87 datasets found
  1. Cost of living index in the U.S. 2024, by state

    • statista.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cost of living index in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240947/cost-of-living-index-usa-by-state/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.

  2. T

    Norway Inflation Rate

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Norway Inflation Rate [Dataset]. https://tradingeconomics.com/norway/inflation-cpi
    Explore at:
    excel, csv, json, xmlAvailable download formats
    Dataset updated
    Jun 10, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1950 - May 31, 2025
    Area covered
    Norway
    Description

    Inflation Rate in Norway increased to 3 percent in May from 2.50 percent in April of 2025. This dataset provides - Norway Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  3. F

    Inflation, consumer prices for the United States

    • fred.stlouisfed.org
    json
    Updated Apr 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Inflation, consumer prices for the United States [Dataset]. https://fred.stlouisfed.org/series/FPCPITOTLZGUSA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Apr 16, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Inflation, consumer prices for the United States (FPCPITOTLZGUSA) from 1960 to 2024 about consumer, CPI, inflation, price index, indexes, price, and USA.

  4. T

    Japan Inflation Rate

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Japan Inflation Rate [Dataset]. https://tradingeconomics.com/japan/inflation-cpi
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1958 - May 31, 2025
    Area covered
    Japan
    Description

    Inflation Rate in Japan decreased to 3.50 percent in May from 3.60 percent in April of 2025. This dataset provides the latest reported value for - Japan Inflation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  5. T

    China Inflation Rate

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Inflation Rate [Dataset]. https://tradingeconomics.com/china/inflation-cpi
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1986 - May 31, 2025
    Area covered
    China
    Description

    Inflation Rate in China remained unchanged at -0.10 percent in May. This dataset provides - China Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  6. Consumer Price Index by geography, all-items, monthly, percentage change,...

    • www150.statcan.gc.ca
    Updated Jun 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Consumer Price Index by geography, all-items, monthly, percentage change, not seasonally adjusted, Canada, provinces, Whitehorse, Yellowknife and Iqaluit [Dataset]. http://doi.org/10.25318/1810000401-eng
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Monthly indexes and percentage changes for all components and special aggregates of the Consumer Price Index (CPI), not seasonally adjusted, for Canada, provinces, Whitehorse, Yellowknife and Iqaluit. Data are presented for the corresponding month of the previous year, the previous month and the current month. The base year for the index is 2002=100.

  7. X09: Real average weekly earnings using consumer price inflation (seasonally...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jun 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). X09: Real average weekly earnings using consumer price inflation (seasonally adjusted) [Dataset]. https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/datasets/x09realaverageweeklyearningsusingconsumerpriceinflationseasonallyadjusted
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 10, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Average weekly earnings for the whole economy, for total and regular pay, in real terms (adjusted for consumer price inflation), UK, monthly, seasonally adjusted.

  8. Consumer Price Index 2021 - West Bank and Gaza

    • pcbs.gov.ps
    Updated May 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2023). Consumer Price Index 2021 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/711
    Explore at:
    Dataset updated
    May 18, 2023
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Time period covered
    2021
    Area covered
    Gaza Strip, West Bank, Gaza, Palestine
    Description

    Abstract

    The Consumer price surveys primarily provide the following: Data on CPI in Palestine covering the West Bank, Gaza Strip and Jerusalem J1 for major and sub groups of expenditure. Statistics needed for decision-makers, planners and those who are interested in the national economy. Contribution to the preparation of quarterly and annual national accounts data.

    Consumer Prices and indices are used for a wide range of purposes, the most important of which are as follows: Adjustment of wages, government subsidies and social security benefits to compensate in part or in full for the changes in living costs. To provide an index to measure the price inflation of the entire household sector, which is used to eliminate the inflation impact of the components of the final consumption expenditure of households in national accounts and to dispose of the impact of price changes from income and national groups. Price index numbers are widely used to measure inflation rates and economic recession. Price indices are used by the public as a guide for the family with regard to its budget and its constituent items. Price indices are used to monitor changes in the prices of the goods traded in the market and the consequent position of price trends, market conditions and living costs. However, the price index does not reflect other factors affecting the cost of living, e.g. the quality and quantity of purchased goods. Therefore, it is only one of many indicators used to assess living costs. It is used as a direct method to identify the purchasing power of money, where the purchasing power of money is inversely proportional to the price index.

    Geographic coverage

    Palestine West Bank Gaza Strip Jerusalem

    Analysis unit

    The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.

    Universe

    The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A non-probability purposive sample of sources from which the prices of different goods and services are collected was updated based on the establishment census 2017, in a manner that achieves full coverage of all goods and services that fall within the Palestinian consumer system. These sources were selected based on the availability of the goods within them. It is worth mentioning that the sample of sources was selected from the main cities inside Palestine: Jenin, Tulkarm, Nablus, Qalqiliya, Ramallah, Al-Bireh, Jericho, Jerusalem, Bethlehem, Hebron, Gaza, Jabalia, Dier Al-Balah, Nusseirat, Khan Yunis and Rafah. The selection of these sources was considered to be representative of the variation that can occur in the prices collected from the various sources. The number of goods and services included in the CPI is approximately 730 commodities, whose prices were collected from 3,200 sources. (COICOP) classification is used for consumer data as recommended by the United Nations System of National Accounts (SNA-2008).

    Sampling deviation

    Not apply

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    A tablet-supported electronic form was designed for price surveys to be used by the field teams in collecting data from different governorates, with the exception of Jerusalem J1. The electronic form is supported with GIS, and GPS mapping technique that allow the field workers to locate the outlets exactly on the map and the administrative staff to manage the field remotely. The electronic questionnaire is divided into a number of screens, namely: First screen: shows the metadata for the data source, governorate name, governorate code, source code, source name, full source address, and phone number. Second screen: shows the source interview result, which is either completed, temporarily paused or permanently closed. It also shows the change activity as incomplete or rejected with the explanation for the reason of rejection. Third screen: shows the item code, item name, item unit, item price, product availability, and reason for unavailability. Fourth screen: checks the price data of the related source and verifies their validity through the auditing rules, which was designed specifically for the price programs. Fifth screen: saves and sends data through (VPN-Connection) and (WI-FI technology).

    In case of the Jerusalem J1 Governorate, a paper form has been designed to collect the price data so that the form in the top part contains the metadata of the data source and in the lower section contains the price data for the source collected. After that, the data are entered into the price program database.

    Cleaning operations

    The price survey forms were already encoded by the project management depending on the specific international statistical classification of each survey. After the researcher collected the price data and sent them electronically, the data was reviewed and audited by the project management. Achievement reports were reviewed on a daily and weekly basis. Also, the detailed price reports at data source levels were checked and reviewed on a daily basis by the project management. If there were any notes, the researcher was consulted in order to verify the data and call the owner in order to correct or confirm the information.

    At the end of the data collection process in all governorates, the data will be edited using the following process: Logical revision of prices by comparing the prices of goods and services with others from different sources and other governorates. Whenever a mistake is detected, it should be returned to the field for correction. Mathematical revision of the average prices for items in governorates and the general average in all governorates. Field revision of prices through selecting a sample of the prices collected from the items.

    Response rate

    Not apply

    Sampling error estimates

    The findings of the survey may be affected by sampling errors due to the use of samples in conducting the survey rather than total enumeration of the units of the target population, which increases the chances of variances between the actual values we expect to obtain from the data if we had conducted the survey using total enumeration. The computation of differences between the most important key goods showed that the variation of these goods differs due to the specialty of each survey. For example, for the CPI, the variation between its goods was very low, except in some cases such as banana, tomato, and cucumber goods that had a high coefficient of variation during 2019 due to the high oscillation in their prices. The variance of the key goods in the computed and disseminated CPI survey that was carried out on the Palestine level was for reasons related to sample design and variance calculation of different indicators since there was a difficulty in the dissemination of results by governorates due to lack of weights. Non-sampling errors are probable at all stages of data collection or data entry. Non-sampling errors include: Non-response errors: the selected sources demonstrated a significant cooperation with interviewers; so, there wasn't any case of non-response reported during 2019. Response errors (respondent), interviewing errors (interviewer), and data entry errors: to avoid these types of errors and reduce their effect to a minimum, project managers adopted a number of procedures, including the following: More than one visit was made to every source to explain the objectives of the survey and emphasize the confidentiality of the data. The visits to data sources contributed to empowering relations, cooperation, and the verification of data accuracy. Interviewer errors: a number of procedures were taken to ensure data accuracy throughout the process of field data compilation: Interviewers were selected based on educational qualification, competence, and assessment. Interviewers were trained theoretically and practically on the questionnaire. Meetings were held to remind interviewers of instructions. In addition, explanatory notes were supplied with the surveys. A number of procedures were taken to verify data quality and consistency and ensure data accuracy for the data collected by a questioner throughout processing and data entry (knowing that data collected through paper questionnaires did not exceed 5%): Data entry staff was selected from among specialists in computer programming and were fully trained on the entry programs. Data verification was carried out for 10% of the entered questionnaires to ensure that data entry staff had entered data correctly and in accordance with the provisions of the questionnaire. The result of the verification was consistent with the original data to a degree of 100%. The files of the entered data were received, examined, and reviewed by project managers before findings were extracted. Project managers carried out many checks on data logic and coherence, such as comparing the data of the current month with that of the previous month, and comparing the data of sources and between governorates. Data collected by tablet devices were checked for consistency and accuracy by applying rules at item level to be checked.

    Data appraisal

    Other technical procedures to improve data quality: Seasonal adjustment processes

  9. Vital Signs: Poverty - Bay Area

    • data.bayareametro.gov
    • open-data-demo.mtc.ca.gov
    application/rdfxml +5
    Updated Dec 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2018). Vital Signs: Poverty - Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Poverty-Bay-Area/38fe-vd33
    Explore at:
    csv, application/rssxml, tsv, json, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Dec 12, 2018
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Poverty (EQ5)

    FULL MEASURE NAME The share of the population living in households that earn less than 200 percent of the federal poverty limit

    LAST UPDATED December 2018

    DESCRIPTION Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.

    DATA SOURCE U.S Census Bureau: Decennial Census http://www.nhgis.org (1980-1990) http://factfinder2.census.gov (2000)

    U.S. Census Bureau: American Community Survey Form C17002 (2006-2017) http://api.census.gov

    METHODOLOGY NOTES (across all datasets for this indicator) The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.

    For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. Poverty rates do not include unrelated individuals below 15 years old or people who live in the following: institutionalized group quarters, college dormitories, military barracks, and situations without conventional housing. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps). For the national poverty level definitions by year, see: https://www.census.gov/hhes/www/poverty/data/threshld/index.html For an explanation on how the Census Bureau measures poverty, see: https://www.census.gov/hhes/www/poverty/about/overview/measure.html

    For the American Community Survey datasets, 1-year data was used for region, county, and metro areas whereas 5-year rolling average data was used for city and census tract.

    To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.

  10. T

    Indonesia Inflation Rate

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Indonesia Inflation Rate [Dataset]. https://tradingeconomics.com/indonesia/inflation-cpi
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Jun 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 30, 1997 - May 31, 2025
    Area covered
    Indonesia
    Description

    Inflation Rate in Indonesia decreased to 1.60 percent in May from 1.95 percent in April of 2025. This dataset provides - Indonesia Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  11. Consumer Price Index, annual average, not seasonally adjusted

    • www150.statcan.gc.ca
    • datasets.ai
    • +3more
    Updated Jan 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Consumer Price Index, annual average, not seasonally adjusted [Dataset]. http://doi.org/10.25318/1810000501-eng
    Explore at:
    Dataset updated
    Jan 21, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Annual indexes for major components and special aggregates of the Consumer Price Index (CPI), for Canada, provinces, Whitehorse, Yellowknife and Iqaluit. Data are presented for the last five years. The base year for the index is 2002=100.

  12. T

    Mexico Inflation Rate

    • tradingeconomics.com
    • fr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Mexico Inflation Rate [Dataset]. https://tradingeconomics.com/mexico/inflation-cpi
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1974 - May 31, 2025
    Area covered
    Mexico
    Description

    Inflation Rate in Mexico increased to 4.42 percent in May from 3.93 percent in April of 2025. This dataset provides - Mexico Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  13. o

    Ontario consumer price index

    • data.ontario.ca
    • open.canada.ca
    xlsx
    Updated Mar 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agriculture, Food and Rural Affairs (2025). Ontario consumer price index [Dataset]. https://data.ontario.ca/dataset/ontario-consumer-price-index
    Explore at:
    xlsx(29280)Available download formats
    Dataset updated
    Mar 4, 2025
    Dataset authored and provided by
    Agriculture, Food and Rural Affairs
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Time period covered
    Mar 4, 2025
    Area covered
    Ontario
    Description

    The Consumer Price Index measures changes in the cost of selected food items over time like:

    • food purchased from stores
    • fresh or frozen beef
    • fresh or frozen pork
    • fresh or frozen chicken
    • dairy products and eggs
    • bakery products
    • fresh fruit
    • fresh vegetables
    • food purchased from restaurants
  14. H

    Replication Data for: The Fading American Dream: Trends in Absolute Income...

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Feb 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raj Chetty; David Grusky; Maximilian Hell; Nathaniel Hendren; Robert Manduca; Jimmy Narang (2022). Replication Data for: The Fading American Dream: Trends in Absolute Income Mobility Since 1940 [Dataset]. http://doi.org/10.7910/DVN/B9TEWM
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 23, 2022
    Dataset provided by
    Harvard Dataverse
    Authors
    Raj Chetty; David Grusky; Maximilian Hell; Nathaniel Hendren; Robert Manduca; Jimmy Narang
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/B9TEWMhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/B9TEWM

    Description

    This dataset contains replication files for "The Fading American Dream: Trends in Absolute Income Mobility Since 1940" by Raj Chetty, David Grusky, Maximilian Hell, Nathaniel Hendren, Robert Manduca, and Jimmy Narang. For more information, see https://opportunityinsights.org/paper/the-fading-american-dream/. A summary of the related publication follows. One of the defining features of the “American Dream” is the ideal that children have a higher standard of living than their parents. We assess whether the U.S. is living up to this ideal by estimating rates of “absolute income mobility” – the fraction of children who earn more than their parents – since 1940. We measure absolute mobility by comparing children’s household incomes at age 30 (adjusted for inflation using the Consumer Price Index) with their parents’ household incomes at age 30. We find that rates of absolute mobility have fallen from approximately 90% for children born in 1940 to 50% for children born in the 1980s. Absolute income mobility has fallen across the entire income distribution, with the largest declines for families in the middle class. These findings are unaffected by using alternative price indices to adjust for inflation, accounting for taxes and transfers, measuring income at later ages, and adjusting for changes in household size. Absolute mobility fell in all 50 states, although the rate of decline varied, with the largest declines concentrated in states in the industrial Midwest, such as Michigan and Illinois. The decline in absolute mobility is especially steep – from 95% for children born in 1940 to 41% for children born in 1984 – when we compare the sons’ earnings to their fathers’ earnings. Why have rates of upward income mobility fallen so sharply over the past half-century? There have been two important trends that have affected the incomes of children born in the 1980s relative to those born in the 1940s and 1950s: lower Gross Domestic Product (GDP) growth rates and greater inequality in the distribution of growth. We find that most of the decline in absolute mobility is driven by the more unequal distribution of economic growth rather than the slowdown in aggregate growth rates. When we simulate an economy that restores GDP growth to the levels experienced in the 1940s and 1950s but distributes that growth across income groups as it is distributed today, absolute mobility only increases to 62%. In contrast, maintaining GDP at its current level but distributing it more broadly across income groups – at it was distributed for children born in the 1940s – would increase absolute mobility to 80%, thereby reversing more than two-thirds of the decline in absolute mobility. These findings show that higher growth rates alone are insufficient to restore absolute mobility to the levels experienced in mid-century America. Under the current distribution of GDP, we would need real GDP growth rates above 6% per year to return to rates of absolute mobility in the 1940s. Intuitively, because a large fraction of GDP goes to a small fraction of high-income households today, higher GDP growth does not substantially increase the number of children who earn more than their parents. Of course, this does not mean that GDP growth does not matter: changing the distribution of growth naturally has smaller effects on absolute mobility when there is very little growth to be distributed. The key point is that increasing absolute mobility substantially would require more broad-based economic growth. We conclude that absolute mobility has declined sharply in America over the past half-century primarily because of the growth in inequality. If one wants to revive the “American Dream” of high rates of absolute mobility, one must have an interest in growth that is shared more broadly across the income distribution.

  15. T

    India Inflation Rate

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +14more
    csv, excel, json, xml
    Updated Jun 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). India Inflation Rate [Dataset]. https://tradingeconomics.com/india/inflation-cpi
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Jun 12, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 2012 - May 31, 2025
    Area covered
    India
    Description

    Inflation Rate in India decreased to 2.82 percent in May from 3.16 percent in April of 2025. This dataset provides - India Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  16. T

    Vietnam Inflation Rate

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Vietnam Inflation Rate [Dataset]. https://tradingeconomics.com/vietnam/inflation-cpi
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    Jun 6, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1996 - May 31, 2025
    Area covered
    Vietnam
    Description

    Inflation Rate in Vietnam increased to 3.24 percent in May from 3.12 percent in April of 2025. This dataset provides the latest reported value for - Vietnam Inflation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  17. T

    Brazil Inflation Rate

    • tradingeconomics.com
    • ru.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Brazil Inflation Rate [Dataset]. https://tradingeconomics.com/brazil/inflation-cpi
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Jun 10, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1980 - May 31, 2025
    Area covered
    Brazil
    Description

    Inflation Rate in Brazil decreased to 5.32 percent in May from 5.53 percent in April of 2025. This dataset provides - Brazil Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  18. T

    United States Consumer Price Index (CPI)

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Consumer Price Index (CPI) [Dataset]. https://tradingeconomics.com/united-states/consumer-price-index-cpi
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    Jun 11, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1950 - May 31, 2025
    Area covered
    United States
    Description

    Consumer Price Index CPI in the United States increased to 321.47 points in May from 320.80 points in April of 2025. This dataset provides the latest reported value for - United States Consumer Price Index (CPI) - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  19. Commercial rents services price index, monthly

    • www150.statcan.gc.ca
    • open.canada.ca
    Updated May 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Commercial rents services price index, monthly [Dataset]. http://doi.org/10.25318/1810025501-eng
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Commercial rents services price index (CRSPI) by North American Industry Classification System (NAICS). Monthly data are available from January 2006 for the total index and from January 2019 for all other indexes. The table presents data for the most recent reference period and the last five periods. The base period for the index is (2019=100).

  20. T

    Thailand Inflation Rate

    • tradingeconomics.com
    • sv.tradingeconomics.com
    • +14more
    csv, excel, json, xml
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Thailand Inflation Rate [Dataset]. https://tradingeconomics.com/thailand/inflation-cpi
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1977 - May 31, 2025
    Area covered
    Thailand
    Description

    Inflation Rate in Thailand decreased to -0.57 percent in May from -0.22 percent in April of 2025. This dataset provides the latest reported value for - Thailand Inflation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Cost of living index in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240947/cost-of-living-index-usa-by-state/
Organization logo

Cost of living index in the U.S. 2024, by state

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 27, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2024
Area covered
United States
Description

West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.

Search
Clear search
Close search
Google apps
Main menu