 1954. Available from: https://www.cdc.gov/nchs/data/vsus/vsus_1950_1.pdf. Hetzel AM. U.S. vital statistics system: major activities and developments, 1950-95. National Center for Health Statistics. 1997. Available from: https://www.cdc.gov/nchs/data/misc/usvss.pdf. National Center for Health Statistics. Vital Statistics of the United States, 1967, Volume I–Natality. 1969. Available from: https://www.cdc.gov/nchs/data/vsus/nat67_1.pdf. Martin JA, Hamilton BE, Osterman MJK, et al. Births: Final data for 2015. National vital statistics reports; vol 66 no 1. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_01.pdf. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Drake P. Births: Final data for 2016. National Vital Statistics Reports; vol 67 no 1. Hyattsville, MD: National Center for Health Statistics. 2018. Available from: https://www.cdc.gov/nvsr/nvsr67/nvsr67_01.pdf. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Births: Final data for 2018. National vital statistics reports; vol 68 no 13. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_13.pdf.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Life Expectancy at Birth: Total data was reported at 78.690 Year in 2016. This stayed constant from the previous number of 78.690 Year for 2015. United States US: Life Expectancy at Birth: Total data is updated yearly, averaging 74.766 Year from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 78.841 Year in 2014 and a record low of 69.771 Year in 1960. United States US: Life Expectancy at Birth: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision, or derived from male and female life expectancy at birth from sources such as: (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Facebook
TwitterBy data.world's Admin [source]
This dataset contains an aggregation of birth data from the United Statesbetween 1985 and 2015. It consists of information on mothers' locations by state (including District of Columbia) and county, as well as information such as the month they gave birth, and aggregates giving the sum of births during that month. This data has been provided by both the National Bureau for Economic Research and National Center for Health Statistics, whose shared mission is to understand how life works in order to aid individuals in making decisions about their health and wellbeing. This dataset provides valuable insight into population trends across time and location - for example, which states have higher or lower birthrates than others? Which counties experience dramatic fluctuations over time? Given its scope, this dataset could be used in a number of contexts--from epidemiology research to population forecasting. Be sure to check out our other datasets related to births while you're here!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset could be used to examine local trends in birth rates over time or analyze births at different geographical locations. In order to maximize your use of this dataset, it is important that you understand what information the various columns contain.
The main columns are: State (including District of Columbia), County (coded using the FIPS county code number), Month (numbering from 1 for January through 12 for December), Year (4-digit year) countyBirths (calculated sum of births that occurred to mothers living in a county for a given month) and stateBirths (calculated sum of births that occurred to mothers living in a state for a given month). These fields should provide enough information for you analyze trends across geographic locations both at monthly and yearly levels. You could also consider combining variables such as
YearwithStateorYearwithMonthor any other grouping combinations depending on your analysis goal.In addition, while all data were downloaded on April 5th 2017, it is worth noting that all sources used followed privacy guidelines as laid out by NCHC so individual births occurring after 2005 are not included due to geolocation concerns.
We hope you find this dataset useful and can benefit from its content! With proper understanding of what each field contains, we are confident you will gain valuable insights on birth rates across counties within the United States during this period
- Establishing county-level trends in birth rates for the US over time.
- Analyzing the relationship between month of birth and health outcomes for US babies after they are born (e.g., infant mortality, neurological development, etc.).
- Comparing state/county-level differences in average numbers of twins born each year
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: allBirthData.csv | Column name | Description | |:-----------------|:-----------------------------------------------------------------------------------------------------------------| | State | The numerical order of the state where the mother lives. (Integer) | | Month | The month in which the birth took place. (Integer) | | Year | The year of the birth. (Integer) | | countyBirths | The calculated sum of births that occurred to mothers living in that county for that particular month. (Integer) | | stateBirths | The aggregate number at the level of entire states for any given month-year combination. (Integer) | | County | The county where the mother lives, coded using FIPS County Code. (Integer) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit data.world's Admin.
Facebook
TwitterVITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.
For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.
ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Norway NO: Life Expectancy at Birth: Total data was reported at 82.510 Year in 2016. This records an increase from the previous number of 82.305 Year for 2015. Norway NO: Life Expectancy at Birth: Total data is updated yearly, averaging 76.241 Year from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 82.510 Year in 2016 and a record low of 73.078 Year in 1963. Norway NO: Life Expectancy at Birth: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Norway – Table NO.World Bank: Health Statistics. Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision, or derived from male and female life expectancy at birth from sources such as: (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Facebook
TwitterFrom 2017 to 2018, there were almost 8 infant deaths per 1,000 live births among women aged 20 to 24 years who were obese before pregnancy in the United States. This statistic illustrates the rate of infant mortality in the United States from 2017 to 2018, by maternal pre-pregnancy body mass index and age.