100+ datasets found
  1. Inflation: Friend or Foe to the Stock Market? (Forecast)

    • kappasignal.com
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Inflation: Friend or Foe to the Stock Market? (Forecast) [Dataset]. https://www.kappasignal.com/2023/06/inflation-friend-or-foe-to-stock-market.html
    Explore at:
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Inflation: Friend or Foe to the Stock Market?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  2. Stock Market Dataset for Financial Analysis

    • kaggle.com
    zip
    Updated Feb 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WARNER (2025). Stock Market Dataset for Financial Analysis [Dataset]. https://www.kaggle.com/datasets/s3programmer/stock-market-dataset-for-financial-analysis
    Explore at:
    zip(6816930 bytes)Available download formats
    Dataset updated
    Feb 14, 2025
    Authors
    WARNER
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This stock market dataset is designed for financial analysis and predictive modeling. It includes historical stock prices, technical indicators, macroeconomic factors, and sentiment scores to help in developing and testing machine learning models for stock trend prediction.

    Dataset Features: Column Description Stock Random stock ticker (AAPL, GOOG, etc.) Date Random business date Open Open price High High price Low Low price Close Close price Volume Trading volume SMA_10 10-day Simple Moving Average RSI Relative Strength Index (10-90 range) MACD MACD indicator (-5 to 5) Bollinger_Upper Upper Bollinger Band Bollinger_Lower Lower Bollinger Band GDP_Growth Random GDP growth rate (2.5% to 3.5%) Inflation_Rate Inflation rate (1.5% to 3.0%) Interest_Rate Interest rate (0.5% to 5.0%) Sentiment_Score Random sentiment score (-1 to 1) Next_Close Next day's closing price (for regression) Target Binary classification (1: Price Increase, 0: Price Decrease)

    Key Features: Stock Prices: Open, High, Low, Close, and Volume data. Technical Indicators: Simple Moving Average (SMA), Relative Strength Index (RSI), MACD, and Bollinger Bands. Macroeconomic Factors: Simulated GDP growth, inflation rate, and interest rates. Sentiment Scores: Randomized sentiment values between -1 and 1 to simulate market sentiment. Target Variables: Next-day close price (for regression) and price movement direction (for classification).

  3. S&P 500: A Bull or a Bear? (Forecast)

    • kappasignal.com
    Updated Apr 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). S&P 500: A Bull or a Bear? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/s-500-bull-or-bear.html
    Explore at:
    Dataset updated
    Apr 8, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    S&P 500: A Bull or a Bear?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  4. Stock Market Dataset

    • kaggle.com
    zip
    Updated Jan 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ziya (2025). Stock Market Dataset [Dataset]. https://www.kaggle.com/datasets/ziya07/stock-market-dataset
    Explore at:
    zip(1075471 bytes)Available download formats
    Dataset updated
    Jan 25, 2025
    Authors
    Ziya
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The "Stock Market Dataset for AI-Driven Prediction and Trading Strategy Optimization" is designed to simulate real-world stock market data for training and evaluating machine learning models. This dataset includes a combination of technical indicators, market metrics, sentiment scores, and macroeconomic factors, providing a comprehensive foundation for developing and testing AI models for stock price prediction and trading strategy optimization.

    Key Features Market Metrics:

    Open, High, Low, Close Prices: Daily stock price movement. Volume: Represents the trading activity during the day. Technical Indicators:

    RSI (Relative Strength Index): A momentum oscillator to measure the speed and change of price movements. MACD (Moving Average Convergence Divergence): An indicator to reveal changes in strength, direction, momentum, and duration of a trend. Bollinger Bands: Upper and lower bands around a stock price to measure volatility. Sentiment Analysis:

    Sentiment Score: Simulated sentiment derived from financial news and social media, ranging from -1 (negative) to 1 (positive). Macroeconomic Factors:

    GDP Growth: Indicates the overall health and growth of the economy. Inflation Rate: Reflects changes in purchasing power and economic stability. Target Variable:

    Buy/Sell Signal: Binary classification (1 = Buy, 0 = Sell) based on price movement thresholds, simulating actionable trading decisions. Use Cases AI Model Training: Ideal for building stock prediction models using LSTM, Gradient Boosting, Random Forest, etc. Trading Strategy Optimization: Enables testing of trading algorithms and strategies in a simulated environment. Sentiment Analysis Research: Useful for understanding how sentiment influences stock movements. Feature Engineering and Selection: Provides a diverse set of features for experimentation with advanced techniques like PCA and LDA. Dataset Highlights Synthetic Yet Realistic: Carefully designed to mimic real-world financial data trends and relationships. Comprehensive Coverage: Includes key indicators and metrics used by traders and analysts. Scalable: Suitable for use in both small-scale academic projects and larger AI-driven trading platforms. Accessible for All Levels: The intuitive structure ensures that even beginners can utilize this dataset for financial machine learning applications. File Format The dataset is provided in CSV format, where:

    Rows represent individual trading days. Columns represent features (technical indicators, market metrics, etc.) and the target variable. Acknowledgments This dataset is synthetically generated and is intended for research and educational purposes. It is not based on real market data and should not be used for actual trading.

  5. Financial Market Forecasting Dataset

    • kaggle.com
    zip
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ziya (2025). Financial Market Forecasting Dataset [Dataset]. https://www.kaggle.com/datasets/ziya07/financial-market-forecasting-dataset
    Explore at:
    zip(41874 bytes)Available download formats
    Dataset updated
    Jun 25, 2025
    Authors
    Ziya
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset is designed to support research and model development in financial market forecasting. It consists of daily stock market data for multiple companies, enriched with macroeconomic indicators and simulated market stress events to reflect real-world volatility.

    Key features include:

    Stock price details (Open, High, Low, Close) and Trading Volume

    Macroeconomic indicators such as GDP growth rate, inflation rate, interest rate, and unemployment rate

    A Market Stress Level (normalized between 0 and 1) indicating systemic volatility

    A binary Event Flag to simulate major financial shocks or critical economic events

    Data spans across multiple tickers (e.g., AAPL, GOOGL, TSLA) for 500+ trading days

  6. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  7. m

    India Stock Market Dataset (1980–2024)

    • data.mendeley.com
    Updated Jul 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    marco BONELLI (2025). India Stock Market Dataset (1980–2024) [Dataset]. http://doi.org/10.17632/j6dm485hmy.1
    Explore at:
    Dataset updated
    Jul 25, 2025
    Authors
    marco BONELLI
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    SENSEX Index (Annual Closing Value) – Benchmark index of the Bombay Stock Exchange (BSE)

    GDP Growth (%) – Annual real GDP growth rates (constant prices)

    Inflation Rate (%) – Annual consumer price index (CPI)-based inflation

    Exchange Rate (INR/USD) – End-of-year nominal exchange rate

    Market Capitalization (INR billion) – Total BSE market value

    Trading Volume (Million Shares) – Aggregate trading activity per year

    All data have been sourced from official publications including the Reserve Bank of India (RBI), BSE archives, International Monetary Fund (IMF), and World Bank.

    The dataset is structured in wide format, with each row representing a calendar year from 1980 to 2024 and each column representing one variable.

  8. Stock Market Pulls Back: Inflation Data Spurs Dow, S&P 500, Nasdaq Losses -...

    • indexbox.io
    doc, docx, pdf, xls +1
    Updated Oct 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndexBox Inc. (2025). Stock Market Pulls Back: Inflation Data Spurs Dow, S&P 500, Nasdaq Losses - News and Statistics - IndexBox [Dataset]. https://www.indexbox.io/blog/us-stocks-retreat-from-records-on-inflation-data-and-tech-losses/
    Explore at:
    doc, docx, pdf, xlsx, xlsAvailable download formats
    Dataset updated
    Oct 1, 2025
    Dataset provided by
    IndexBox
    Authors
    IndexBox Inc.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2012 - Oct 1, 2025
    Area covered
    United States
    Variables measured
    Market Size, Market Share, Tariff Rates, Average Price, Export Volume, Import Volume, Demand Elasticity, Market Growth Rate, Market Segmentation, Volume of Production, and 4 more
    Description

    Analysis of the US stock market retreat from record highs driven by persistent inflation data and losses in big tech stocks, despite indexes posting strong monthly gains.

  9. T

    India Inflation Rate

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). India Inflation Rate [Dataset]. https://tradingeconomics.com/india/inflation-cpi
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Nov 12, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 2012 - Oct 31, 2025
    Area covered
    India
    Description

    Inflation Rate in India decreased to 0.25 percent in October from 1.44 percent in September of 2025. This dataset provides - India Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  10. T

    Japan Stock Market Index (JP225) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Japan Stock Market Index (JP225) Data [Dataset]. https://tradingeconomics.com/japan/stock-market
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 5, 1965 - Dec 2, 2025
    Area covered
    Japan
    Description

    Japan's main stock market index, the JP225, rose to 49553 points on December 2, 2025, gaining 0.51% from the previous session. Over the past month, the index has declined 3.78%, though it remains 26.25% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on December of 2025.

  11. US Financial Indicators - 1974 to 2024

    • kaggle.com
    zip
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abhishek Bhatnagar (2024). US Financial Indicators - 1974 to 2024 [Dataset]. https://www.kaggle.com/datasets/abhishekb7/us-financial-indicators-1974-to-2024
    Explore at:
    zip(15336 bytes)Available download formats
    Dataset updated
    Nov 25, 2024
    Authors
    Abhishek Bhatnagar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    U.S. Economic and Financial Dataset

    Dataset Description

    This dataset combines historical U.S. economic and financial indicators, spanning the last 50 years, to facilitate time series analysis and uncover patterns in macroeconomic trends. It is designed for exploring relationships between interest rates, inflation, economic growth, stock market performance, and industrial production.

    Key Features

    • Frequency: Monthly
    • Time Period: Last 50 years from Nov-24
    • Sources:
      • Federal Reserve Economic Data (FRED)
      • Yahoo Finance

    Dataset Feature Description

    1. Interest Rate (Interest_Rate):

      • The effective federal funds rate, representing the interest rate at which depository institutions trade federal funds overnight.
    2. Inflation (Inflation):

      • The Consumer Price Index for All Urban Consumers, an indicator of inflation trends.
    3. GDP (GDP):

      • Real GDP measures the inflation-adjusted value of goods and services produced in the U.S.
    4. Unemployment Rate (Unemployment):

      • The percentage of the labor force that is unemployed and actively seeking work.
    5. Stock Market Performance (S&P500):

      • Monthly average of the adjusted close price, representing stock market trends.
    6. Industrial Production (Ind_Prod):

      • A measure of real output in the industrial sector, including manufacturing, mining, and utilities.

    Dataset Statistics

    1. Total Entries: 599
    2. Columns: 6
    3. Memory usage: 37.54 kB
    4. Data types: float64

    Feature Overview

    • Columns:
      • Interest_Rate: Monthly Federal Funds Rate (%)
      • Inflation: CPI (All Urban Consumers, Index)
      • GDP: Real GDP (Billions of Chained 2012 Dollars)
      • Unemployment: Unemployment Rate (%)
      • Ind_Prod: Industrial Production Index (2017=100)
      • S&P500: Monthly Average of S&P 500 Adjusted Close Prices

    Executive Summary

    This project explores the interconnected dynamics of key macroeconomic indicators and financial market trends over the past 50 years, leveraging data from the Federal Reserve Economic Data (FRED) and Yahoo Finance. The dataset integrates critical variables such as the Federal Funds Rate, Inflation (CPI), Real GDP, Unemployment Rate, Industrial Production, and the S&P 500 Index, providing a holistic view of the U.S. economy and financial markets.

    The analysis focuses on uncovering relationships between these variables through time-series visualization, correlation analysis, and trend decomposition. Key findings are included in the Insights section. This project serves as a robust resource for understanding long-term economic trends, policy impacts, and market behavior. It is particularly valuable for students, researchers, policymakers, and financial analysts seeking to connect macroeconomic theory with real-world data.

    Potential Use Cases

    • Economic Analysis: Examine relationships between interest rates, inflation, GDP, and unemployment.
    • Stock Market Prediction: Study how macroeconomic indicators influence stock market trends.
    • Time Series Modeling: Perform ARIMA, VAR, or other models to forecast economic trends.
    • Cyclic Pattern Analysis: Identify how economic shocks and recoveries impact key indicators.

    Snap of Power Analysis

    imagehttps://github.com/user-attachments/assets/1b40e0ca-7d2e-4fbc-8cfd-df3f09e4fdb8">

    To ensure sufficient power, the dataset covers last 50 years of monthly data i.e., around 600 entries.

    Key Insights derived through EDA, time-series visualization, correlation analysis, and trend decomposition

    • Interest Rate and Inflation Dynamics: The interest Rate and inflation exhibit an inverse relationship, especially during periods of aggressive monetary tightening by the Federal Reserve.
    • Economic Growth and Market Performance: GDP growth and the S&P 500 Index show a positive correlation, reflecting how market performance often aligns with overall economic health.
    • Labor Market and Industrial Output: Unemployment and industrial production demonstrate a strong inverse relationship. Higher industrial output is typically associated with lower unemployment
    • Market Behavior During Economic Shocks: The S&P 500 experienced sharp declines during significant crises, such as the 2008 financial crash and the COVID-19 pandemic in 2020. These events also triggered increased unemployment and contractions in GDP, highlighting the interplay between markets and the broader economy.
    • Correlation Highlights: S&P 500 and GDP have a strong positive correlation. Interest rates negatively correlate with GDP and inflation, reflecting monetary policy impacts. Unemployment is negatively correlated with industrial production but positively correlated with interest rates.

    Link to GitHub Repo

    https:/...

  12. f

    Key South African Macro-economic variables data

    • figshare.com
    • zivahub.uct.ac.za
    xlsx
    Updated Jan 28, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alison Olivier (2019). Key South African Macro-economic variables data [Dataset]. http://doi.org/10.25375/uct.7553534.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 28, 2019
    Dataset provided by
    University of Cape Town
    Authors
    Alison Olivier
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Africa
    Description

    A monthly and quarterly data set spanning July 1995 to December 2016 of the following macro-economic variables 1. South African stock market 2. South African GDP3. United States GDP 4. South African interest rate 5. US interest rate 6. South African inflation rate 7. US inflation rate 8. South African Money Supply 9. Rand/Dollar Exchange 10. FTSE

  13. The Great Moderation: inflation and real GDP growth in the U.S. 1985-2007

    • statista.com
    Updated Nov 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). The Great Moderation: inflation and real GDP growth in the U.S. 1985-2007 [Dataset]. https://www.statista.com/statistics/1345209/great-moderation-us-inflation-real-gdp/
    Explore at:
    Dataset updated
    Nov 15, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1985 - 2007
    Area covered
    United States
    Description

    During the period beginning roughly in the mid-1980s until the Global Financial Crisis (2007-2008), the U.S. economy experienced a time of relative economic calm, with low inflation and consistent GDP growth. Compared with the turbulent economic era which had preceded it in the 1970s and the early 1980s, the lack of extreme fluctuations in the business cycle led some commentators to suggest that macroeconomic issues such as high inflation, long-term unemployment and financial crises were a thing of the past. Indeed, the President of the American Economic Association, Professor Robert Lucas, famously proclaimed in 2003 that "central problem of depression prevention has been solved, for all practical purposes". Ben Bernanke, the future chairman of the Federal Reserve during the Global Financial Crisis (GFC) and 2022 Nobel Prize in Economics recipient, coined the term 'the Great Moderation' to describe this era of newfound economic confidence. The era came to an abrupt end with the outbreak of the GFC in the Summer of 2007, as the U.S. financial system began to crash due to a downturn in the real estate market.

    Causes of the Great Moderation, and its downfall

    A number of factors have been cited as contributing to the Great Moderation including central bank monetary policies, the shift from manufacturing to services in the economy, improvements in information technology and management practices, as well as reduced energy prices. The period coincided with the term of Fed chairman Alan Greenspan (1987-2006), famous for the 'Greenspan put', a policy which meant that the Fed would proactively address downturns in the stock market using its monetary policy tools. These economic factors came to prominence at the same time as the end of the Cold War (1947-1991), with the U.S. attaining a new level of hegemony in global politics, as its main geopolitical rival, the Soviet Union, no longer existed. During the Great Moderation, the U.S. experienced a recession twice, between July 1990 and March 1991, and again from March 2001 tom November 2001, however, these relatively short recessions did not knock the U.S. off its growth path. The build up of household and corporate debt over the early 2000s eventually led to the Global Financial Crisis, as the bursting of the U.S. housing bubble in 2007 reverberated across the financial system, with a subsequent credit freeze and mass defaults.

  14. d

    Rate of return and risk of german stock investments and annuity bonds 1870...

    • da-ra.de
    Updated 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Markus Marowietz (2009). Rate of return and risk of german stock investments and annuity bonds 1870 to 1992 [Dataset]. http://doi.org/10.4232/1.8384
    Explore at:
    Dataset updated
    2009
    Dataset provided by
    da|ra
    GESIS Data Archive
    Authors
    Markus Marowietz
    Time period covered
    1870 - 1992
    Description

    Sources:

    German Central Bank (ed.), 1975: Deutsches Geld- und Bankwesen in Zahlen 1876 – 1975. (German monetary system and banking system in numbers 1876 – 1975) German Central Bank (ed.), different years: monthly reports of the German Central Bank, statistical part, interest rates German Central Bank (ed.), different years: Supplementary statistical booklets for the monthly reports of the German Central Bank 1959 – 1992, security statistics Reich Statistical Office (ed.), different years: Statistical yearbook of the German empire Statistical Office (ed.), 1985: Geld und Kredit. Index der Aktienkurse (Money and Credit. Index of share prices) – Lange Reihe; Fachserie 9, Reihe 2. Statistical Office (ed.), 1987: Entwicklung der Nahrungsmittelpreise von 1800 – 1880 in Deutschland. (Development of food prices in Germany 1800 – 1880) Statistical Office (ed.), 1987: Entwicklung der Verbraucherpreise (Development of consumer prices) seit 1881 in Deutschland. (Development of consumer prices since 1881 in Germany) Statistical Office (ed.), different years: Fachserie 17, Reihe 7, Preisindex für die Lebenshaltung (price index for costs of living) Donner, 1934: Kursbildung am Aktienmarkt; Grundlagen zur Konjunkturbeobachtung an den Effektenmärkten. (Prices on the stock market; groundwork for observation of economic cycles on the stock market) Homburger, 1905: Die Entwicklung des Zinsfusses in Deutschland von 1870 – 1903. (Development of the interest flow in Germany, 1870 – 1903) Voye, 1902: Über die Höhe der verschiedenen Zinsarten und ihre wechselseitige Abhängigkeit.(On the values of different types of interests and their interdependence).

  15. F

    Stock Market Capitalization to GDP for United States

    • fred.stlouisfed.org
    json
    Updated May 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Stock Market Capitalization to GDP for United States [Dataset]. https://fred.stlouisfed.org/series/DDDM01USA156NWDB
    Explore at:
    jsonAvailable download formats
    Dataset updated
    May 7, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Stock Market Capitalization to GDP for United States (DDDM01USA156NWDB) from 1975 to 2020 about market cap, stock market, capital, GDP, and USA.

  16. Global Economic Indicators Dataset

    • kaggle.com
    zip
    Updated Sep 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heidar Mirhaji Sadati (2024). Global Economic Indicators Dataset [Dataset]. https://www.kaggle.com/datasets/heidarmirhajisadati/global-economic-indicators-dataset-2010-2023/suggestions
    Explore at:
    zip(8930 bytes)Available download formats
    Dataset updated
    Sep 14, 2024
    Authors
    Heidar Mirhaji Sadati
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Description:

    This dataset provides key economic indicators from various countries between 2010 and 2023. The dataset includes monthly data on inflation rates, GDP growth rates, unemployment rates, interest rates, and stock market index values. The data has been sourced from reputable global financial institutions and is suitable for economic analysis, machine learning models, and forecasting economic trends.

    Data Sources:

    The data has been generated to simulate real-world economic conditions, mimicking information from trusted sources like: - World Bank for GDP growth and inflation data - International Monetary Fund (IMF) for macroeconomic data - OECD for labor market statistics - National Stock Exchanges for stock market index values

    Columns:

    1. Date: The specific date (in Year/Month/Day format) representing when the data was collected.
    2. Country: The country the data pertains to (e.g., USA, Germany, Japan).
    3. Inflation Rate (%): The rate of inflation for that country, showing how fast prices for goods and services are increasing.
    4. GDP Growth Rate (%): The percentage growth of the country’s Gross Domestic Product (GDP), indicating economic expansion or contraction.
    5. Unemployment Rate (%): The percentage of the working-age population that is unemployed.
    6. Interest Rate (%): The central bank's interest rate, used to control inflation and influence the economy.
    7. Stock Index Value: The value of the country’s main stock market index, reflecting the performance of the stock market.

    Potential Uses: - Economic Analysis: Researchers and analysts can use this dataset to study trends in inflation, GDP growth, unemployment, and other economic factors. - Machine Learning: This dataset can be used to train models for predicting economic trends or market performance. Financial Forecasting: Investors and economists can leverage this data for forecasting market movements based on economic conditions. - Comparative Studies: The dataset allows comparisons across countries and regions, offering insights into global economic performance.

  17. c

    The global stock market size is USD 3645.2 million in 2024.

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, The global stock market size is USD 3645.2 million in 2024. [Dataset]. https://www.cognitivemarketresearch.com/stock-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    The global stock market demonstrates a robust growth trajectory, poised for significant expansion in the coming decade. Projections indicate the market will surge from approximately $9.55 trillion in 2021 to over $23.85 trillion by 2033, expanding at a compound annual growth rate (CAGR) of 7.926%. This growth is underpinned by strong corporate earnings, technological advancements in trading, and increasing participation from retail investors. While North America currently dominates in terms of market size, the Asia-Pacific region is emerging as the fastest-growing hub, driven by the burgeoning economies of India and China. Factors such as monetary policies, geopolitical stability, and regulatory environments will continue to be pivotal in shaping regional market dynamics and overall global performance.

    Key strategic insights from our comprehensive analysis reveal:

    The Asia-Pacific region is the primary growth engine for the global stock market, exhibiting the highest CAGR of 9.112%, with nations like India and China leading this rapid expansion.
    North America, particularly the United States, will maintain its position as the largest market by value, commanding a significant share of the global total, despite a slightly more moderate growth rate compared to APAC.
    There is a consistent and broad-based growth trend across all major global regions, indicating widespread investor confidence and economic recovery, though the pace of expansion varies, highlighting diverse investment opportunities and risks.
    

    Global Market Overview & Dynamics of Stock Market Analysis The global stock market is on a path of sustained and significant growth, driven by a confluence of economic, technological, and social factors. The market is forecast to expand from $9.55 trillion in 2021 to nearly $23.86 trillion by 2033. This expansion reflects growing global wealth, increased corporate profitability, and the continuous innovation in financial technologies that makes investing more accessible. However, this growth is not without its challenges, as markets must navigate through geopolitical tensions, inflationary pressures, and evolving regulatory landscapes that can introduce volatility and uncertainty.

    Global Stock Market Drivers

    Favorable Economic Conditions: Broad-based global GDP growth, coupled with supportive monetary policies from central banks in major economies, stimulates corporate investment and boosts earnings, attracting investors to equity markets.
    Technological Innovation and Accessibility: The proliferation of online trading platforms, robo-advisors, and mobile investing apps has democratized access to stock markets, leading to a surge in retail investor participation.
    Corporate Profitability and IPO Activity: Strong and resilient corporate earnings growth, along with a healthy pipeline of Initial Public Offerings (IPOs) from innovative companies, continually injects fresh capital and opportunities into the market.
    

    Global Stock Market Trends

    Rise of ESG Investing: There is a rapidly growing trend of investors integrating Environmental, Social, and Governance (ESG) criteria into their investment decisions, pushing companies to adopt more sustainable practices.
    Increased Focus on Emerging Markets: Investors are increasingly allocating capital to emerging markets, particularly in the Asia-Pacific and South American regions, in pursuit of higher growth potential compared to more mature markets.
    Growth of Passive Investing: The shift towards passive investment strategies, such as index funds and Exchange-Traded Funds (ETFs), continues to gain momentum due to their lower costs and broad market exposure.
    

    Global Stock Market Restraints

    Geopolitical Instability and Trade Disputes: International conflicts, trade wars, and political uncertainty can disrupt global supply chains, dampen investor sentiment, and lead to significant market volatility.
    Inflation and Interest Rate Hikes: Persistent inflationary pressures force central banks to raise interest rates, which increases borrowing costs for companies and can make less risky assets like bonds more attractive relative to stocks.
    Regulatory Scrutiny and Complexity: Stricter regulations on financial markets, data privacy, and corporate governance can increase compliance costs and limit certain market activities, potentially hindering growth.
    

    Strategic Recommendations for Manufacturers

    Prioritize market entry and expansion s...
    
  18. Dow Jones: average and yearly closing prices 1915-2021

    • statista.com
    Updated Jun 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Dow Jones: average and yearly closing prices 1915-2021 [Dataset]. https://www.statista.com/statistics/1316908/dow-jones-average-and-yearly-closing-prices-historical/
    Explore at:
    Dataset updated
    Jun 27, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The Dow Jones Industrial Average is (DJIA) is possibly the most well-known and commonly used stock index in the United States. It is a price-weighted index that assesses the stock prices of 30 prominent companies, whose combined prices are then divided by a regularly-updated divisor (0.15199 in February 2021), which gives the index value. The companies included are rotated in and out on a regular basis; as of mid-2022, the longest mainstay on the list is Procter & Gamble, which was added in 1932; whereas Amgen, Salesforce, and Honeywell were all added in 2020. As one of the oldest indices for stock market analysis, the impact of major events, recessions, and economic shocks or booms can be tracked and contextualized over longer periods of time.

    Due to inflation, unadjusted figures appear to be more sporadic in recent years, however the greatest fluctuations came in the earliest years of the index. In the given period, the greatest decline came in the wake of the Wall Street Crash in 1929; by 1932 average values had fallen to just one fifth of their 1929 average, from roughly 314 to 65.

  19. Annual development DAX Index 1996-2024

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual development DAX Index 1996-2024 [Dataset]. https://www.statista.com/statistics/274216/annual-dax-trends-since-1987/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Germany
    Description

    The DAX is a stock market index composed of the ** major German blue chip companies trading on the Frankfurt Stock Exchange. At the close of 2024, the DAX (Deutscher Aktienindex) closed at ********* points. This was the highest closing value of the observed period.What is the DAX index? The DAX is the most important stock index in Germany. It was introduced on July 1, 1988 and is a continuation of the Börsen-Zeitung Index, established in 1959. The DAX index is comprised of ** largest and most liquid German companies such as Deutsche Bank, Allianz or Bayer. These companies are traded on the Frankfurt Stock Exchange, which is the oldest exchange worldwide. The index can be viewed as a snapshot of the investment climate in Germany. What is not included in the DAX? Most notably, the DAX, like most indices, is not adjusted for inflation. While inflation has been relatively low in recent years, it might be useful to adjust the historic figures on the index when comparing historic data to current levels. This is particularly important for years when the index appears to increase by a few percentage points, because inflation may have increased at a more rapid rate than the stock prices.

  20. How accurate is machine learning in stock market? (TD Stock Forecast)...

    • kappasignal.com
    Updated Oct 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How accurate is machine learning in stock market? (TD Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/how-accurate-is-machine-learning-in_22.html
    Explore at:
    Dataset updated
    Oct 22, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How accurate is machine learning in stock market? (TD Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
KappaSignal (2023). Inflation: Friend or Foe to the Stock Market? (Forecast) [Dataset]. https://www.kappasignal.com/2023/06/inflation-friend-or-foe-to-stock-market.html
Organization logo

Inflation: Friend or Foe to the Stock Market? (Forecast)

Explore at:
Dataset updated
Jun 1, 2023
Dataset authored and provided by
KappaSignal
License

https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

Description

This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

Inflation: Friend or Foe to the Stock Market?

Financial data:

  • Historical daily stock prices (open, high, low, close, volume)

  • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

  • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

Machine learning features:

  • Feature engineering based on financial data and technical indicators

  • Sentiment analysis data from social media and news articles

  • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

Potential Applications:

  • Stock price prediction

  • Portfolio optimization

  • Algorithmic trading

  • Market sentiment analysis

  • Risk management

Use Cases:

  • Researchers investigating the effectiveness of machine learning in stock market prediction

  • Analysts developing quantitative trading Buy/Sell strategies

  • Individuals interested in building their own stock market prediction models

  • Students learning about machine learning and financial applications

Additional Notes:

  • The dataset may include different levels of granularity (e.g., daily, hourly)

  • Data cleaning and preprocessing are essential before model training

  • Regular updates are recommended to maintain the accuracy and relevance of the data

Search
Clear search
Close search
Google apps
Main menu