33 datasets found
  1. Major causes of death in the U.S.: 1900 and 2023

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Major causes of death in the U.S.: 1900 and 2023 [Dataset]. https://www.statista.com/statistics/235703/major-causes-of-death-in-the-us/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The leading causes of death in the United States have changed significantly from the year 1900 to the present. Leading causes of death in 1900, such as tuberculosis, gastrointestinal infections, and diphtheria have seen huge decreases in death rates and are no longer among the leading causes of death in the United States. However, other diseases such as heart disease and cancer have seen increased death rates. Vaccinations One major factor contributing to the decrease in death rates for many diseases since the year 1900 is the introduction of vaccinations. The decrease seen in the rates of death due to pneumonia and influenza is a prime example of this. In 1900, pneumonia and influenza were the leading causes of death, with around *** deaths per 100,000 population. However, in 2023 pneumonia and influenza were not even among the ten leading causes of death. Cancer One disease that has seen a large increase in death rates since 1900 is cancer. Cancer currently accounts for almost ** percent of all deaths in the United States, with death rates among men higher than those for women. The deadliest form of cancer for both men and women is cancer of the lung and bronchus. Some of the most common avoidable risk factors for cancer include smoking, drinking alcohol, sun exposure, and obesity.

  2. Data Science for Good: WHO NCDs Dataset

    • kaggle.com
    zip
    Updated Jun 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Beni Vitai (2020). Data Science for Good: WHO NCDs Dataset [Dataset]. https://www.kaggle.com/datasets/benivitai/ncd-who-dataset/suggestions
    Explore at:
    zip(15630 bytes)Available download formats
    Dataset updated
    Jun 22, 2020
    Authors
    Beni Vitai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Context

    In the shadows of the Covid-19 pandemic, there is another global health crisis that has gone largely unnoticed. This is the Noncommunicable Disease (NCD) pandemic.

    The WHO website describes NCDs as follows:

    Noncommunicable diseases (NCDs), also known as chronic diseases, tend to be of long duration and are the result of a combination of genetic, physiological, environmental and behaviours factors.

    The main types of NCDs are cardiovascular diseases (like heart attacks and stroke), cancers, chronic respiratory diseases (such as chronic obstructive pulmonary disease and asthma) and diabetes.

    NCDs disproportionately affect people in low- and middle-income countries where more than three quarters of global NCD deaths – 32million – occur.

    Key facts:

    • Noncommunicable diseases (NCDs) kill 41 million people each year, equivalent to 71% of all deaths globally.
    • Each year, 15 million people die from a NCD between the ages of 30 and 69 years; over 85% of these "premature" deaths occur in low- and middle-income > * countries.
    • Cardiovascular diseases account for most NCD deaths, or 17.9 million people annually, followed by cancers (9.0 million), respiratory diseases (3.9million), and diabetes (1.6 million).
    • These 4 groups of diseases account for over 80% of all premature NCD deaths.
    • Tobacco use, physical inactivity, the harmful use of alcohol and unhealthy diets all increase the risk of dying from a NCD.
    • Detection, screening and treatment of NCDs, as well as palliative care, are key components of the response to NCDs.

    Content

    This data repository consists of 3 CSV files: WHO-cause-of-death-by-NCD.csv is the main dataset, which provides the percentage of deaths caused by NCDs out of all causes of death, for each nation globally. Metadata_Country.csv and Metadata_Indicator.csv provide additional metadata which is helpful for interpreting the main CSV.

    The data collected spans a period from 2000 to 2016. The main CSV has columns for every year from 1960 to 2019. It is advisable to drop all redundant columns where no data was collected.

    Furthermore, it is advisable to merge Metadata_Country.csv with the main CSV as it provides valuable additional information, particularly on the economic situation of each nation.

    Acknowledgements

    This dataset has been extracted from The World Bank 'Cause of death, by non-communicable diseases (% of total)' Dataset, derived based on the data from WHO's Global Health Estimates. It is freely provided under a Creative Commons Attribution 4.0 International License (CC BY 4.0), with the additional terms as stated on the World Bank website: World Bank Terms of Use for Datasets.

    Inspiration

    I would be interested to see some good data wrangling (dropping redundant columns), as well as kernels interpreting additional information in 'SpecialNotes' column in Metadata_country.csv

    It would also be great to see what different factors influence NCDs: most of all, the geopolitical factors. Would be great to see some choropleth visualisations to get an idea of which regions are most affected by NCDs.

  3. Deaths Involving COVID-19 by Vaccination Status

    • open.canada.ca
    • gimi9.com
    • +1more
    csv, docx, html, xlsx
    Updated Nov 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://open.canada.ca/data/dataset/1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    docx, csv, html, xlsxAvailable download formats
    Dataset updated
    Nov 12, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Mar 1, 2021 - Nov 12, 2024
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

  4. Distribution of the leading causes of death in Africa in 2021

    • statista.com
    Updated Apr 25, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2014). Distribution of the leading causes of death in Africa in 2021 [Dataset]. https://www.statista.com/statistics/1029337/top-causes-of-death-africa/
    Explore at:
    Dataset updated
    Apr 25, 2014
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    Africa
    Description

    Lower respiratory infections were the leading cause of death in Africa in 2021. Lower respiratory infections accounted for 8.6 percent of all deaths in Africa that year, followed by malaria, which was responsible for 6.5 percent of deaths. Although HIV is not one of the leading causes of death worldwide, it remains within the top 10 leading causes of death in Africa. As of 2023, the top 15 countries with the highest prevalence of new HIV infections are all found in Africa. HIV/AIDS HIV (human immunodeficiency virus) is an infectious sexually transmitted disease that is transmitted via exposure to infected semen, blood, vaginal and anal fluids and breast milk. HIV weakens the human immune system, resulting in the affected person being unable to fight off opportunistic infections. HIV/AIDS was the eighth leading cause of death in Africa in 2021, accounting for around 4.6 percent of all deaths, or around 405,790 total deaths. HIV Treatment Although there is currently no effective cure for HIV, death can be prevented by taking HIV antiretroviral therapy (ART). Access to ART worldwide has increased greatly over the last decade; however, there are still barriers to access in some of the countries most impacted by HIV. The African countries with the highest percentage of HIV infected children who were receiving antiretroviral treatment were Eswatini, Lesotho, and Uganda.

  5. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  6. e

    Rifampicin-mouse liver proteomics

    • ebi.ac.uk
    • data.niaid.nih.gov
    Updated Oct 7, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oh Kwang Kwon (2017). Rifampicin-mouse liver proteomics [Dataset]. https://www.ebi.ac.uk/pride/archive/projects/PXD006313
    Explore at:
    Dataset updated
    Oct 7, 2017
    Authors
    Oh Kwang Kwon
    Variables measured
    Proteomics
    Description

    Tuberculosis is one of top causes of death among curable infectious diseases; it is an airborne infectious disease that kills 2 million people worldwide. Anti-tuberculosis drug-induced liver injury is the primary cause of drug-induced liver injury (DILI). Rifampicin is one of the most common anti-tuberculosis therapies and has well-known hepatotoxicity. To understand the mechanism of rifampicin-induced liver injury, we performed a global proteomic analysis of liver proteins by LC-MS/MS in a mouse model after the oral administration of 177 and 442.5 mg/kg rifampicin (LD10 and LD25) for 14 days. Based on the biochemical parameters in the plasma after rifampicin treatment, the hepatotoxic effect of rifampicin in the mouse liver was defined as a mixed liver injury. In the present study, we identified 1,101 proteins and quantified 1,038 proteins. A total of 29 and 40 proteins were up-regulated and 27 and 118 proteins were down-regulated in response to 177 and 442.5 mg/kg rifampicin, respectively.

  7. Cause of Deaths around the World (Historical Data)

    • kaggle.com
    zip
    Updated Feb 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sourav Banerjee (2024). Cause of Deaths around the World (Historical Data) [Dataset]. https://www.kaggle.com/datasets/iamsouravbanerjee/cause-of-deaths-around-the-world/code
    Explore at:
    zip(331562 bytes)Available download formats
    Dataset updated
    Feb 12, 2024
    Authors
    Sourav Banerjee
    Area covered
    World
    Description

    Context

    A straightforward way to assess the health status of a population is to focus on mortality – or concepts like child mortality or life expectancy, which are based on mortality estimates. A focus on mortality, however, does not take into account that the burden of diseases is not only that they kill people, but that they cause suffering to people who live with them. Assessing health outcomes by both mortality and morbidity (the prevalent diseases) provides a more encompassing view on health outcomes. This is the topic of this entry. The sum of mortality and morbidity is referred to as the ‘burden of disease’ and can be measured by a metric called ‘Disability Adjusted Life Years‘ (DALYs). DALYs are measuring lost health and are a standardized metric that allow for direct comparisons of disease burdens of different diseases across countries, between different populations, and over time. Conceptually, one DALY is the equivalent of losing one year in good health because of either premature death or disease or disability. One DALY represents one lost year of healthy life. The first ‘Global Burden of Disease’ (GBD) was GBD 1990 and the DALY metric was prominently featured in the World Bank’s 1993 World Development Report. Today it is published by both the researchers at the Institute of Health Metrics and Evaluation (IHME) and the ‘Disease Burden Unit’ at the World Health Organization (WHO), which was created in 1998. The IHME continues the work that was started in the early 1990s and publishes the Global Burden of Disease study.

    Content

    In this Dataset, we have Historical Data of different cause of deaths for all ages around the World. The key features of this Dataset are: Meningitis, Alzheimer's Disease and Other Dementias, Parkinson's Disease, Nutritional Deficiencies, Malaria, Drowning, Interpersonal Violence, Maternal Disorders, HIV/AIDS, Drug Use Disorders, Tuberculosis, Cardiovascular Diseases, Lower Respiratory Infections, Neonatal Disorders, Alcohol Use Disorders, Self-harm, Exposure to Forces of Nature, Diarrheal Diseases, Environmental Heat and Cold Exposure, Neoplasms, Conflict and Terrorism, Diabetes Mellitus, Chronic Kidney Disease, Poisonings, Protein-Energy Malnutrition, Road Injuries, Chronic Respiratory Diseases, Cirrhosis and Other Chronic Liver Diseases, Digestive Diseases, Fire, Heat, and Hot Substances, Acute Hepatitis.

    Dataset Glossary (Column-wise)

    • 01. Country/Territory - Name of the Country/Territory
    • 02. Code - Country/Territory Code
    • 03. Year - Year of the Incident
    • 04. Meningitis - No. of People died from Meningitis
    • 05. Alzheimer's Disease and Other Dementias - No. of People died from Alzheimer's Disease and Other Dementias
    • 06. Parkinson's Disease - No. of People died from Parkinson's Disease
    • 07. Nutritional Deficiencies - No. of People died from Nutritional Deficiencies
    • 08. Malaria - No. of People died from Malaria
    • 09. Drowning - No. of People died from Drowning
    • 10. Interpersonal Violence - No. of People died from Interpersonal Violence
    • 11. Maternal Disorders - No. of People died from Maternal Disorders
    • 12. Drug Use Disorders - No. of People died from Drug Use Disorders
    • 13. Tuberculosis - No. of People died from Tuberculosis
    • 14. Cardiovascular Diseases - No. of People died from Cardiovascular Diseases
    • 15. Lower Respiratory Infections - No. of People died from Lower Respiratory Infections
    • 16. Neonatal Disorders - No. of People died from Neonatal Disorders
    • 17. Alcohol Use Disorders - No. of People died from Alcohol Use Disorders
    • 18. Self-harm - No. of People died from Self-harm
    • 19. Exposure to Forces of Nature - No. of People died from Exposure to Forces of Nature
    • 20. Diarrheal Diseases - No. of People died from Diarrheal Diseases
    • 21. Environmental Heat and Cold Exposure - No. of People died from Environmental Heat and Cold Exposure
    • 22. Neoplasms - No. of People died from Neoplasms
    • 23. Conflict and Terrorism - No. of People died from Conflict and Terrorism
    • 24. Diabetes Mellitus - No. of People died from Diabetes Mellitus
    • 25. Chronic Kidney Disease - No. of People died from Chronic Kidney Disease
    • 26. Poisonings - No. of People died from Poisoning
    • 27. Protein-Energy Malnutrition - No. of People died from Protein-Energy Malnutrition
    • 28. Chronic Respiratory Diseases - No. of People died from Chronic Respiratory Diseases
    • 29. Cirrhosis and Other Chronic Liver Diseases - No. of People died from Cirrhosis and Other Chronic Liver Diseases
    • 30. Digestive Diseases - No. of People died from Digestive Diseases
    • 31. Fire, Heat, and Hot Substances - No. of People died from Fire or Heat or any Hot Substances
    • ...
  8. Data from: List of primers.

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    A. K. M. Zakir Hossain; Md. Zahid Hasan; Sohana Akter Mina; Nahid Sultana; A. M. Masudul Azad Chowdhury (2023). List of primers. [Dataset]. http://doi.org/10.1371/journal.pone.0275353.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    A. K. M. Zakir Hossain; Md. Zahid Hasan; Sohana Akter Mina; Nahid Sultana; A. M. Masudul Azad Chowdhury
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Shigellaa Gram-negative, non-motile bacillus, is the primary causative agent of the infectious disease shigellosis, which kills 1.1 million people worldwideevery year. The children under the age of five are primarily the victims of this disease. This study has been conducted to assess the prevalence of shigellosis through selective plating, biochemical test and conventional PCR assays, where the samples were collected from suspected diarrheoal patients. Invasive plasmid antigen H (ipaH) and O-antigenic rfc gene were used to identify Shigella spp. and S. flexneri respectively. For validation of these identification, PCR product of ipaH gene of a sample (Shigella flexneri MZS 191) has been sequenced and submitted to NCBI database (GenBank accession no- MW774908.1). Further this strain has been used as positive control. Out of 204, around 14.2% (n = 29)(P> 0.01) pediatric diarrheoal cases were screened as shigellosis. Another interesting finding was that most of shigellosis affected children were 7 months to 1 year (P> 0.01).The significance of this study lies in the analyses of the occurrenceand the molecular identification of Shigellaspp. and S. flexneri that can be utilized in improving the accurate identification and the treatment of the most severe and alarming shigellosis.

  9. R

    Inactivated Vaccines Market Research Report 2033

    • researchintelo.com
    csv, pdf, pptx
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Intelo (2025). Inactivated Vaccines Market Research Report 2033 [Dataset]. https://researchintelo.com/report/inactivated-vaccines-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jul 24, 2025
    Dataset authored and provided by
    Research Intelo
    License

    https://researchintelo.com/privacy-and-policyhttps://researchintelo.com/privacy-and-policy

    Time period covered
    2024 - 2033
    Area covered
    Global
    Description

    Inactivated Vaccines Market Outlook



    According to our latest research, the global inactivated vaccines market size reached USD 18.6 billion in 2024, reflecting steady demand across both developed and emerging economies. The market is projected to grow at a CAGR of 7.4% from 2025 to 2033, resulting in a forecasted market size of USD 35.1 billion by 2033. The robust growth in this sector is primarily driven by the rising prevalence of infectious diseases, increased immunization initiatives by governments, and growing awareness about the safety and efficacy of inactivated vaccines. As per our latest research, the expanding pipeline of inactivated vaccines and technological advancements in vaccine production are expected to further propel market expansion over the forecast period.



    A significant growth factor for the inactivated vaccines market is the ongoing global focus on infectious disease prevention, particularly in light of recent pandemics and outbreaks. The safety profile of inactivated vaccines, which are produced by killing the disease-causing microorganism, makes them a preferred choice for immunization programs, especially among vulnerable populations such as children, the elderly, and immunocompromised individuals. Additionally, the increasing incidence of diseases like influenza, polio, hepatitis A, and rabies has prompted governments and healthcare organizations to expand vaccination coverage, further boosting the demand for inactivated vaccines. The World Health Organization and various national health agencies have also ramped up funding and awareness campaigns, creating a conducive environment for market growth.



    Another key driver is the advancement in vaccine manufacturing technologies, which has significantly improved the production efficiency, scalability, and safety of inactivated vaccines. Innovations such as cell culture-based production, advanced adjuvant systems, and improved purification techniques have enabled manufacturers to produce vaccines with higher efficacy and reduced side effects. These technological improvements have not only enhanced the public’s trust in immunization programs but have also facilitated the rapid development and deployment of vaccines during epidemic outbreaks. Furthermore, collaborations between public and private entities, including research institutes and pharmaceutical companies, have accelerated the introduction of new inactivated vaccines targeting both existing and emerging infectious diseases.



    The increasing investment in healthcare infrastructure, particularly in emerging economies, is also playing a pivotal role in the expansion of the inactivated vaccines market. Governments and international organizations are prioritizing the development of robust immunization programs, supported by improved cold chain logistics, expanded healthcare facilities, and better-trained healthcare professionals. These initiatives are making vaccines more accessible to remote and underserved populations, thereby increasing vaccination rates and driving market growth. Additionally, favorable reimbursement policies, inclusion of vaccines in national immunization schedules, and the rising trend of adult and travel immunization are further stimulating demand across various regions.



    From a regional perspective, North America currently dominates the global inactivated vaccines market, followed by Europe and Asia Pacific. The high adoption rate of advanced vaccines, strong presence of leading pharmaceutical companies, and substantial government funding for immunization programs are key factors supporting market leadership in these regions. However, Asia Pacific is expected to witness the fastest growth during the forecast period, driven by large population bases, increasing awareness about immunization, and rising investments in healthcare infrastructure. Latin America and the Middle East & Africa are also anticipated to experience steady growth, supported by improving healthcare access and growing government initiatives to combat infectious diseases.



    Vaccine Type Analysis



    The inactivated vaccines market is segmented by vaccine type into whole virus vaccines, split virus vaccines, subunit vaccines, toxoid vaccines, and others. Whole virus vaccines, which contain the entire killed pathogen, have traditionally dominated the market due to their broad immunogenicity and proven track record in preventing diseases such as polio and rabies. These vaccines are widely used in national immunization programs and are favored for their ability to ind

  10. n

    Data from: Genome-wide association study of an unusual dolphin mortality...

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    • +3more
    zip
    Updated Nov 29, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kimberley C. Batley; Jonathan Sandoval-Castillo; Catherine M. Kemper; Catherine R.M. Attard; Nikki Zanardo; Ikuko Tomo; Luciano B. Beheregaray; Luciana M. Möller (2018). Genome-wide association study of an unusual dolphin mortality event reveals candidate genes for susceptibility and resistance to cetacean morbillivirus [Dataset]. http://doi.org/10.5061/dryad.tk8774f
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 29, 2018
    Dataset provided by
    Australian Museum
    Flinders University
    Authors
    Kimberley C. Batley; Jonathan Sandoval-Castillo; Catherine M. Kemper; Catherine R.M. Attard; Nikki Zanardo; Ikuko Tomo; Luciano B. Beheregaray; Luciana M. Möller
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    South Australia, St. Vincent Gulf
    Description

    Infectious diseases are significant demographic and evolutionary drivers of populations, but studies about the genetic basis of disease resistance and susceptibility are scarce in wildlife populations. Cetacean morbillivirus (CeMV) is a highly contagious disease that is increasing in both geographic distribution and incidence, causing unusual mortality events (UME) and killing tens of thousands of individuals across multiple cetacean species worldwide since the late 1980’s. The largest CeMV outbreak in the Southern Hemisphere reported to date occurred in Australia in 2013, where it was a major factor in a UME, killing mainly young Indo-Pacific bottlenose dolphins (Tursiops aduncus). Using cases (non-survivors) and controls (putative survivors) from the most affected population, we carried out a genome-wide association study to identify candidate genes for resistance and susceptibility to CeMV. The genomic dataset consisted of 278,147,988 sequence reads and 35,493 high quality SNPs genotyped across 38 individuals. Association analyses found highly significant differences in allele and genotype frequencies amongst cases and controls at 65 SNPs, and Random Forests conservatively identified eight as candidates. Annotation of these SNPs identified five candidate genes (MAPK8, FBXW11, INADL, ANK3, and ACOX3) with functions associated with stress, pain and immune responses. Our findings provide the first insights into the genetic basis of host defence to this highly contagious disease, enabling the development of an applied evolutionary framework to monitor CeMV resistance across cetacean species. Biomarkers could now be established to assess potential risk factors associated with these genes in other CeMV affected cetacean populations and species. These results could also possibly aid in the advancement of vaccines against morbilliviruses.

  11. Data from: Fatal diseases and parasitoids: from competition to facilitation...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    bin
    Updated May 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ann E. Hajek; Saskya van Nouhuys; Ann E. Hajek; Saskya van Nouhuys (2022). Data from: Fatal diseases and parasitoids: from competition to facilitation in a shared host. [Dataset]. http://doi.org/10.5061/dryad.3tn08
    Explore at:
    binAvailable download formats
    Dataset updated
    May 28, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Ann E. Hajek; Saskya van Nouhuys; Ann E. Hajek; Saskya van Nouhuys
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Diverse parasite taxa share hosts both at the population level and within individual hosts and their interactions, ranging from competitive exclusion to facilitation, can drive community structure and dynamics. Emergent pathogens have the potential to greatly alter community interactions. We found that an emergent fungal entomopathogen dominated pre-existing lethal parasites in populations of the forest defoliating gypsy moth, Lymantria dispar. The parasite community was composed of the fungus and four parasitoid species that only develop successfully after they kill the host, and a virus that produces viable propagules before the host has died. A low density site was sampled over 17 years and compared with 66 sites across a range of host densities, including outbreaks. The emergent fungal pathogen and competing parasitoids rarely co-infected host individuals because each taxa must kill its host. The virus was not present at low host densities, but successfully co-infected with all other parasite species. In fact there was facilitation between the virus and one parasitoid species hosting a polydnavirus. This newly formed parasite community, altered by an emergent pathogen, is shaped both by parasite response to host density and relative abilities of parasites to co-inhabit the same host individuals.

  12. Coronavirus (COVID-19) deaths per day compared to all causes U.S. 2022

    • statista.com
    Updated Jan 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Coronavirus (COVID-19) deaths per day compared to all causes U.S. 2022 [Dataset]. https://www.statista.com/statistics/1109281/covid-19-daily-deaths-compared-to-all-causes/
    Explore at:
    Dataset updated
    Jan 7, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of January 6, 2022, an average of 1,192 people per day have died from COVID-19 in the U.S. since the first case was confirmed in the country on January 20th the year before. On an average day, nearly 8,000 people die from all causes in the United States, based on data from 2019. Based on the latest information, roughly one in seven deaths each day were related to COVID-19 between January 2020 and January 2022. However, there were even days when more than every second death in the U.S. was connected to COVID-19. The daily death toll from the seasonal flu, using preliminary maximum estimates from the 2019-2020 influenza season, stood at an average of around 332 people. We have to keep in mind that a comparison of influenza and COVID-19 is somewhat difficult. COVID-19 cases and deaths are counted continuously since the begin of the pandemic, whereas flue counts are seasonal and often less accurate. Furthermore, during the last two years, COVID-19 more or less 'replaced' the flu, with COVID-19 absorbing potential flu cases. Many countries reported a very weak seasonal flu activity during the COVID-19 pandemic. But it has yet to be seen how the two infectious diseases will develop side by side during the winter season 2021/2022 and in the years to come.

    Symptoms and self-isolation COVID-19 and influenza share similar symptoms – a cough, runny nose, and tiredness – and telling the difference between the two can be difficult. If you have minor symptoms, there is no need to seek urgent medical care, but it is recommended that you self-isolate, whereas rules vary from country to country. Additionally, rules depend on someone's vaccination status and infection history. However, if you think you have the disease, a diagnostic test can show if you have an active infection.

    Scientists alert to coronavirus mutations The genetic material of the novel coronavirus is RNA, not DNA. Other notable human diseases caused by RNA viruses include SARS, Ebola, and influenza. A continual problem that vaccine developers encounter is that viruses can mutate, and a treatment developed against a certain virus type may not work on a mutated form. The seasonal flu vaccine, for example, is different each year because influenza viruses are frequently mutating, and it is critical that those genetic changes continue to be tracked.

  13. s

    Vaccinations

    • childrens-education-and-early-years.smartsouthend.org
    • starting-well-early-years-jsna.smartsouthend.org
    • +4more
    Updated Aug 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SBC_Publisher1 (2022). Vaccinations [Dataset]. https://childrens-education-and-early-years.smartsouthend.org/items/21cd35a5b90741baafa5c79d2cafd900
    Explore at:
    Dataset updated
    Aug 25, 2022
    Dataset authored and provided by
    SBC_Publisher1
    Description

    Routine childhood vaccination is important to protect our children against ill health. Vaccines prevent up to 3 million deaths worldwide every year. After clean water, vaccination is the most effective public health intervention in the world for saving lives and promoting good health.Since vaccines were introduced in the UK, diseases like smallpox, polio and tetanus that used to kill or disable millions of people are either gone or seen very rarely. Other diseases like measles and diphtheria have been reduced by up to 99.9% since their vaccines were introduced. Vaccination is not compulsory, however, if people stop having vaccines, it's possible for infectious diseases to quickly spread again. The overall aim of the UK’s routine childhood immunisation schedule is to provide protection against the following vaccine-preventable infections:

  14. Causes of death around all over the world .

    • kaggle.com
    zip
    Updated Nov 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanzeela Shahzadi (2025). Causes of death around all over the world . [Dataset]. https://www.kaggle.com/datasets/tan5577/causes-of-death-around-all-over-the-world
    Explore at:
    zip(331562 bytes)Available download formats
    Dataset updated
    Nov 23, 2025
    Authors
    Tanzeela Shahzadi
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    About Dataset

    Context:

    A straightforward way to assess the health status of a population is to focus on mortality – or concepts like child mortality or life expectancy, which are based on mortality estimates. A focus on mortality, however, does not take into account that the burden of diseases is not only that they kill people, but that they cause suffering to people who live with them. Assessing health outcomes by both mortality and morbidity (the prevalent diseases) provides a more encompassing view on health outcomes. This is the topic of this entry. The sum of mortality and morbidity is referred to as the ‘burden of disease’ and can be measured by a metric called ‘Disability Adjusted Life Years‘ (DALYs).

    DALYs are measuring lost health and are a standardized metric that allow for direct comparisons of disease burdens of different diseases across countries, between different populations, and over time. Conceptually, one DALY is the equivalent of losing one year in good health because of either premature death or disease or disability. One DALY represents one lost year of healthy life. The first ‘Global Burden of Disease’ (GBD) was GBD 1990 and the DALY metric was prominently featured in the World Bank’s 1993 World Development Report. Today it is published by both the researchers at the Institute of Health Metrics and Evaluation (IHME) and the ‘Disease Burden Unit’ at the World Health Organization (WHO), which was created in 1998. The IHME continues the work that was started in the early 1990s and publishes the Global Burden of Disease study.

    Content:

    In this Dataset, we have Historical Data of different cause of deaths for all ages around the World. The key features of this Dataset are: Meningitis, Alzheimer's Disease and Other Dementias, Parkinson's Disease, Nutritional Deficiencies, Malaria, Drowning, Interpersonal Violence, Maternal Disorders, HIV/AIDS, Drug Use Disorders, Tuberculosis, Cardiovascular Diseases, Lower Respiratory Infections, Neonatal Disorders, Alcohol Use Disorders, Self-harm, Exposure to Forces of Nature, Diarrheal Diseases, Environmental Heat and Cold Exposure, Neoplasms, Conflict and Terrorism, Diabetes Mellitus, Chronic Kidney Disease, Poisonings, Protein-Energy Malnutrition, Road Injuries, Chronic Respiratory Diseases, Cirrhosis and Other Chronic Liver Diseases, Digestive Diseases, Fire, Heat, and Hot Substances, Acute Hepatitis.

    Dataset Glossary (Column-wise):

    1. Country/Territory - Name of the Country/Territory
    2. Code - Country/Territory Code
    3. Year - Year of the Incident
    4. Meningitis - No. of People died from Meningitis
    5. Alzheimer's Disease and Other Dementias - No. of People died from Alzheimer's Disease and Other Dementias
    6. Parkinson's Disease - No. of People died from Parkinson's Disease
    7. Nutritional Deficiencies - No. of People died from Nutritional Deficiencies
    8. Malaria - No. of People died from Malaria
    9. Drowning - No. of People died from Drowning
    10. Interpersonal Violence - No. of People died from Interpersonal Violence
    11. Maternal Disorders - No. of People died from Maternal Disorders
    12. Drug Use Disorders - No. of People died from Drug Use Disorders
    13. Tuberculosis - No. of People died from Tuberculosis
    14. Cardiovascular Diseases - No. of People died from Cardiovascular Diseases
    15. Lower Respiratory Infections - No. of People died from Lower Respiratory Infections
    16. Neonatal Disorders - No. of People died from Neonatal Disorders
    17. Alcohol Use Disorders - No. of People died from Alcohol Use Disorders
    18. Self-harm - No. of People died from Self-harm
    19. Exposure to Forces of Nature - No. of People died from Exposure to Forces of Nature
    20. Diarrheal Diseases - No. of People died from Diarrheal Diseases
    21. Environmental Heat and Cold Exposure - No. of People died from Environmental Heat and Cold Exposure
    22. Neoplasms - No. of People died from Neoplasms
    23. Conflict and Terrorism - No. of People died from Conflict and Terrorism
    24. Diabetes Mellitus - No. of People died from Diabetes Mellitus
    25. Chronic Kidney Disease - No. of People died from Chronic Kidney Disease
    26. Poisonings - No. of People died from Poisoning
    27. Protein-Energy Malnutrition - No. of People died from Protein-Energy Malnutrition
    28. Chronic Respiratory Diseases - No. of People died from Chronic Respiratory Diseases
    29. Cirrhosis and Other Chronic Liver Diseases - No. of People died from Cirrhosis and Other Chronic Liver Diseases
    30. Digestive Diseases - No. of People died from Digestive Diseases
    31. Fire, Heat, and Hot Substances - No. of People died from Fire or Heat or any Hot Substances
    32. Acute Hepatitis - No. of People died from Acute Hepatitis Structure of the Dataset

    Acknowledgement:

    This Dataset is created from Our World in Data. This Dataset falls under open access under the Creative Commons BY license. You can check the FAQ for more informa...

  15. Data from: World No Tobacco Day: Tobacco is a Threat to the One Health and...

    • scielo.figshare.com
    jpeg
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Subhash Janardhan Bhore (2023). World No Tobacco Day: Tobacco is a Threat to the One Health and Sustainability [Dataset]. http://doi.org/10.6084/m9.figshare.14284357.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    SciELOhttp://www.scielo.org/
    Authors
    Subhash Janardhan Bhore
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract On 31st May of every year, in honour of the ‘World No Tobacco Day (WNTD),’ the international community does organise various events and encourages avoiding all forms of Tobacco consumption. To commemorate WNTD-2018, the World Health Organization (WHO) has promoted awareness to highlight the link between Tobacco and cardiovascular disease (CVD). Because, Tobacco use is the second leading cause of CVD, after high blood pressure. In addition to CVD, Tobacco use is also known to cause many non-communicable diseases, including chronic obstructive pulmonary disease (COPD), lung cancer and other complicated disorders caused by smoking. In fact, non-communicable diseases are now emerging as the primary disease burden. Globally, Tobacco use kills about 7 million people each year, and if the trend remains the same, then it will kill more than 8 million people per year by 2030. On the contrary, despite promoting awareness, the Tobacco industry is growing with little or no regulation. However, in the long run, the global community will not be able to afford business as usual as Tobacco has a direct impact on human health, environmental health and sustainable development.

  16. Host Iron Withholding Demands Siderophore Utilization for Candida glabrata...

    • plos.figshare.com
    tiff
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tracy Nevitt; Dennis J. Thiele (2023). Host Iron Withholding Demands Siderophore Utilization for Candida glabrata to Survive Macrophage Killing [Dataset]. http://doi.org/10.1371/journal.ppat.1001322
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Tracy Nevitt; Dennis J. Thiele
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The fungal pathogen Candida glabrata has risen from an innocuous commensal to a major human pathogen that causes life-threatening infections with an associated mortality rate of up to 50%. The dramatic rise in the number of immunocompromised individuals from HIV infection, tuberculosis, and as a result of immunosuppressive regimens in cancer treatment and transplant interventions have created a new and hitherto unchartered niche for the proliferation of C. glabrata. Iron acquisition is a known microbial virulence determinant and human diseases of iron overload have been found to correlate with increased bacterial burden. Given that more than 2 billion people worldwide suffer from iron deficiency and that iron overload is one of the most common single-gene inherited diseases, it is important to understand whether host iron status may influence C. glabrata infectious disease progression. Here we identify Sit1 as the sole siderophore-iron transporter in C. glabrata and demonstrate that siderophore-mediated iron acquisition is critical for enhancing C. glabrata survival to the microbicidal activities of macrophages. Within the Sit1 transporter, we identify a conserved extracellular SIderophore Transporter Domain (SITD) that is critical for siderophore-mediated ability of C. glabrata to resist macrophage killing. Using macrophage models of human iron overload disease, we demonstrate that C. glabrata senses altered iron levels within the phagosomal compartment. Moreover, Sit1 functions as a determinant for C. glabrata to survive macrophage killing in a manner that is dependent on macrophage iron status. These studies suggest that host iron status is a modifier of infectious disease that modulates the dependence on distinct mechanisms of microbial Fe acquisition.

  17. The Potential Impact of White-Nose Syndrome on the Conservation Status of...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    tiff
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Davi M. C. C. Alves; Levi C. Terribile; Daniel Brito (2023). The Potential Impact of White-Nose Syndrome on the Conservation Status of North American Bats [Dataset]. http://doi.org/10.1371/journal.pone.0107395
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Davi M. C. C. Alves; Levi C. Terribile; Daniel Brito
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    White-Nose syndrome (WNS) is an emergent infectious disease that has already killed around six million bats in North America and has spread over two thousand kilometers from its epicenter. However, only a few studies on the possible impacts of the fungus on bat hosts were conducted, particularly concerning its implications for bat conservation. We predicted the consequences of WNS spread by generating a map with potential areas for its occurrence based on environmental conditions in sites where the disease already occurs, and overlaid it with the geographic distribution of all hibernating bats in North America. We assumed that all intersection localities would negatively affect local bat populations and reassessed their conservation status based on their potential population decline. Our results suggest that WNS will not spread widely throughout North America, being mostly restricted to the east and southeast regions. In contrast, our most pessimistic scenario of population decline indicated that the disease would threaten 32% of the bat species. Our results could help further conservation plans to preserve bat diversity in North America.

  18. f

    Data from: Ethyl Pyruvate Emerges as a Safe and Fast Acting Agent against...

    • datasetcatalog.nlm.nih.gov
    Updated Sep 4, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wenzel, Iris; Worku, Netsanet; Stich, August; Kurz, Randy; Birkenmeier, Gerd; Kurz, Susanne; Daugschies, Arwid; Thieme, Rene (2015). Ethyl Pyruvate Emerges as a Safe and Fast Acting Agent against Trypanosoma brucei by Targeting Pyruvate Kinase Activity [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001886030
    Explore at:
    Dataset updated
    Sep 4, 2015
    Authors
    Wenzel, Iris; Worku, Netsanet; Stich, August; Kurz, Randy; Birkenmeier, Gerd; Kurz, Susanne; Daugschies, Arwid; Thieme, Rene
    Description

    BackgroundHuman African Trypanosomiasis (HAT) also called sleeping sickness is an infectious disease in humans caused by an extracellular protozoan parasite. The disease, if left untreated, results in 100% mortality. Currently available drugs are full of severe drawbacks and fail to escape the fast development of trypanosoma resistance. Due to similarities in cell metabolism between cancerous tumors and trypanosoma cells, some of the current registered drugs against HAT have also been tested in cancer chemotherapy. Here we demonstrate for the first time that the simple ester, ethyl pyruvate, comprises such properties.ResultsThe current study covers the efficacy and corresponding target evaluation of ethyl pyruvate on T. brucei cell lines using a combination of biochemical techniques including cell proliferation assays, enzyme kinetics, phasecontrast microscopic video imaging and ex vivo toxicity tests. We have shown that ethyl pyruvate effectively kills trypanosomes most probably by net ATP depletion through inhibition of pyruvate kinase (Ki = 3.0±0.29 mM). The potential of ethyl pyruvate as a trypanocidal compound is also strengthened by its fast acting property, killing cells within three hours post exposure. This has been demonstrated using video imaging of live cells as well as concentration and time dependency experiments. Most importantly, ethyl pyruvate produces minimal side effects in human red cells and is known to easily cross the blood-brain-barrier. This makes it a promising candidate for effective treatment of the two clinical stages of sleeping sickness. Trypanosome drug-resistance tests indicate irreversible cell death and a low incidence of resistance development under experimental conditions.ConclusionOur results present ethyl pyruvate as a safe and fast acting trypanocidal compound and show that it inhibits the enzyme pyruvate kinase. Competitive inhibition of this enzyme was found to cause ATP depletion and cell death. Due to its ability to easily cross the blood-brain-barrier, ethyl pyruvate could be considered as new candidate agent to treat the hemolymphatic as well as neurological stages of sleeping sickness.

  19. extreme temperatures

    • kaggle.com
    zip
    Updated Jul 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    willian oliveira (2024). extreme temperatures [Dataset]. https://www.kaggle.com/datasets/willianoliveiragibin/extreme-temperatures
    Explore at:
    zip(564 bytes)Available download formats
    Dataset updated
    Jul 1, 2024
    Authors
    willian oliveira
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    this graph was created in OurDataWorld:

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fbc6641521f3e8eda72461c62e7ca76c5%2Fgraph1.png?generation=1719871547650293&alt=media" alt=""> https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fe3abc090220c196af6c3b76f7c613b0f%2Fgraph2.png?generation=1719871554097018&alt=media" alt=""> https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F94ba21a131b669776cc64006c6b2d113%2Fgraph3.png?generation=1719871559599035&alt=media" alt="">

    Think about someone dying from extreme temperatures. You probably pictured someone passing out from heat stroke or dying from hypothermia.

    But this is not how most people die from “heat”. They die from conditions such as cardiovascular or kidney disease, respiratory infections, or diabetes.1

    Almost no one has “heat” or “cold” written on their death certificate, but sub-optimal temperatures lead to a large number of premature deaths. As we’ll see later, researchers estimate that it kills several million every year.

    Older populations are usually most vulnerable to extreme temperatures. Most deaths occur in people older than 65. It’s important to consider what "death" means here and how deaths from extreme temperatures might compare to other causes. Being too hot or cold can increase our risk of developing certain health conditions or worsen existing ones. It can thereby lead to an earlier death than would have occurred if the temperatures were “optimal”.

    How much time do hot or cold conditions take off someone’s life? It’s difficult to give precise estimates. One method that researchers often use is to look at excess death rates — which measure how many more people die in a given year compared to an “average” year — in a particularly warm or cold year. Looking at patterns of excess deaths gives some indication of whether temperature-related deaths were “brought forward” significantly or not.

    A study by Nirandeep Rehill and colleagues examined death patterns in the United Kingdom over 50 years.2 It found that most cold-related deaths were among people who would not have died in the next 6 months. A later study looked at the impacts of high and low temperatures across a much larger sample of countries.3 It found that most temperature-related deaths reduced lifespans for at least one year. Most people died at least one year earlier, although there would be some that did lose less than this.

    In this article, I will examine how many people die from heat and cold each year and how researchers estimate these numbers. In a follow-up article, I’ll look at how these risks could change in the future due to climate change.

    A quick note on terminology: I will use the term “temperature-related deaths” from this point forward to refer to the combination of deaths from heat and cold conditions. When I use the term “heat”, I mean warm or hot.

  20. n

    Data from: Trade-offs and mixed infections in an obligate-killing insect...

    • data-staging.niaid.nih.gov
    • data.niaid.nih.gov
    • +1more
    zip
    Updated May 3, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elizabeth M. Redman; Ken Wilson; Jenny S. Cory; Kenneth Wilson (2017). Trade-offs and mixed infections in an obligate-killing insect pathogen [Dataset]. http://doi.org/10.5061/dryad.427m6
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 3, 2017
    Dataset provided by
    Lancaster University
    Simon Fraser University
    UK Centre for Ecology & Hydrology
    Authors
    Elizabeth M. Redman; Ken Wilson; Jenny S. Cory; Kenneth Wilson
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Natural populations of pathogens are frequently composed of numerous interacting strains. Understanding what maintains this diversity remains a key focus of research in disease ecology. In addition, within-host pathogen dynamics can have a strong impact on both infection outcome and the evolution of pathogen virulence and thus understanding the impact of pathogen diversity is important for disease management. We compared eight genetically distinguishable variants from Spodoptera exempta nucleopolyhedrovirus (SpexNPV) isolated from the African armyworm, Spodoptera exempta. NPVs are obligate killers and the vast majority of transmission-stages are not released until after the host has died. The NPV variants differed significantly in their virulence and could be clustered into two groups based on their dose-response curves. They also differed in their speed of kill and productivity (transmission potential) for S. exempta. The mixed-genotype wild-type SpexNPV, from which each variant was isolated, was significantly more virulent than any individual variant and its mean mortality rate was within the fastest group of individual variants. However, the wild-type virus produced fewer new infectious stages than any single variant, which might reflect competition among the variants. A survival analysis, combining the mortality and speed of kill data, confirmed the superiority of the genetically-mixed wild-type virus over any single variant. S. exempta larvae infected with wild-type SpexNPV were predicted to die 2.7 and 1.9 times faster than insects infected with isolates from either of the two clusters of genotypes. Theory suggests that there are likely to be trade-offs between pathogen fitness traits. Across all larvae, there was a negative linear relationship between virus yield and speed of kill, such that more rapid host death carried the cost of producing fewer transmission stages. We also found a near-significant relationship for the same trend at the inter-variant level. However, there was no evidence for a significant relationship between the induced level of mortality and transmission potential (virus yield) or speed of kill.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Major causes of death in the U.S.: 1900 and 2023 [Dataset]. https://www.statista.com/statistics/235703/major-causes-of-death-in-the-us/
Organization logo

Major causes of death in the U.S.: 1900 and 2023

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 29, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

The leading causes of death in the United States have changed significantly from the year 1900 to the present. Leading causes of death in 1900, such as tuberculosis, gastrointestinal infections, and diphtheria have seen huge decreases in death rates and are no longer among the leading causes of death in the United States. However, other diseases such as heart disease and cancer have seen increased death rates. Vaccinations One major factor contributing to the decrease in death rates for many diseases since the year 1900 is the introduction of vaccinations. The decrease seen in the rates of death due to pneumonia and influenza is a prime example of this. In 1900, pneumonia and influenza were the leading causes of death, with around *** deaths per 100,000 population. However, in 2023 pneumonia and influenza were not even among the ten leading causes of death. Cancer One disease that has seen a large increase in death rates since 1900 is cancer. Cancer currently accounts for almost ** percent of all deaths in the United States, with death rates among men higher than those for women. The deadliest form of cancer for both men and women is cancer of the lung and bronchus. Some of the most common avoidable risk factors for cancer include smoking, drinking alcohol, sun exposure, and obesity.

Search
Clear search
Close search
Google apps
Main menu