Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper discusses estimation of US inflation volatility using time-varying parameter models, in particular whether it should be modelled as a stationary or random walk stochastic process. Specifying inflation volatility as an unbounded process, as implied by the random walk, conflicts with priors beliefs, yet a stationary process cannot capture the low-frequency behaviour commonly observed in estimates of volatility. We therefore propose an alternative model with a change-point process in the volatility that allows for switches between stationary models to capture changes in the level and dynamics over the past 40 years. To accommodate the stationarity restriction, we develop a new representation that is equivalent to our model but is computationally more efficient. All models produce effectively identical estimates of volatility, but the change-point model provides more information on the level and persistence of volatility and the probabilities of changes. For example, we find a few well-defined switches in the volatility process and, interestingly, these switches line up well with economic slowdowns or changes of the Federal Reserve Chair. Moreover, a decomposition of inflation shocks into permanent and transitory components shows that a spike in volatility in the late 2000s was entirely on the transitory side and characterized by a rise above its long-run mean level during a period of higher persistence.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 9 series, with data for years 1949 - 2018 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 item: Canada) Alternative measures (9 items: Measure of core inflation based on a factor model, CPI-common (year-over-year percent change); Measure of core inflation based on a weighted median approach, CPI-median (year-over-year percent change); Measure of core inflation based on a trimmed mean approach, CPI-trim (year-over-year percent change); Consumer Price Index (CPI), all-items excluding eight of the most volatile components as defined by the Bank of Canada and excluding the effect of changes in indirect taxes (2002=100); ...).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper discusses estimation of US inflation volatility using time-varying parameter models, in particular whether it should be modelled as a stationary or random walk stochastic process. Specifying inflation volatility as an unbounded process, as implied by the random walk, conflicts with priors beliefs, yet a stationary process cannot capture the low-frequency behaviour commonly observed in estimates of volatility. We therefore propose an alternative model with a change-point process in the volatility that allows for switches between stationary models to capture changes in the level and dynamics over the past 40 years. To accommodate the stationarity restriction, we develop a new representation that is equivalent to our model but is computationally more efficient. All models produce effectively identical estimates of volatility, but the change-point model provides more information on the level and persistence of volatility and the probabilities of changes. For example, we find a few well-defined switches in the volatility process and, interestingly, these switches line up well with economic slowdowns or changes of the Federal Reserve Chair. Moreover, a decomposition of inflation shocks into permanent and transitory components shows that a spike in volatility in the late 2000s was entirely on the transitory side and characterized by a rise above its long-run mean level during a period of higher persistence.