100+ datasets found
  1. Cost of living index in the U.S. 2024, by state

    • statista.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cost of living index in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240947/cost-of-living-index-usa-by-state/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.

  2. Consumer reactions to the cost of living crisis in the U.S. 2023

    • statista.com
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Consumer reactions to the cost of living crisis in the U.S. 2023 [Dataset]. https://www.statista.com/statistics/1384081/consumer-reactions-to-the-cost-of-living-crisis-in-the-us/
    Explore at:
    Dataset updated
    Jun 5, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 19, 2023 - Apr 24, 2023
    Area covered
    United States
    Description

    Around 64 percent of U.S. consumers spend less on non-essentials amidst the ongoing cost of living crisis in 2023. This is according to a survey conducted by We are Social and Statista Q, which shows that rising inflation rates have caused around a similar percentage of customers to pay more attention to bargains, good deals, or offers (when going shopping). Furthermore, around 39 percent of U.S. consumers do not go out for dinner/lunch anymore to deal with the situation.

  3. Overview of inflation and the cost of living: June 2022

    • gov.uk
    • s3.amazonaws.com
    Updated Jun 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2022). Overview of inflation and the cost of living: June 2022 [Dataset]. https://www.gov.uk/government/statistics/overview-of-inflation-and-the-cost-of-living-june-2022
    Explore at:
    Dataset updated
    Jun 22, 2022
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Office for National Statistics
    Description

    Official statistics are produced impartially and free from political influence.

  4. Most relevant social networks for cost of living crisis in the U.S. 2023

    • statista.com
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Most relevant social networks for cost of living crisis in the U.S. 2023 [Dataset]. https://www.statista.com/statistics/1381959/most-relevant-social-networks-for-cost-of-living-crisis-in-the-us/
    Explore at:
    Dataset updated
    Jun 5, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 19, 2023 - Apr 24, 2023
    Area covered
    United States
    Description

    The cost of living is spiraling. Prices are going up, household expenses are rising, and the U.S. inflation rate reached a 40-year record high in 2023. Many consumers are looking for new ways to deal with this situation and refer to social media for support. So, which social media platforms have the most helpful content to deal with the current cost of living crisis in the U.S.? According to an exclusive survey by We Are Social and Statista Q, around 61 percent of TikTok users in the United States find helpful content there. Coming on number second is YouTube, as 56 percent of YouTube users find life hacks, tricks, money saving tips and other suitable advice to deal with inflation in 2023.

  5. Impact of the cost of living crisis on consumers in the U.S. 2023

    • statista.com
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Impact of the cost of living crisis on consumers in the U.S. 2023 [Dataset]. https://www.statista.com/statistics/1384058/impact-of-the-cost-of-living-crisis-on-consumers-in-the-us/
    Explore at:
    Dataset updated
    Jun 5, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 19, 2023 - Apr 24, 2023
    Area covered
    United States
    Description

    According to an April 2023 survey by We Are Social and Statista Q, 40 percent of U.S. consumers feel highly affected by the ongoing cost of living crisis, whereas only 6 percent don't feel affected at all.

  6. Share of people who see inflation as an important issue Ireland 2021-2025

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of people who see inflation as an important issue Ireland 2021-2025 [Dataset]. https://www.statista.com/statistics/1475182/ireland-inflation-important-issue-survey/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2021 - May 2025
    Area covered
    Ireland, Ireland
    Description

    In April 2025, approximately 35 percent of people in the Republic of Ireland thought that inflation / the rising cost of living was one of the two most important issues facing the country. This was down from 65 percent in July 2022, and 55 percent in November 2023.

  7. F

    Inflation, consumer prices for the United States

    • fred.stlouisfed.org
    json
    Updated Apr 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Inflation, consumer prices for the United States [Dataset]. https://fred.stlouisfed.org/series/FPCPITOTLZGUSA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Apr 16, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Inflation, consumer prices for the United States (FPCPITOTLZGUSA) from 1960 to 2024 about consumer, CPI, inflation, price index, indexes, price, and USA.

  8. f

    Prices - Change in cost of living by household group 2008 Q2–2024 Q4

    • figure.nz
    csv
    Updated Feb 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Figure.NZ (2019). Prices - Change in cost of living by household group 2008 Q2–2024 Q4 [Dataset]. https://figure.nz/table/tb9V6XoNMtLVrUa2
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 14, 2019
    Dataset provided by
    Figure.NZ
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Zealand
    Description

    The household living-costs price index (HLPI) provides insights into the inflation experienced by 13 different household groups: beneficiaries, Māori, income quintiles (five groups), expenditure quintiles (five groups), and superannuitants. An all-households HLPI is published for comparison.

  9. Consumer concern around the rising cost of living Greater China 2023

    • statista.com
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Consumer concern around the rising cost of living Greater China 2023 [Dataset]. https://www.statista.com/statistics/1440206/greater-china-consumer-concern-around-the-rising-cost-of-living/
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China, Hong Kong
    Description

    According to the 2023 Global Consumer Insights Survey China report, only *** percent of respondents in mainland China and Hong Kong were found to be extremely concerned about the rising cost of living in relation to their personal financial situation. Those who were somewhat concerned accounted for ** percent of the total respondents. Seven percent of respondents were not at all concerned about the rising cost.

  10. Inflation Crisis in Japan: Rising Costs Burden Households and Businesses -...

    • indexbox.io
    doc, docx, pdf, xls +1
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndexBox Inc. (2025). Inflation Crisis in Japan: Rising Costs Burden Households and Businesses - News and Statistics - IndexBox [Dataset]. https://www.indexbox.io/blog/how-inflation-in-japan-is-impacting-households-and-businesses/
    Explore at:
    xlsx, pdf, xls, docx, docAvailable download formats
    Dataset updated
    Aug 1, 2025
    Dataset provided by
    Authors
    IndexBox Inc.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2012 - Aug 1, 2025
    Area covered
    Japan
    Variables measured
    Market Size, Market Share, Tariff Rates, Average Price, Export Volume, Import Volume, Demand Elasticity, Market Growth Rate, Market Segmentation, Volume of Production, and 4 more
    Description

    Explore the impact of inflation in Japan on living costs, with households and businesses facing increasing financial pressures amid rising prices for essentials.

  11. Consumer Price Index by geography, all-items, monthly, percentage change,...

    • www150.statcan.gc.ca
    Updated Aug 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Consumer Price Index by geography, all-items, monthly, percentage change, not seasonally adjusted, Canada, provinces, Whitehorse, Yellowknife and Iqaluit [Dataset]. http://doi.org/10.25318/1810000401-eng
    Explore at:
    Dataset updated
    Aug 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Monthly indexes and percentage changes for all components and special aggregates of the Consumer Price Index (CPI), not seasonally adjusted, for Canada, provinces, Whitehorse, Yellowknife and Iqaluit. Data are presented for the corresponding month of the previous year, the previous month and the current month. The base year for the index is 2002=100.

  12. Consumer Price Index 2022 - West Bank and Gaza

    • pcbs.gov.ps
    Updated May 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2023). Consumer Price Index 2022 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/717
    Explore at:
    Dataset updated
    May 18, 2023
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Time period covered
    2022
    Area covered
    West Bank, Gaza Strip, Gaza
    Description

    Abstract

    The Consumer price surveys primarily provide the following: Data on CPI in Palestine covering the West Bank, Gaza Strip and Jerusalem J1 for major and sub groups of expenditure. Statistics needed for decision-makers, planners and those who are interested in the national economy. Contribution to the preparation of quarterly and annual national accounts data.

    Consumer Prices and indices are used for a wide range of purposes, the most important of which are as follows: Adjustment of wages, government subsidies and social security benefits to compensate in part or in full for the changes in living costs. To provide an index to measure the price inflation of the entire household sector, which is used to eliminate the inflation impact of the components of the final consumption expenditure of households in national accounts and to dispose of the impact of price changes from income and national groups. Price index numbers are widely used to measure inflation rates and economic recession. Price indices are used by the public as a guide for the family with regard to its budget and its constituent items. Price indices are used to monitor changes in the prices of the goods traded in the market and the consequent position of price trends, market conditions and living costs. However, the price index does not reflect other factors affecting the cost of living, e.g. the quality and quantity of purchased goods. Therefore, it is only one of many indicators used to assess living costs. It is used as a direct method to identify the purchasing power of money, where the purchasing power of money is inversely proportional to the price index.

    Geographic coverage

    Palestine West Bank Gaza Strip Jerusalem

    Analysis unit

    The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.

    Universe

    The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A non-probability purposive sample of sources from which the prices of different goods and services are collected was updated based on the establishment census 2017, in a manner that achieves full coverage of all goods and services that fall within the Palestinian consumer system. These sources were selected based on the availability of the goods within them. It is worth mentioning that the sample of sources was selected from the main cities inside Palestine: Jenin, Tulkarm, Nablus, Qalqiliya, Ramallah, Al-Bireh, Jericho, Jerusalem, Bethlehem, Hebron, Gaza, Jabalia, Dier Al-Balah, Nusseirat, Khan Yunis and Rafah. The selection of these sources was considered to be representative of the variation that can occur in the prices collected from the various sources. The number of goods and services included in the CPI is approximately 730 commodities, whose prices were collected from 3,200 sources. (COICOP) classification is used for consumer data as recommended by the United Nations System of National Accounts (SNA-2008).

    Sampling deviation

    Not apply

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    A tablet-supported electronic form was designed for price surveys to be used by the field teams in collecting data from different governorates, with the exception of Jerusalem J1. The electronic form is supported with GIS, and GPS mapping technique that allow the field workers to locate the outlets exactly on the map and the administrative staff to manage the field remotely. The electronic questionnaire is divided into a number of screens, namely: First screen: shows the metadata for the data source, governorate name, governorate code, source code, source name, full source address, and phone number. Second screen: shows the source interview result, which is either completed, temporarily paused or permanently closed. It also shows the change activity as incomplete or rejected with the explanation for the reason of rejection. Third screen: shows the item code, item name, item unit, item price, product availability, and reason for unavailability. Fourth screen: checks the price data of the related source and verifies their validity through the auditing rules, which was designed specifically for the price programs. Fifth screen: saves and sends data through (VPN-Connection) and (WI-FI technology).

    In case of the Jerusalem J1 Governorate, a paper form has been designed to collect the price data so that the form in the top part contains the metadata of the data source and in the lower section contains the price data for the source collected. After that, the data are entered into the price program database.

    Cleaning operations

    The price survey forms were already encoded by the project management depending on the specific international statistical classification of each survey. After the researcher collected the price data and sent them electronically, the data was reviewed and audited by the project management. Achievement reports were reviewed on a daily and weekly basis. Also, the detailed price reports at data source levels were checked and reviewed on a daily basis by the project management. If there were any notes, the researcher was consulted in order to verify the data and call the owner in order to correct or confirm the information.

    At the end of the data collection process in all governorates, the data will be edited using the following process: Logical revision of prices by comparing the prices of goods and services with others from different sources and other governorates. Whenever a mistake is detected, it should be returned to the field for correction. Mathematical revision of the average prices for items in governorates and the general average in all governorates. Field revision of prices through selecting a sample of the prices collected from the items.

    Response rate

    Not apply

    Sampling error estimates

    The findings of the survey may be affected by sampling errors due to the use of samples in conducting the survey rather than total enumeration of the units of the target population, which increases the chances of variances between the actual values we expect to obtain from the data if we had conducted the survey using total enumeration. The computation of differences between the most important key goods showed that the variation of these goods differs due to the specialty of each survey. The variance of the key goods in the computed and disseminated CPI survey that was carried out on the Palestine level was for reasons related to sample design and variance calculation of different indicators since there was a difficulty in the dissemination of results by governorates due to lack of weights. Non-sampling errors are probable at all stages of data collection or data entry. Non-sampling errors include: Non-response errors: the selected sources demonstrated a significant cooperation with interviewers; so, there wasn't any case of non-response reported during 2019. Response errors (respondent), interviewing errors (interviewer), and data entry errors: to avoid these types of errors and reduce their effect to a minimum, project managers adopted a number of procedures, including the following: More than one visit was made to every source to explain the objectives of the survey and emphasize the confidentiality of the data. The visits to data sources contributed to empowering relations, cooperation, and the verification of data accuracy. Interviewer errors: a number of procedures were taken to ensure data accuracy throughout the process of field data compilation: Interviewers were selected based on educational qualification, competence, and assessment. Interviewers were trained theoretically and practically on the questionnaire. Meetings were held to remind interviewers of instructions. In addition, explanatory notes were supplied with the surveys. A number of procedures were taken to verify data quality and consistency and ensure data accuracy for the data collected by a questioner throughout processing and data entry (knowing that data collected through paper questionnaires did not exceed 5%): Data entry staff was selected from among specialists in computer programming and were fully trained on the entry programs. Data verification was carried out for 10% of the entered questionnaires to ensure that data entry staff had entered data correctly and in accordance with the provisions of the questionnaire. The result of the verification was consistent with the original data to a degree of 100%. The files of the entered data were received, examined, and reviewed by project managers before findings were extracted. Project managers carried out many checks on data logic and coherence, such as comparing the data of the current month with that of the previous month, and comparing the data of sources and between governorates. Data collected by tablet devices were checked for consistency and accuracy by applying rules at item level to be checked.

    Data appraisal

    Other technical procedures to improve data quality: Seasonal adjustment processes and estimations of non-available items' prices: Under each category, a number of common items are used in Palestine to calculate the price levels and to represent the commodity within the commodity group. Of course, it is

  13. Reasons for cost of living increases in Ireland survey 2024

    • statista.com
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Reasons for cost of living increases in Ireland survey 2024 [Dataset]. https://www.statista.com/statistics/1475458/ireland-cost-of-living-survey/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Ireland
    Description

    Approximately 81 percent of people in the Republic of Ireland thought that the state of the global economy was the main contributing factor to the rising cost of living in the country. By contrast, just 49 percent of people in Ireland believed that workers demanding pay rises was the main reason.

  14. e

    Inflation, cost of living, wage development and tariff autonomy in Germany...

    • b2find.eudat.eu
    Updated Apr 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Inflation, cost of living, wage development and tariff autonomy in Germany between 1920 and 1923. - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/50877d43-e0e2-5f75-a951-82591cf71be3
    Explore at:
    Dataset updated
    Apr 25, 2023
    Area covered
    Germany
    Description

    The study of Jürgen Nautz deals with selected aspects of tariff autonomy and wage development during the years of inflation in the Weimar Republic. First the development of wages will be presented in the context of cost of living. To investigate the question of tariff autonomy in the inflation period it is of special interest to analyze the usage of arbitration instruments by unions, management and the state. Another central subject of this study is the fundamental position concerning the question of the design of important relations. Two themes are in the focus of interest; the ideas of the further refinement of the collective bargaining principle and the arbitration of labor disputes. Especially concerning tariff autonomy legal positions were developed during the inflation years which had an important impact on the discussion about tariff autonomy during the entire period the Weimar Republic. Data tables in HISTAT: A.1 Development of cost of living: Index of the statistical office of the German Empire (1920-1923) A.2 Index of average real weekly wages per collective agreement Index (1913-1923) A.3 Real weekly and real hourly wages of unskilled and skilled workers (1919-1923) A.4 Strikes and lockouts (1918-1924) A.5 Number of collective agreements (1918-1929) Der Beitrag von Jürgen Nautz widment sich ausgewählten Aspekten zum Problembereich der Tarifautonomie und der Lohnentwicklung in der Zeit der Inflationsjahre während der Weimarer Republik. Als erstes wird die Entwicklung der Löhne auf dem Hintergrund der Lebenshaltungskosten dargestellt. Für die Frage nach dem Zustand der Tarifautonomie in der Inflationsphase ist die Handhabung des Schlichtungsinstrumentariums durch die Tarifparteien und den Staat von besonderem Interesse. Ein zentraler Gegenstand dieses Beitrages ist auch die Darstellung der grundsätzlichen Positionen in der Frage der Gestaltung der industriellen Beziehungen. Dabei stehen zwei Topoi im Mittelpunkt des Interesses: die Vorstellungen von der weiteren Ausgestaltung des Tarifvertragsprinzips und der Schlichtung von Arbeitsstreitigkeiten. Gerade in der Frage der Tarifautonomie sind in den Inflationsjahren Rechtspositionen entwickelt worden, die prägend waren für die Diskussion der Tarifautonomie während der gesamten Phase der Weimarer Republik. Datentabellen in HISTAT: A.1 Entwicklung der Lebenshaltungskosten: Index des Statistischen Reichsamts (1920-1923) A.2 Index der durchschnittlichen Realwochenlöhne je Tarifvertrag (1913-1923) A.3 Realwochen- und Realstundenlohnsätze ungelernter und gelernter Arbeiter (1919-1923) A.4 Streiks und Aussperrungen (1918-1924) A.5 Zahl der Tarifverträge (1918-1929) Quellen: Daten aus der Forschungsliteratur. Statistisches Jahrbuch für das Deutsche Reich, Jg. 1914 – 1933.

  15. Consumer Price Index 2020 - West Bank and Gaza

    • pcbs.gov.ps
    Updated Jan 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2022). Consumer Price Index 2020 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/706
    Explore at:
    Dataset updated
    Jan 2, 2022
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Time period covered
    2020
    Area covered
    West Bank, Gaza Strip, Gaza
    Description

    Abstract

    The Consumer price surveys primarily provide the following: Data on CPI in Palestine covering the West Bank, Gaza Strip and Jerusalem J1 for major and sub groups of expenditure. Statistics needed for decision-makers, planners and those who are interested in the national economy. Contribution to the preparation of quarterly and annual national accounts data.

    Consumer Prices and indices are used for a wide range of purposes, the most important of which are as follows: Adjustment of wages, government subsidies and social security benefits to compensate in part or in full for the changes in living costs. To provide an index to measure the price inflation of the entire household sector, which is used to eliminate the inflation impact of the components of the final consumption expenditure of households in national accounts and to dispose of the impact of price changes from income and national groups. Price index numbers are widely used to measure inflation rates and economic recession. Price indices are used by the public as a guide for the family with regard to its budget and its constituent items. Price indices are used to monitor changes in the prices of the goods traded in the market and the consequent position of price trends, market conditions and living costs. However, the price index does not reflect other factors affecting the cost of living, e.g. the quality and quantity of purchased goods. Therefore, it is only one of many indicators used to assess living costs. It is used as a direct method to identify the purchasing power of money, where the purchasing power of money is inversely proportional to the price index.

    Geographic coverage

    Palestine West Bank Gaza Strip Jerusalem

    Analysis unit

    The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.

    Universe

    The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A non-probability purposive sample of sources from which the prices of different goods and services are collected was updated based on the establishment census 2017, in a manner that achieves full coverage of all goods and services that fall within the Palestinian consumer system. These sources were selected based on the availability of the goods within them. It is worth mentioning that the sample of sources was selected from the main cities inside Palestine: Jenin, Tulkarm, Nablus, Qalqiliya, Ramallah, Al-Bireh, Jericho, Jerusalem, Bethlehem, Hebron, Gaza, Jabalia, Dier Al-Balah, Nusseirat, Khan Yunis and Rafah. The selection of these sources was considered to be representative of the variation that can occur in the prices collected from the various sources. The number of goods and services included in the CPI is approximately 730 commodities, whose prices were collected from 3,200 sources. (COICOP) classification is used for consumer data as recommended by the United Nations System of National Accounts (SNA-2008).

    Sampling deviation

    Not apply

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    A tablet-supported electronic form was designed for price surveys to be used by the field teams in collecting data from different governorates, with the exception of Jerusalem J1. The electronic form is supported with GIS, and GPS mapping technique that allow the field workers to locate the outlets exactly on the map and the administrative staff to manage the field remotely. The electronic questionnaire is divided into a number of screens, namely: First screen: shows the metadata for the data source, governorate name, governorate code, source code, source name, full source address, and phone number. Second screen: shows the source interview result, which is either completed, temporarily paused or permanently closed. It also shows the change activity as incomplete or rejected with the explanation for the reason of rejection. Third screen: shows the item code, item name, item unit, item price, product availability, and reason for unavailability. Fourth screen: checks the price data of the related source and verifies their validity through the auditing rules, which was designed specifically for the price programs. Fifth screen: saves and sends data through (VPN-Connection) and (WI-FI technology).

    In case of the Jerusalem J1 Governorate, a paper form has been designed to collect the price data so that the form in the top part contains the metadata of the data source and in the lower section contains the price data for the source collected. After that, the data are entered into the price program database.

    Cleaning operations

    The price survey forms were already encoded by the project management depending on the specific international statistical classification of each survey. After the researcher collected the price data and sent them electronically, the data was reviewed and audited by the project management. Achievement reports were reviewed on a daily and weekly basis. Also, the detailed price reports at data source levels were checked and reviewed on a daily basis by the project management. If there were any notes, the researcher was consulted in order to verify the data and call the owner in order to correct or confirm the information.

    At the end of the data collection process in all governorates, the data will be edited using the following process: Logical revision of prices by comparing the prices of goods and services with others from different sources and other governorates. Whenever a mistake is detected, it should be returned to the field for correction. Mathematical revision of the average prices for items in governorates and the general average in all governorates. Field revision of prices through selecting a sample of the prices collected from the items.

    Response rate

    Not apply

    Sampling error estimates

    The findings of the survey may be affected by sampling errors due to the use of samples in conducting the survey rather than total enumeration of the units of the target population, which increases the chances of variances between the actual values we expect to obtain from the data if we had conducted the survey using total enumeration. The computation of differences between the most important key goods showed that the variation of these goods differs due to the specialty of each survey. For example, for the CPI, the variation between its goods was very low, except in some cases such as banana, tomato, and cucumber goods that had a high coefficient of variation during 2019 due to the high oscillation in their prices. The variance of the key goods in the computed and disseminated CPI survey that was carried out on the Palestine level was for reasons related to sample design and variance calculation of different indicators since there was a difficulty in the dissemination of results by governorates due to lack of weights. Non-sampling errors are probable at all stages of data collection or data entry. Non-sampling errors include: Non-response errors: the selected sources demonstrated a significant cooperation with interviewers; so, there wasn't any case of non-response reported during 2019. Response errors (respondent), interviewing errors (interviewer), and data entry errors: to avoid these types of errors and reduce their effect to a minimum, project managers adopted a number of procedures, including the following: More than one visit was made to every source to explain the objectives of the survey and emphasize the confidentiality of the data. The visits to data sources contributed to empowering relations, cooperation, and the verification of data accuracy. Interviewer errors: a number of procedures were taken to ensure data accuracy throughout the process of field data compilation: Interviewers were selected based on educational qualification, competence, and assessment. Interviewers were trained theoretically and practically on the questionnaire. Meetings were held to remind interviewers of instructions. In addition, explanatory notes were supplied with the surveys. A number of procedures were taken to verify data quality and consistency and ensure data accuracy for the data collected by a questioner throughout processing and data entry (knowing that data collected through paper questionnaires did not exceed 5%): Data entry staff was selected from among specialists in computer programming and were fully trained on the entry programs. Data verification was carried out for 10% of the entered questionnaires to ensure that data entry staff had entered data correctly and in accordance with the provisions of the questionnaire. The result of the verification was consistent with the original data to a degree of 100%. The files of the entered data were received, examined, and reviewed by project managers before findings were extracted. Project managers carried out many checks on data logic and coherence, such as comparing the data of the current month with that of the previous month, and comparing the data of sources and between governorates. Data collected by tablet devices were checked for consistency and accuracy by applying rules at item level to be checked.

    Data appraisal

    Other technical procedures to improve data quality: Seasonal adjustment processes

  16. T

    Japan Inflation Rate

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Aug 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Japan Inflation Rate [Dataset]. https://tradingeconomics.com/japan/inflation-cpi
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Aug 21, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1958 - Jul 31, 2025
    Area covered
    Japan
    Description

    Inflation Rate in Japan decreased to 3.10 percent in July from 3.30 percent in June of 2025. This dataset provides the latest reported value for - Japan Inflation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  17. T

    Brazil Inflation Rate

    • tradingeconomics.com
    • ru.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Brazil Inflation Rate [Dataset]. https://tradingeconomics.com/brazil/inflation-cpi
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1980 - Jul 31, 2025
    Area covered
    Brazil
    Description

    Inflation Rate in Brazil decreased to 5.23 percent in July from 5.35 percent in June of 2025. This dataset provides - Brazil Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  18. T

    Poland Inflation Rate

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Poland Inflation Rate [Dataset]. https://tradingeconomics.com/poland/inflation-cpi
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Jul 31, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1992 - Aug 31, 2025
    Area covered
    Poland
    Description

    Inflation Rate in Poland decreased to 2.80 percent in August from 3.10 percent in July of 2025. This dataset provides the latest reported value for - Poland Inflation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  19. B

    Brazil Market Expectation: Inflation: Accumulated Over Next 12 Months:...

    • ceicdata.com
    Updated Feb 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Brazil Market Expectation: Inflation: Accumulated Over Next 12 Months: Consumer Price Index (IPC-FIPE): Smoothed: Median [Dataset]. https://www.ceicdata.com/en/brazil/market-expectation-inflation-accumulated-over-next-12-months-consumer-price-index-ipcfipe-smoothed/market-expectation-inflation-accumulated-over-next-12-months-consumer-price-index-ipcfipe-smoothed-median
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 12, 2019 - Jun 28, 2019
    Area covered
    Brazil
    Description

    Brazil Market Expectation: Inflation: Accumulated Over Next 12 Months: Consumer Price Index (IPC-FIPE): Smoothed: Median data was reported at 3.910 % in 28 Jun 2019. This records an increase from the previous number of 3.830 % for 27 Jun 2019. Brazil Market Expectation: Inflation: Accumulated Over Next 12 Months: Consumer Price Index (IPC-FIPE): Smoothed: Median data is updated daily, averaging 4.850 % from Dec 2001 (Median) to 28 Jun 2019, with 4406 observations. The data reached an all-time high of 11.020 % in 13 Dec 2002 and a record low of 3.360 % in 06 Aug 2007. Brazil Market Expectation: Inflation: Accumulated Over Next 12 Months: Consumer Price Index (IPC-FIPE): Smoothed: Median data remains active status in CEIC and is reported by Central Bank of Brazil. The data is categorized under Brazil Premium Database’s Business and Economic Survey – Table BR.SA036: Market Expectation: Inflation: Accumulated Over Next 12 Months: Consumer Price Index (IPC-FIPE): Smoothed. Market Expectations System was implemented in November 2001, previous projections were collected from incipient through telephone contacts, transcribed into spreadsheets and consolidated manually. Some empty time points occurred because the Market didn´t have the expectation for those days. Researched in the city of São Paulo, reflects the cost of living of families with income from 1 to 20 minimum wages.

  20. F

    Consumer Price Index for All Urban Consumers: Housing in...

    • fred.stlouisfed.org
    json
    Updated Jan 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Consumer Price Index for All Urban Consumers: Housing in Denver-Aurora-Lakewood, CO (CBSA) [Dataset]. https://fred.stlouisfed.org/series/CUUSA433SAH
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jan 15, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Denver Metropolitan Area, Colorado
    Description

    Graph and download economic data for Consumer Price Index for All Urban Consumers: Housing in Denver-Aurora-Lakewood, CO (CBSA) (CUUSA433SAH) from 1984 to 2024 about Denver, CO, urban, consumer, CPI, housing, inflation, price index, indexes, price, and USA.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Cost of living index in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240947/cost-of-living-index-usa-by-state/
Organization logo

Cost of living index in the U.S. 2024, by state

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 27, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2024
Area covered
United States
Description

West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.

Search
Clear search
Close search
Google apps
Main menu