100+ datasets found
  1. u

    Analysis of volatility spillovers in the stock, currency and goods market...

    • researchdata.up.ac.za
    xlsx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chevaughn van der Westhuizen; Reneé van Eyden; Goodness C. Aye (2023). Analysis of volatility spillovers in the stock, currency and goods market and the monetary policy efficiency within different uncertainty states in these markets [Dataset]. http://doi.org/10.25403/UPresearchdata.22187701.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    University of Pretoria
    Authors
    Chevaughn van der Westhuizen; Reneé van Eyden; Goodness C. Aye
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    South African monthly The FTSE/JSE All Share Index data was procured from Bloomberg and the nominal effective exchange rate (NEER) from South African Reserve Bank (SARB) database, where the data has been seasonally adjusted specifying 2015 as the base year. Volatility measures in these markets are generated through a multivaraite EGARCH model in the WinRATS software. South African monthly consumer price index (CPI) data was procured from the International Monetary Fund’s International Financial Statistics (IFS) database, where the data has been seasonally adjusted, specifying 2010 as the base year. The inflation rate is constructed by taking the year-on-year changes in the monthly CPI figures. Inflation uncertainty was generated through the GARCH model in Eviews software. The following South African macroeconomic variables were procured from the SARB: real industrial production (IP), which is used as a proxy for real GDP, real investment (I), real consumption (C), inflation (CPI), broad money (M3), the 3-month treasury bill rate (TB3) and the policy rate (R), a measure of U.S. EPU developed by Baker et al. (2016) to account for global developments available at http://www.policyuncertainty.com/us_monthly.html.

  2. w

    Dataset of books called Money and inflation : a new macroeconomic analysis

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called Money and inflation : a new macroeconomic analysis [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=Money+and+inflation+%3A+a+new+macroeconomic+analysis
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 1 row and is filtered where the book is Money and inflation : a new macroeconomic analysis. It features 7 columns including author, publication date, language, and book publisher.

  3. Global inflation rate from 2000 to 2030

    • statista.com
    • ai-chatbox.pro
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global inflation rate from 2000 to 2030 [Dataset]. https://www.statista.com/statistics/256598/global-inflation-rate-compared-to-previous-year/
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 2025
    Area covered
    Worldwide
    Description

    Inflation is generally defined as the continued increase in the average prices of goods and services in a given region. Following the extremely high global inflation experienced in the 1980s and 1990s, global inflation has been relatively stable since the turn of the millennium, usually hovering between three and five percent per year. There was a sharp increase in 2008 due to the global financial crisis now known as the Great Recession, but inflation was fairly stable throughout the 2010s, before the current inflation crisis began in 2021. Recent years Despite the economic impact of the coronavirus pandemic, the global inflation rate fell to 3.26 percent in the pandemic's first year, before rising to 4.66 percent in 2021. This increase came as the impact of supply chain delays began to take more of an effect on consumer prices, before the Russia-Ukraine war exacerbated this further. A series of compounding issues such as rising energy and food prices, fiscal instability in the wake of the pandemic, and consumer insecurity have created a new global recession, and global inflation in 2024 is estimated to have reached 5.76 percent. This is the highest annual increase in inflation since 1996. Venezuela Venezuela is the country with the highest individual inflation rate in the world, forecast at around 200 percent in 2022. While this is figure is over 100 times larger than the global average in most years, it actually marks a decrease in Venezuela's inflation rate, which had peaked at over 65,000 percent in 2018. Between 2016 and 2021, Venezuela experienced hyperinflation due to the government's excessive spending and printing of money in an attempt to curve its already-high inflation rate, and the wave of migrants that left the country resulted in one of the largest refugee crises in recent years. In addition to its economic problems, political instability and foreign sanctions pose further long-term problems for Venezuela. While hyperinflation may be coming to an end, it remains to be seen how much of an impact this will have on the economy, how living standards will change, and how many refugees may return in the coming years.

  4. U.S. annual inflation rate 1990-2023

    • ai-chatbox.pro
    • statista.com
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abigail Tierney (2025). U.S. annual inflation rate 1990-2023 [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F9230%2Fstagflation%2F%23XgboD02vawLZsmJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    May 30, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Abigail Tierney
    Area covered
    United States
    Description

    In economics, the inflation rate is a measure of the change in price of a basket of goods. The most common measure being the consumer price index. It is the percentage rate of change in price level over time, and also indicates the rate of decrease in the purchasing power of money. The annual rate of inflation for 2023, was 4.1 percent higher in the United States when compared to the previous year. More information on inflation and the consumer price index can be found on our dedicated topic page. Additionally, the monthly rate of inflation in the United States can be accessed here. Inflation and purchasing power Inflation is a key economic indicator, and gives economists and consumers alike a look at changes in prices in the wider economy. For example, if an average pair of socks costs 100 dollars one year and 105 dollars the following year, the inflation rate is five percent. This means the amount of goods an individual can purchase with a unit of currency has decreased. This concept is often referred to as purchasing power. The data presents the average rate of inflation in a year, whereas the monthly measure of inflation measures the change in prices compared with prices one year ago. For example, monthly inflation in the U.S. reached a peak in June 2022 at 9.1 percent. This means that prices were 9.1 percent higher than they were in June of 2021. The purchasing power is the extent to which a person has available funds to make purchases. The Big Mac Index has been published by The Economist since 1986 and exemplifies purchasing power on a global scale, allowing us to see note the differences between different countries currencies. Switzerland for example, has the most expensive Big Mac in the world, costing consumers 6.71 U.S. dollars as of July 2022, whereas a Big Mac cost 5.15 dollars in the United States, and 4.77 dollars in the Euro area. One of the most important tools in influencing the rate of inflation is interest rates. The Federal Reserve of the United States has the capacity to make changes to the federal interest rate . Changes to the rate of inflation are thought to be an imbalance between supply and demand. After COVID-19 related lockdowns came to an end there was a sudden increase in demand for goods and services with consumers having more funds than usual thanks to reduced spending during lockdown and government funded economic support. Additionally, supply-chain related bottlenecks also due to lockdowns around the world and the Russian invasion of Ukraine meant that there was a decrease in the supply of goods and services. By increasing the interest rate, the Federal Reserve aims to reduce spending, and thus bring demand back into balance with supply.

  5. H

    On the Explosive Nature of Hyper-Inflation Data [Dataset]

    • data.niaid.nih.gov
    zip
    Updated Nov 26, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bent Nielsen (2009). On the Explosive Nature of Hyper-Inflation Data [Dataset] [Dataset]. http://doi.org/10.7910/DVN/ABJB7H
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 26, 2009
    Dataset provided by
    University of Oxford
    Authors
    Bent Nielsen
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Yugoslavia
    Description

    Empirical analyses of Cagan’s money demand schedule for hyper-inflation have largely ignored the explosive nature of hyper-inflationary data. It is argued that this contributes to an (i) inability to model the data to the end of the hyper-inflation, and to (ii) discrepancies between “estimated” and “actual” inflation tax. Using data from the extreme Yugoslavian hyper-inflation it is shown that a linear analysis of levels of prices and money fails in addressing these issues even when the explosiveness is taken into account. The explanation is that log real money has random walk behaviour while the growth of log prices is explosive. A simple solution to these issues is found by replacing the conventional measure of inflation by the cost of holding money.

  6. U

    Inflation Data

    • dataverse-staging.rdmc.unc.edu
    • dataverse.unc.edu
    Updated Oct 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Linda Wang; Linda Wang (2022). Inflation Data [Dataset]. http://doi.org/10.15139/S3/QA4MPU
    Explore at:
    Dataset updated
    Oct 9, 2022
    Dataset provided by
    UNC Dataverse
    Authors
    Linda Wang; Linda Wang
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This is not going to be an article or Op-Ed about Michael Jordan. Since 2009 we've been in the longest bull-market in history, that's 11 years and counting. However a few metrics like the stock market P/E, the call to put ratio and of course the Shiller P/E suggest a great crash is coming in-between the levels of 1929 and the dot.com bubble. Mean reversion historically is inevitable and the Fed's printing money experiment could end in disaster for the stock market in late 2021 or 2022. You can read Jeremy Grantham's Last Dance article here. You are likely well aware of Michael Burry's predicament as well. It's easier for you just to skim through two related videos on this topic of a stock market crash. Michael Burry's Warning see this YouTube. Jeremy Grantham's Warning See this YouTube. Typically when there is a major event in the world, there is a crash and then a bear market and a recovery that takes many many months. In March, 2020 that's not what we saw since the Fed did some astonishing things that means a liquidity sloth and the risk of a major inflation event. The pandemic represented the quickest decline of at least 30% in the history of the benchmark S&P 500, but the recovery was not correlated to anything but Fed intervention. Since the pandemic clearly isn't disappearing and many sectors such as travel, business travel, tourism and supply chain disruptions appear significantly disrupted - the so-called economic recovery isn't so great. And there's this little problem at the heart of global capitalism today, the stock market just keeps going up. Crashes and corrections typically occur frequently in a normal market. But the Fed liquidity and irresponsible printing of money is creating a scenario where normal behavior isn't occurring on the markets. According to data provided by market analytics firm Yardeni Research, the benchmark index has undergone 38 declines of at least 10% since the beginning of 1950. Since March, 2020 we've barely seen a down month. September, 2020 was flat-ish. The S&P 500 has more than doubled since those lows. Look at the angle of the curve: The S&P 500 was 735 at the low in 2009, so in this bull market alone it has gone up 6x in valuation. That's not a normal cycle and it could mean we are due for an epic correction. I have to agree with the analysts who claim that the long, long bull market since 2009 has finally matured into a fully-fledged epic bubble. There is a complacency, buy-the dip frenzy and general meme environment to what BigTech can do in such an environment. The weight of Apple, Amazon, Alphabet, Microsoft, Facebook, Nvidia and Tesla together in the S&P and Nasdaq is approach a ridiculous weighting. When these stocks are seen both as growth, value and companies with unbeatable moats the entire dynamics of the stock market begin to break down. Check out FANG during the pandemic. BigTech is Seen as Bullet-Proof me valuations and a hysterical speculative behavior leads to even higher highs, even as 2020 offered many younger people an on-ramp into investing for the first time. Some analysts at JP Morgan are even saying that until retail investors stop charging into stocks, markets probably don’t have too much to worry about. Hedge funds with payment for order flows can predict exactly how these retail investors are behaving and monetize them. PFOF might even have to be banned by the SEC. The risk-on market theoretically just keeps going up until the Fed raises interest rates, which could be in 2023! For some context, we're more than 1.4 years removed from the bear-market bottom of the coronavirus crash and haven't had even a 5% correction in nine months. This is the most over-priced the market has likely ever been. At the night of the dot-com bubble the S&P 500 was only 1,400. Today it is 4,500, not so many years after. Clearly something is not quite right if you look at history and the P/E ratios. A market pumped with liquidity produces higher earnings with historically low interest rates, it's an environment where dangerous things can occur. In late 1997, as the S&P 500 passed its previous 1929 peak of 21x earnings, that seemed like a lot, but nothing compared to today. For some context, the S&P 500 Shiller P/E closed last week at 38.58, which is nearly a two-decade high. It's also well over double the average Shiller P/E of 16.84, dating back 151 years. So the stock market is likely around 2x over-valued. Try to think rationally about what this means for valuations today and your favorite stock prices, what should they be in historical terms? The S&P 500 is up 31% in the past year. It will likely hit 5,000 before a correction given the amount of added liquidity to the system and the QE the Fed is using that's like a huge abuse of MMT, or Modern Monetary Theory. This has also lent to bubbles in the housing market, crypto and even commodities like Gold with long-term global GDP meeting many headwinds in the years ahead due to a...

  7. U.S. monthly inflation rate 2025

    • statista.com
    • ai-chatbox.pro
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. monthly inflation rate 2025 [Dataset]. https://www.statista.com/statistics/273418/unadjusted-monthly-inflation-rate-in-the-us/
    Explore at:
    Dataset updated
    Mar 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2021 - Jan 2025
    Area covered
    United States
    Description

    In January 2025, prices had increased by three percent compared to January 2024 according to the 12-month percentage change in the consumer price index — the monthly inflation rate for goods and services in the United States. The data represents U.S. city averages. In economics, the inflation rate is a measure of the change in price level over time. The rate of decrease in the purchasing power of money is approximately equal. A projection of the annual U.S. inflation rate can be accessed here and the actual annual inflation rate since 1990 can be accessed here. InflationOne of the most important economic indicators is the development of the Consumer Price Index in a country. The change in this price level of goods and services is defined as the rate of inflation. The inflationary situation in the United States had been relatively severe in 2022 due to global events relating to COVID-19, supply chain restrains, and the Russian invasion of Ukraine. More information on U.S. inflation may be found on our dedicated topic page. The annual inflation rate in the United States has increased from 3.2 percent in 2011 to 8.3 percent in 2022. This means that the purchasing power of the U.S. dollar has weakened in recent years. The purchasing power is the extent to which a person has available funds to make purchases. According to the data published by the International Monetary Fund, the U.S. Consumer Price Index (CPI) was about 258.84 in 2020 and is forecasted to grow up to 325.6 by 2027, compared to the base period from 1982 to 1984. The monthly percentage change in the Consumer Price Index (CPI) for urban consumers in the United States was 0.1 percent in March 2023 compared to the previous month. In 2022, countries all around the world are experienced high levels of inflation. Although Brazil already had an inflation rate of 8.3 percent in 2021, compared to the previous year, while the inflation rate in China stood at 0.85 percent.

  8. U.S. projected annual inflation rate 2010-2029

    • statista.com
    Updated Aug 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. projected annual inflation rate 2010-2029 [Dataset]. https://www.statista.com/statistics/244983/projected-inflation-rate-in-the-united-states/
    Explore at:
    Dataset updated
    Aug 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The inflation rate in the United States is expected to decrease to 2.1 percent by 2029. 2022 saw a year of exceptionally high inflation, reaching eight percent for the year. The data represents U.S. city averages. The base period was 1982-84. In economics, the inflation rate is a measurement of inflation, the rate of increase of a price index (in this case: consumer price index). It is the percentage rate of change in prices level over time. The rate of decrease in the purchasing power of money is approximately equal. According to the forecast, prices will increase by 2.9 percent in 2024. The annual inflation rate for previous years can be found here and the consumer price index for all urban consumers here. The monthly inflation rate for the United States can also be accessed here. Inflation in the U.S.Inflation is a term used to describe a general rise in the price of goods and services in an economy over a given period of time. Inflation in the United States is calculated using the consumer price index (CPI). The consumer price index is a measure of change in the price level of a preselected market basket of consumer goods and services purchased by households. This forecast of U.S. inflation was prepared by the International Monetary Fund. They project that inflation will stay higher than average throughout 2023, followed by a decrease to around roughly two percent annual rise in the general level of prices until 2028. Considering the annual inflation rate in the United States in 2021, a two percent inflation rate is a very moderate projection. The 2022 spike in inflation in the United States and worldwide is due to a variety of factors that have put constraints on various aspects of the economy. These factors include COVID-19 pandemic spending and supply-chain constraints, disruptions due to the war in Ukraine, and pandemic related changes in the labor force. Although the moderate inflation of prices between two and three percent is considered normal in a modern economy, countries’ central banks try to prevent severe inflation and deflation to keep the growth of prices to a minimum. Severe inflation is considered dangerous to a country’s economy because it can rapidly diminish the population’s purchasing power and thus damage the GDP .

  9. É

    Inflation, annual around the world | TheGlobalEconomy.com

    • fr.theglobaleconomy.com
    csv, excel, xml
    Updated Mar 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2024). Inflation, annual around the world | TheGlobalEconomy.com [Dataset]. fr.theglobaleconomy.com/rankings/inflation_annual/
    Explore at:
    csv, excel, xmlAvailable download formats
    Dataset updated
    Mar 29, 2024
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Monde
    Description

    Inflation in the table below is defined as the percent change in the CPI from the same month last year. The first column of numbers shows the latest value available from the national authorities and the next two columns show the levels of annual inflation three months and one year prior to the latest release. The data are updated daily. Over long stretches of time - typically years - inflation is a byproduct of the expansion of money supply. In the short run the inflation rate fluctuates with economic growth as recessions slow down the increase in prices and rapid output growth accelerates it. Shits in exchange rates, commodity prices, and natural phenomena like droughts also have an impact. Over time, however, these factors have only a transitory effect and the only variable that matters is money supply growth. The control of inflation is delegated to central banks that typically try to balance between relatively low inflation and low unemployment. For more, you can read our articles about optimal inflation and the causes of inflation in the short run and the long run.

  10. f

    Description of aggregate variables (Frequency: Quarterly).

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tito Belchior Silva Moreira; Benjamin Miranda Tabak; Mario Jorge Mendonça; Adolfo Sachsida (2023). Description of aggregate variables (Frequency: Quarterly). [Dataset]. http://doi.org/10.1371/journal.pone.0145710.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Tito Belchior Silva Moreira; Benjamin Miranda Tabak; Mario Jorge Mendonça; Adolfo Sachsida
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description of aggregate variables (Frequency: Quarterly).

  11. m

    Impact of monetary policy instruments on the Colombian economy: An analysis...

    • data.mendeley.com
    Updated Oct 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Edward Enrique Escobar-Quiñonez (2024). Impact of monetary policy instruments on the Colombian economy: An analysis of the classical dichotomy and monetary neutrality [Dataset]. http://doi.org/10.17632/rr4h8m666t.2
    Explore at:
    Dataset updated
    Oct 9, 2024
    Authors
    Edward Enrique Escobar-Quiñonez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Colombia
    Description

    This dataset supports the research exploring the impact of monetary policy instruments on the Colombian economy, focusing on the classical dichotomy and monetary neutrality. The analysis delves into how monetary policy, including instruments such as interest rates and money supply, influences both nominal and real variables in the economy. It also highlights the relationship between monetary policy and economic stability, particularly how central banks manage inflation and economic growth. Key sections explore the separation between nominal and real variables as explained by the classical dichotomy, and the principle of monetary neutrality, which argues that changes in money supply affect nominal variables without impacting real economic factors.

    The dataset is structured around a combination of theoretical insights and simulations that analyze the effectiveness of monetary neutrality in the Colombian context, given both domestic and international economic challenges such as the war in Ukraine and agricultural sector disruptions. Through simulations, the dataset demonstrates the effects of monetary expansion on variables like inflation, production, and employment, providing a framework for understanding current economic trends and proposing solutions to socio-economic challenges in Colombia.

  12. T

    United States Money Supply M0

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Money Supply M0 [Dataset]. https://tradingeconomics.com/united-states/money-supply-m0
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1959 - May 31, 2025
    Area covered
    United States
    Description

    Money Supply M0 in the United States decreased to 5648600 USD Million in May from 5732900 USD Million in April of 2025. This dataset provides - United States Money Supply M0 - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  13. k

    Does S&P 500 beat inflation? (Forecast)

    • kappasignal.com
    Updated Apr 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Does S&P 500 beat inflation? (Forecast) [Dataset]. https://www.kappasignal.com/2023/04/does-s-500-beat-inflation.html
    Explore at:
    Dataset updated
    Apr 18, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Does S&P 500 beat inflation?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. T

    Brazil Inflation Rate

    • tradingeconomics.com
    • ru.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Brazil Inflation Rate [Dataset]. https://tradingeconomics.com/brazil/inflation-cpi
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1980 - Jun 30, 2025
    Area covered
    Brazil
    Description

    Inflation Rate in Brazil increased to 5.35 percent in June from 5.32 percent in May of 2025. This dataset provides - Brazil Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  15. Inflation: Friend or Foe to the Stock Market? (Forecast)

    • kappasignal.com
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Inflation: Friend or Foe to the Stock Market? (Forecast) [Dataset]. https://www.kappasignal.com/2023/06/inflation-friend-or-foe-to-stock-market.html
    Explore at:
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Inflation: Friend or Foe to the Stock Market?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. Inflation on the Rise: What Does This Mean for You? (Forecast)

    • kappasignal.com
    Updated May 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Inflation on the Rise: What Does This Mean for You? (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/inflation-on-rise-what-does-this-mean.html
    Explore at:
    Dataset updated
    May 27, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Inflation on the Rise: What Does This Mean for You?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  17. m

    Inflation Targeting Dataset: Inflation Targets, Bands, and Track Records

    • data.mendeley.com
    Updated Apr 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhongxia Zhang (2025). Inflation Targeting Dataset: Inflation Targets, Bands, and Track Records [Dataset]. http://doi.org/10.17632/g9m7rnvtw7.1
    Explore at:
    Dataset updated
    Apr 14, 2025
    Authors
    Zhongxia Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This panel dataset contains quarterly series on inflation targets, bands, and track records for 41 inflation targeting countries from 1990 to 2024. Data on inflation targets and bands are collected through each central bank’s historical documents and rules-based track record measures are calculated by the author to assess actual inflation outcomes with respect to the central banks’ stated policy objectives. The dataset supports research work in Zhang (2025), Zhang and Wang (2022), and Zhang (2021). Please cite the papers when using the data.

    Z. Zhang, Does inflation targeting track record matter for asset prices? Evidence from stock, bond, and foreign exchange markets, Journal of International Financial Markets, Institutions and Money, Volume 101, 2025, 102141. Z. Zhang, S. Wang, Do actions speak louder than words? Assessing the effects of inflation targeting track records on macroeconomic performance, 2022, IMF Working Papers 2022/227.
    Z. Zhang, Stock returns and inflation redux: An explanation from monetary policy in advanced and emerging markets, 2021, IMF Working Papers 2021/219.

  18. Do Wars Fuel Inflation? A Statistical Exploration (Forecast)

    • kappasignal.com
    Updated Dec 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Do Wars Fuel Inflation? A Statistical Exploration (Forecast) [Dataset]. https://www.kappasignal.com/2023/12/do-wars-fuel-inflation-statistical.html
    Explore at:
    Dataset updated
    Dec 18, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Do Wars Fuel Inflation? A Statistical Exploration

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  19. T

    India Inflation Rate

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). India Inflation Rate [Dataset]. https://tradingeconomics.com/india/inflation-cpi
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Jun 12, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 2012 - May 31, 2025
    Area covered
    India
    Description

    Inflation Rate in India decreased to 2.82 percent in May from 3.16 percent in April of 2025. This dataset provides - India Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  20. f

    Data from: Exchange Rate, Monetary, and Inflation Targets

    • scielo.figshare.com
    jpeg
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HELDER FERREIRA DE MENDONÇA (2023). Exchange Rate, Monetary, and Inflation Targets [Dataset]. http://doi.org/10.6084/m9.figshare.14319521.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    SciELO journals
    Authors
    HELDER FERREIRA DE MENDONÇA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ABSTRACT Since the beginning of the Quantitative Theory of Money by David Hume, the relation between money and price level has been analyzed by monetary economists. Nowadays the search for price stability has induced the policymakers to adopt one of three monetary regimes: fixed exchange rate, monetary targeting, or inflation targeting. The present paper makes a comparative analysis among these possibilities highlighting the advantages and disadvantages that belong to each monetary regime.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Chevaughn van der Westhuizen; Reneé van Eyden; Goodness C. Aye (2023). Analysis of volatility spillovers in the stock, currency and goods market and the monetary policy efficiency within different uncertainty states in these markets [Dataset]. http://doi.org/10.25403/UPresearchdata.22187701.v1

Analysis of volatility spillovers in the stock, currency and goods market and the monetary policy efficiency within different uncertainty states in these markets

Related Article
Explore at:
xlsxAvailable download formats
Dataset updated
May 31, 2023
Dataset provided by
University of Pretoria
Authors
Chevaughn van der Westhuizen; Reneé van Eyden; Goodness C. Aye
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

South African monthly The FTSE/JSE All Share Index data was procured from Bloomberg and the nominal effective exchange rate (NEER) from South African Reserve Bank (SARB) database, where the data has been seasonally adjusted specifying 2015 as the base year. Volatility measures in these markets are generated through a multivaraite EGARCH model in the WinRATS software. South African monthly consumer price index (CPI) data was procured from the International Monetary Fund’s International Financial Statistics (IFS) database, where the data has been seasonally adjusted, specifying 2010 as the base year. The inflation rate is constructed by taking the year-on-year changes in the monthly CPI figures. Inflation uncertainty was generated through the GARCH model in Eviews software. The following South African macroeconomic variables were procured from the SARB: real industrial production (IP), which is used as a proxy for real GDP, real investment (I), real consumption (C), inflation (CPI), broad money (M3), the 3-month treasury bill rate (TB3) and the policy rate (R), a measure of U.S. EPU developed by Baker et al. (2016) to account for global developments available at http://www.policyuncertainty.com/us_monthly.html.

Search
Clear search
Close search
Google apps
Main menu