Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This is not going to be an article or Op-Ed about Michael Jordan. Since 2009 we've been in the longest bull-market in history, that's 11 years and counting. However a few metrics like the stock market P/E, the call to put ratio and of course the Shiller P/E suggest a great crash is coming in-between the levels of 1929 and the dot.com bubble. Mean reversion historically is inevitable and the Fed's printing money experiment could end in disaster for the stock market in late 2021 or 2022. You can read Jeremy Grantham's Last Dance article here. You are likely well aware of Michael Burry's predicament as well. It's easier for you just to skim through two related videos on this topic of a stock market crash. Michael Burry's Warning see this YouTube. Jeremy Grantham's Warning See this YouTube. Typically when there is a major event in the world, there is a crash and then a bear market and a recovery that takes many many months. In March, 2020 that's not what we saw since the Fed did some astonishing things that means a liquidity sloth and the risk of a major inflation event. The pandemic represented the quickest decline of at least 30% in the history of the benchmark S&P 500, but the recovery was not correlated to anything but Fed intervention. Since the pandemic clearly isn't disappearing and many sectors such as travel, business travel, tourism and supply chain disruptions appear significantly disrupted - the so-called economic recovery isn't so great. And there's this little problem at the heart of global capitalism today, the stock market just keeps going up. Crashes and corrections typically occur frequently in a normal market. But the Fed liquidity and irresponsible printing of money is creating a scenario where normal behavior isn't occurring on the markets. According to data provided by market analytics firm Yardeni Research, the benchmark index has undergone 38 declines of at least 10% since the beginning of 1950. Since March, 2020 we've barely seen a down month. September, 2020 was flat-ish. The S&P 500 has more than doubled since those lows. Look at the angle of the curve: The S&P 500 was 735 at the low in 2009, so in this bull market alone it has gone up 6x in valuation. That's not a normal cycle and it could mean we are due for an epic correction. I have to agree with the analysts who claim that the long, long bull market since 2009 has finally matured into a fully-fledged epic bubble. There is a complacency, buy-the dip frenzy and general meme environment to what BigTech can do in such an environment. The weight of Apple, Amazon, Alphabet, Microsoft, Facebook, Nvidia and Tesla together in the S&P and Nasdaq is approach a ridiculous weighting. When these stocks are seen both as growth, value and companies with unbeatable moats the entire dynamics of the stock market begin to break down. Check out FANG during the pandemic. BigTech is Seen as Bullet-Proof me valuations and a hysterical speculative behavior leads to even higher highs, even as 2020 offered many younger people an on-ramp into investing for the first time. Some analysts at JP Morgan are even saying that until retail investors stop charging into stocks, markets probably don’t have too much to worry about. Hedge funds with payment for order flows can predict exactly how these retail investors are behaving and monetize them. PFOF might even have to be banned by the SEC. The risk-on market theoretically just keeps going up until the Fed raises interest rates, which could be in 2023! For some context, we're more than 1.4 years removed from the bear-market bottom of the coronavirus crash and haven't had even a 5% correction in nine months. This is the most over-priced the market has likely ever been. At the night of the dot-com bubble the S&P 500 was only 1,400. Today it is 4,500, not so many years after. Clearly something is not quite right if you look at history and the P/E ratios. A market pumped with liquidity produces higher earnings with historically low interest rates, it's an environment where dangerous things can occur. In late 1997, as the S&P 500 passed its previous 1929 peak of 21x earnings, that seemed like a lot, but nothing compared to today. For some context, the S&P 500 Shiller P/E closed last week at 38.58, which is nearly a two-decade high. It's also well over double the average Shiller P/E of 16.84, dating back 151 years. So the stock market is likely around 2x over-valued. Try to think rationally about what this means for valuations today and your favorite stock prices, what should they be in historical terms? The S&P 500 is up 31% in the past year. It will likely hit 5,000 before a correction given the amount of added liquidity to the system and the QE the Fed is using that's like a huge abuse of MMT, or Modern Monetary Theory. This has also lent to bubbles in the housing market, crypto and even commodities like Gold with long-term global GDP meeting many headwinds in the years ahead due to a demographic shift of an ageing population and significant technological automation. So if you think that stocks or equities or ETFs are the best place to put your money in 2022, you might want to think again. The crash of the OTC and small-cap market since February 2021 has been quite an indication of what a correction looks like. According to the Motley Fool what happens after major downturns in the market historically speaking? In each of the previous four instances that the S&P 500's Shiller P/E shot above and sustained 30, the index lost anywhere from 20% to 89% of its value. So what's what we too are due for, reversion to the mean will be realistically brutal after the Fed's hyper-extreme intervention has run its course. Of course what the Fed stimulus has really done is simply allowed the 1% to get a whole lot richer to the point of wealth inequality spiraling out of control in the decades ahead leading us likely to a dystopia in an unfair and unequal version of BigTech capitalism. This has also led to a trend of short squeeze to these tech stocks, as shown in recent years' data. Of course the Fed has to say that's its done all of these things for the people, employment numbers and the labor market. Women in the workplace have been set behind likely 15 years in social progress due to the pandemic and the Fed's response. While the 89% lost during the Great Depression would be virtually impossible today thanks to ongoing intervention from the Federal Reserve and Capitol Hill, a correction of 20% to 50% would be pretty fair and simply return the curve back to a normal trajectory as interest rates going back up eventually in the 2023 to 2025 period. It's very unlikely the market has taken Fed tapering into account (priced-in), since the euphoria of a can't miss market just keeps pushing the markets higher. But all good things must come to an end. Earlier this month, the U.S. Bureau of Labor Statistics released inflation data from July. This report showed that the Consumer Price Index for All Urban Consumers rose 5.2% over the past 12 months. While the Fed and economists promise us this inflation is temporary, others are not so certain. As you print so much money, the money you have is worth less and certain goods cost more. Wage gains in some industries cannot be taken back, they are permanent - in the service sector like restaurants, hospitality and travel that have been among the hardest hit. The pandemic has led to a paradigm shift in the future of work, and that too is not temporary. The Great Resignation means white collar jobs with be more WFM than ever before, with a new software revolution, different transport and energy behaviors and so forth. Climate change alone could slow down global GDP in the 21st century. How can inflation be temporary when so many trends don't appear to be temporary? Sure the price of lumber or used-cars could be temporary, but a global chip shortage is exasperating the automobile sector. The stock market isn't even behaving like it cares about anything other than the Fed, and its $billions of dollars of buying bonds each month. Some central banks will start to taper about December, 2021 (like the European). However Delta could further mutate into a variant that makes the first generation of vaccines less effective. Such a macro event could be enough to trigger the correction we've been speaking about. So stay safe, and keep your money safe. The Last Dance of the 2009 bull market could feel especially more painful because we've been spoiled for so long in the markets. We can barely remember what March, 2020 felt like. Some people sold their life savings simply due to scare tactics by the likes of Bill Ackman. His scare tactics on CNBC won him likely hundreds of millions as the stock market tanked. Hedge funds further gamed the Reddit and Gamestop movement, orchestrating them and leading the new retail investors into meme speculation and a whole bunch of other unsavory things like options trading at such scale we've never seen before. It's not just inflation and higher interest rates, it's how absurdly high valuations have become. Still correlation does not imply causation. Just because inflation has picked up, it doesn't guarantee that stocks will head lower. Nevertheless, weaker buying power associated with higher inflation can't be overlooked as a potential negative for the U.S. economy and equities. The current S&P500 10-year P/E Ratio is 38.7. This is 97% above the modern-era market average of 19.6, putting the current P/E 2.5 standard deviations above the modern-era average. This is just math, folks. History is saying the stock market is 2x its true value. So why and who would be full on the market or an asset class like crypto that is mostly speculative in nature to begin with? Study the following on a historical basis, and due your own due diligence as to the health of the markets: Debt-to-GDP ratio Call to put ratio
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This stock market dataset is designed for financial analysis and predictive modeling. It includes historical stock prices, technical indicators, macroeconomic factors, and sentiment scores to help in developing and testing machine learning models for stock trend prediction.
Dataset Features: Column Description Stock Random stock ticker (AAPL, GOOG, etc.) Date Random business date Open Open price High High price Low Low price Close Close price Volume Trading volume SMA_10 10-day Simple Moving Average RSI Relative Strength Index (10-90 range) MACD MACD indicator (-5 to 5) Bollinger_Upper Upper Bollinger Band Bollinger_Lower Lower Bollinger Band GDP_Growth Random GDP growth rate (2.5% to 3.5%) Inflation_Rate Inflation rate (1.5% to 3.0%) Interest_Rate Interest rate (0.5% to 5.0%) Sentiment_Score Random sentiment score (-1 to 1) Next_Close Next day's closing price (for regression) Target Binary classification (1: Price Increase, 0: Price Decrease)
Key Features: Stock Prices: Open, High, Low, Close, and Volume data. Technical Indicators: Simple Moving Average (SMA), Relative Strength Index (RSI), MACD, and Bollinger Bands. Macroeconomic Factors: Simulated GDP growth, inflation rate, and interest rates. Sentiment Scores: Randomized sentiment values between -1 and 1 to simulate market sentiment. Target Variables: Next-day close price (for regression) and price movement direction (for classification).
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Equity Market Volatility Tracker: Macroeconomic News and Outlook: Inflation (EMVMACROINFLATION) from Jan 1985 to Nov 2025 about volatility, uncertainty, equity, inflation, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The "Stock Market Dataset for AI-Driven Prediction and Trading Strategy Optimization" is designed to simulate real-world stock market data for training and evaluating machine learning models. This dataset includes a combination of technical indicators, market metrics, sentiment scores, and macroeconomic factors, providing a comprehensive foundation for developing and testing AI models for stock price prediction and trading strategy optimization.
Key Features Market Metrics:
Open, High, Low, Close Prices: Daily stock price movement. Volume: Represents the trading activity during the day. Technical Indicators:
RSI (Relative Strength Index): A momentum oscillator to measure the speed and change of price movements. MACD (Moving Average Convergence Divergence): An indicator to reveal changes in strength, direction, momentum, and duration of a trend. Bollinger Bands: Upper and lower bands around a stock price to measure volatility. Sentiment Analysis:
Sentiment Score: Simulated sentiment derived from financial news and social media, ranging from -1 (negative) to 1 (positive). Macroeconomic Factors:
GDP Growth: Indicates the overall health and growth of the economy. Inflation Rate: Reflects changes in purchasing power and economic stability. Target Variable:
Buy/Sell Signal: Binary classification (1 = Buy, 0 = Sell) based on price movement thresholds, simulating actionable trading decisions. Use Cases AI Model Training: Ideal for building stock prediction models using LSTM, Gradient Boosting, Random Forest, etc. Trading Strategy Optimization: Enables testing of trading algorithms and strategies in a simulated environment. Sentiment Analysis Research: Useful for understanding how sentiment influences stock movements. Feature Engineering and Selection: Provides a diverse set of features for experimentation with advanced techniques like PCA and LDA. Dataset Highlights Synthetic Yet Realistic: Carefully designed to mimic real-world financial data trends and relationships. Comprehensive Coverage: Includes key indicators and metrics used by traders and analysts. Scalable: Suitable for use in both small-scale academic projects and larger AI-driven trading platforms. Accessible for All Levels: The intuitive structure ensures that even beginners can utilize this dataset for financial machine learning applications. File Format The dataset is provided in CSV format, where:
Rows represent individual trading days. Columns represent features (technical indicators, market metrics, etc.) and the target variable. Acknowledgments This dataset is synthetically generated and is intended for research and educational purposes. It is not based on real market data and should not be used for actual trading.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of the US stock market retreat from record highs driven by persistent inflation data and losses in big tech stocks, despite indexes posting strong monthly gains.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan's main stock market index, the JP225, rose to 49553 points on December 2, 2025, gaining 0.51% from the previous session. Over the past month, the index has declined 3.78%, though it remains 26.25% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset combines historical U.S. economic and financial indicators, spanning the last 50 years, to facilitate time series analysis and uncover patterns in macroeconomic trends. It is designed for exploring relationships between interest rates, inflation, economic growth, stock market performance, and industrial production.
Interest Rate (Interest_Rate):
Inflation (Inflation):
GDP (GDP):
Unemployment Rate (Unemployment):
Stock Market Performance (S&P500):
Industrial Production (Ind_Prod):
Interest_Rate: Monthly Federal Funds Rate (%) Inflation: CPI (All Urban Consumers, Index) GDP: Real GDP (Billions of Chained 2012 Dollars) Unemployment: Unemployment Rate (%) Ind_Prod: Industrial Production Index (2017=100) S&P500: Monthly Average of S&P 500 Adjusted Close Prices This project explores the interconnected dynamics of key macroeconomic indicators and financial market trends over the past 50 years, leveraging data from the Federal Reserve Economic Data (FRED) and Yahoo Finance. The dataset integrates critical variables such as the Federal Funds Rate, Inflation (CPI), Real GDP, Unemployment Rate, Industrial Production, and the S&P 500 Index, providing a holistic view of the U.S. economy and financial markets.
The analysis focuses on uncovering relationships between these variables through time-series visualization, correlation analysis, and trend decomposition. Key findings are included in the Insights section. This project serves as a robust resource for understanding long-term economic trends, policy impacts, and market behavior. It is particularly valuable for students, researchers, policymakers, and financial analysts seeking to connect macroeconomic theory with real-world data.
https://github.com/user-attachments/assets/1b40e0ca-7d2e-4fbc-8cfd-df3f09e4fdb8">
To ensure sufficient power, the dataset covers last 50 years of monthly data i.e., around 600 entries.
https:/...
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Producer Price Index by Industry: Investment Banking and Securities Intermediation: Brokerage Services, Equities and ETFs (PCU523120523120101) from Dec 1999 to Aug 2025 about ETF, brokers, stocks, equity, stock market, securities, services, PPI, industry, inflation, price index, indexes, price, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This project studies equity returns in the Madrid Stock Exchange and their connections with the macroeconomy from the emergence of a stock market around 1900 to its “big bang” at the turn of the 21st century. Using high-quality data from primary sources and the methodology of the modern IBEX35 (published since 1987), we constructed an original index, the H-IBEX, for the period 1900-1987. With 120 years of monthly data, we empirically test the ability of stock prices to predict real economic activity, provide a detailed chronology of market cycles and analyze their time-varying characteristics across stages of market development and macroeconomic regimes. We also assess the role of Spanish equities as an inflation hedge and compare their long-run investment performance in an international perspective. Our data confirm that the Civil War (1936-39) had only a moderately negative impact on equity wealth compared to other economic disasters of the 20th century. In the long run Spanish equities underperformed most European markets due to a massive destruction of financial wealth in the stagflation of the 1970s-80 and the transition to an open economy after decades of protectionism. This was the true “rare disaster” suffered by Spanish investors in the 20th century.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SENSEX Index (Annual Closing Value) – Benchmark index of the Bombay Stock Exchange (BSE)
GDP Growth (%) – Annual real GDP growth rates (constant prices)
Inflation Rate (%) – Annual consumer price index (CPI)-based inflation
Exchange Rate (INR/USD) – End-of-year nominal exchange rate
Market Capitalization (INR billion) – Total BSE market value
Trading Volume (Million Shares) – Aggregate trading activity per year
All data have been sourced from official publications including the Reserve Bank of India (RBI), BSE archives, International Monetary Fund (IMF), and World Bank.
The dataset is structured in wide format, with each row representing a calendar year from 1980 to 2024 and each column representing one variable.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is designed to support research and model development in financial market forecasting. It consists of daily stock market data for multiple companies, enriched with macroeconomic indicators and simulated market stress events to reflect real-world volatility.
Key features include:
Stock price details (Open, High, Low, Close) and Trading Volume
Macroeconomic indicators such as GDP growth rate, inflation rate, interest rate, and unemployment rate
A Market Stress Level (normalized between 0 and 1) indicating systemic volatility
A binary Event Flag to simulate major financial shocks or critical economic events
Data spans across multiple tickers (e.g., AAPL, GOOGL, TSLA) for 500+ trading days
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains historical stock price data for Tesla, Inc. (TSLA) starting from its IPO date, June 29, 2010, to January 1, 2025. The dataset includes daily records of Tesla's stock performance on the NASDAQ stock exchange. It is ideal for time-series analysis, stock price prediction, and understanding the long-term performance of Tesla in the stock market.
The dataset consists of the following columns:
Use Cases of Tesla Stock Historical Data
Time-Series Analysis
Stock Price Prediction
Investment Strategy Evaluation
Market Sentiment Analysis
Portfolio Diversification
Risk Management
Economic and Market Studies
Stock Splits and Adjustments Analysis
Educational Purposes
Correlation with Sector Trends
Data Visualization and Dashboarding
A/B Testing for Financial Applications
Facebook
TwitterInflation is generally defined as the continued increase in the average prices of goods and services in a given region. Following the extremely high global inflation experienced in the 1980s and 1990s, global inflation has been relatively stable since the turn of the millennium, usually hovering between three and five percent per year. There was a sharp increase in 2008 due to the global financial crisis now known as the Great Recession, but inflation was fairly stable throughout the 2010s, before the current inflation crisis began in 2021. Recent years Despite the economic impact of the coronavirus pandemic, the global inflation rate fell to 3.26 percent in the pandemic's first year, before rising to 4.66 percent in 2021. This increase came as the impact of supply chain delays began to take more of an effect on consumer prices, before the Russia-Ukraine war exacerbated this further. A series of compounding issues such as rising energy and food prices, fiscal instability in the wake of the pandemic, and consumer insecurity have created a new global recession, and global inflation in 2024 is estimated to have reached 5.76 percent. This is the highest annual increase in inflation since 1996. Venezuela Venezuela is the country with the highest individual inflation rate in the world, forecast at around 200 percent in 2022. While this is figure is over 100 times larger than the global average in most years, it actually marks a decrease in Venezuela's inflation rate, which had peaked at over 65,000 percent in 2018. Between 2016 and 2021, Venezuela experienced hyperinflation due to the government's excessive spending and printing of money in an attempt to curve its already-high inflation rate, and the wave of migrants that left the country resulted in one of the largest refugee crises in recent years. In addition to its economic problems, political instability and foreign sanctions pose further long-term problems for Venezuela. While hyperinflation may be coming to an end, it remains to be seen how much of an impact this will have on the economy, how living standards will change, and how many refugees may return in the coming years.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Inflation Expectations in Czech Republic increased to 2.30 percent in the third quarter of 2025 from 2.10 percent in the second quarter of 2025. This dataset provides - Czech Republic Inflation Expectations- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterThe aim of this investigation is, to describe the development of the German Stock Market during the inter-war period. Causes for the so called change of the stock exchange functions are analysed. The author wants to make a contribution on special aspects of the economic history of the Weimar Republic and the following NS-regime. In his investigation the researcher analyses the activities of the involved players in a historical-institutional framework. The Study’s subjectIn the year 1890 the constitution of security exchange markets and stock markets has been the object of political debate and there has been discussed similar questions according to this topic in public and in policy as today. A current question is about the possibilities to boost the functionality of the security exchange and stock markets, not least in the face of Germany’s position in the global economy. In 1896 as a result of massive political conflicts a stock exchange act has arisen that disappointed the representatives of liberal trading interests because of the restriction of the stock market system’s autonomy and the prohibition of certain forms of trade. In 1908 an amendment to the stock exchange act has been adopted by the parliament. The stock market act in this new form has had validity until today. After the years of the hyperinflation deep changes of the stock market processes has been taken place. This changes can be described as a change of function. The economic-historical study at hand deals with the description of the development of the German security exchange markets during the interwar period. Reasons of the functional changes, which means mainly the decrease in importance, are analysed. In this context the primary investigator’s analysis contributes also to specific aspects of the economic history of the Weimar Republic and the Nazi empire. Due to a lack of date the needed statistical information concerning the period of interest is not available and therefore a statistical analysis cannot meet cliometric requirements. Therefore, the study’s concept is primary a desciptive one. On the basis of the quantitative information an identification of the functional change and the definition of stages of this process is made. The researcher tries to carve out the factors which have led to the functional change particularly during the period between 1924 and 1939. In this context the annual reports of banks, reports of the Chamber of Commerce and Industry, contributions of professional journals, and documents of authorities charged with the stock exchange market, are the empirical basis for the investigation. The researcher analyzed the effects of the banking sector’s concentration-process on the stock exchange market and assessed quantitatively the functional change. On the basis of the collected time series for the period of the late 19th century until 1939 the investigator analyzed the activities at the stock markets. First, the focus on interest is on the development of investments and securities issues. Then information on the securities turnover of German capital market before 1940 are given on the basis of an estimation procedure, developed by the researcher. The sepcial conditions during the inflation between 1914 and 1923 are discussed separately and the long term effects of this hyper-inflation on the stock exchange are identified. The effects of the taxation of stock exchange market visits and the high transaction costs are discussed, too. Used sources for the investigation have been:Archives of German Public Authorities:- finance ministry of the German Reich,- imperial chancellery- Reich´s ministry of economics- reference files of the German Reichsbank- Imperial commissioner of the stock market in Berlin Official Statistics, statistics of trade associations, chambers of commerce, enterprises, the press, and scientific publications. Finally, the author made estimates and calculations. The Study’s data:Data tables are accessible via the search- and download-system HISTAT unter the Topic ‘State: Finances and Taxes’ (= Staat: Finanzen und Steuern). The Study’s data are diveded into the following parts: A. Quantitative Indicators on the Change of Functions (Quantitative Indikatoren des Funktionswandels) A.1 Structure of floatation (Struktur der Wertpapieremission ausgewählter Zeitspannen (1901-1939).)A.2 Tax revenues of exchange turnover (Börsenumsatzsteueraufkommen (1885-1939).)A.3 Vergleich des unkorrigierten mit einem fiktiv möglichen Börsenumsatzsteueraufkommen (1906-1913).A.4 Estimation of everage tax rates (Geschätzte Durchschnittssteuersätze (1884-1913).)A.5 Amount of stock companies of the German Empire (Zahl der Aktiengesellschaften im Deutschen Reich zu bestimmten Jahren (1886-1939).)A.6 Shares listed on the Berlin stock exchange at the end of the year (Die zum Jahresende an der Berliner Börse notierten Aktien (1926-1939).)A.7 Reports und Lombards der Berliner Großbanken in ...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China's main stock market index, the SHANGHAI, fell to 3898 points on December 2, 2025, losing 0.42% from the previous session. Over the past month, the index has declined 1.98%, though it remains 15.36% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from China. China Shanghai Composite Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data