Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This software version has been superseded: please note a more recent version of the MCAS-S software is now available. See the ABARES website for details. MCAS-S version 3.2 The Multi-Criteria …Show full descriptionThis software version has been superseded: please note a more recent version of the MCAS-S software is now available. See the ABARES website for details. MCAS-S version 3.2 The Multi-Criteria Analysis Shell for Spatial Decision Support (MCAS-S) is a tool to view and combine mapped information. MCAS-S can inform spatial decision making and help with stakeholder engagement and communication. MCAS-S is powerful and easy to use. GIS (geographic information system) programming is not required, removing the usual technical obstacles to non-GIS users. MCAS-S projects are: • transparent - you can see all the inputs used to meet an objective and how these are combined • flexible - you can use MCAS-S to compare options and explore trade-offs. You can use your own input data • fast - you can immediately see changes to your objective when any input or combination method changes. The new version 3.2 has: • improved performance • a user guide incorporated into the software • live links to metadata • more options for processing and analysing time series data • simpler options for labelling and classifying data inputs. MCAS-S 3.2 is made freely available with the support of the MCAS-S development partners: ABARES, the NSW Office of Environment and Heritage, Barry Consulting, the Australian Collaborative Land Use and Management Program, the National Environmental Research Program Landscapes and Policy Hub at University of Tasmania and the Terrestrial Ecosystems Research Network.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MCAS-S version 3.2
The Multi-Criteria Analysis Shell for Spatial Decision Support (MCAS-S) is a tool to view and combine mapped information. MCAS-S can inform spatial decision making and help with stakeholder engagement and communication. MCAS-S is powerful and easy to use. GIS (geographic information system) programming is not required, removing the usual technical obstacles to non-GIS users.
MCAS-S projects are: • transparent - you can see all the inputs used to meet an objective and how these are combined • flexible - you can use MCAS-S to compare options and explore trade-offs. You can use your own input data • fast - you can immediately see changes to your objective when any input or combination method changes. The new version 3.2 has: • improved performance • a user guide incorporated into the software • live links to metadata • more options for processing and analysing time series data • simpler options for labelling and classifying data inputs.
MCAS-S 3.2 is made freely available with the support of the MCAS-S development partners: ABARES, the NSW Office of Environment and Heritage, Barry Consulting, the Australian Collaborative Land Use and Management Program, the National Environmental Research Program Landscapes and Policy Hub at University of Tasmania and the Terrestrial Ecosystems Research Network.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Geospatial Solutions Market size was valued at USD 282.75 Billion in 2024 and is projected to reach USD 650.14 Billion by 2032, growing at a CAGR of 12.10% during the forecast period 2026-2032.
Geospatial Solutions Market: Definition/ Overview
Geospatial solutions are applications and technologies that use spatial data to address geography, location, and Earth's surface problems. They use tools like GIS, remote sensing, GPS, satellite imagery analysis, and spatial modelling. These solutions enable informed decision-making, resource allocation optimization, asset management, environmental monitoring, infrastructure planning, and addressing challenges in sectors like urban planning, agriculture, transportation, disaster management, and natural resource management. They empower users to harness spatial information for better understanding and decision-making in various contexts.
Geospatial solutions are technologies and methodologies used to analyze and visualize spatial data, ranging from urban planning to agriculture. They use GIS, remote sensing, and GNSS to gather, process, and interpret data. These solutions help users make informed decisions, solve complex problems, optimize resource allocation, and enhance situational awareness. They are crucial in addressing challenges and unlocking opportunities in today's interconnected world, such as mapping land use patterns, monitoring ecosystem changes, and real-time asset tracking.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global spatial information service market, valued at $3,360 million in 2025, is projected to experience robust growth, driven by increasing demand for location-based services across diverse sectors. The Compound Annual Growth Rate (CAGR) of 12.8% from 2025 to 2033 indicates significant expansion potential. Key drivers include the rising adoption of cloud-based solutions offering scalability and cost-effectiveness, the proliferation of smart city initiatives relying heavily on spatial data for efficient urban planning and management, and the increasing use of geospatial analytics for informed decision-making in areas such as precision agriculture, logistics, and disaster response. Market segmentation reveals strong growth in both city and rural applications, with cloud-based solutions gaining wider acceptance over on-premise deployments. Leading companies like Esri, Hexagon AB, and Trimble are shaping the market landscape through continuous innovation and strategic partnerships, while emerging players like Planet Labs are contributing to increased data availability and analytical capabilities. Regional analysis suggests North America and Europe will maintain a significant market share, but Asia-Pacific is poised for substantial growth fueled by rapid urbanization and technological advancements. The market’s continued expansion will be influenced by factors such as advancements in sensor technologies, improving data processing capabilities, and increasing government investments in geospatial infrastructure. The restraints on market growth are primarily related to data security and privacy concerns surrounding the use of sensitive location data. High initial investment costs for implementing complex spatial information systems, especially for smaller organizations, also present a barrier. Furthermore, the interoperability challenges between different spatial data formats and systems require addressing to ensure seamless data sharing and integration. However, these challenges are being actively addressed through the development of industry standards and robust security protocols. Ongoing advancements in artificial intelligence and machine learning are expected to further enhance the analytical capabilities of spatial information services, leading to more sophisticated applications and expanded market opportunities. The forecast period of 2025-2033 suggests a substantial market expansion, exceeding $10 billion, driven by the continuous integration of spatial data into various applications and the increasing need for precise location intelligence.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) tools market size was valued at approximately USD 10.8 billion in 2023, and it is projected to reach USD 21.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.9% from 2024 to 2032. The increasing demand for spatial data analytics and the rising adoption of GIS tools across various industries are significant growth factors propelling the market forward.
One of the primary growth factors for the GIS tools market is the surging demand for spatial data analytics. Spatial data plays a critical role in numerous sectors, including urban planning, environmental monitoring, disaster management, and natural resource exploration. The ability to visualize and analyze spatial data provides organizations with valuable insights, enabling them to make informed decisions. Advances in technology, such as the integration of artificial intelligence (AI) and machine learning (ML) with GIS, are enhancing the capabilities of these tools, further driving market growth.
Moreover, the increasing adoption of GIS tools in the construction and agriculture sectors is fueling market expansion. In construction, GIS tools are used for site selection, route planning, and resource management, enhancing operational efficiency and reducing costs. Similarly, in agriculture, GIS tools aid in precision farming, crop monitoring, and soil analysis, leading to improved crop yields and sustainable farming practices. The ability of GIS tools to provide real-time data and analytics is particularly beneficial in these industries, contributing to their widespread adoption.
The growing importance of location-based services (LBS) in various applications is another key driver for the GIS tools market. LBS are extensively used in navigation, logistics, and transportation, providing real-time location information and route optimization. The proliferation of smartphones and the development of advanced GPS technologies have significantly increased the demand for LBS, thereby boosting the GIS tools market. Additionally, the integration of GIS with other technologies, such as the Internet of Things (IoT) and Big Data, is creating new opportunities for market growth.
Regionally, North America holds a significant share of the GIS tools market, driven by the high adoption of advanced technologies and the presence of major market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to increasing investments in infrastructure development, smart city projects, and the growing use of GIS tools in emerging economies such as China and India. Europe, Latin America, and the Middle East & Africa are also expected to contribute to market growth, driven by various government initiatives and increasing awareness of the benefits of GIS tools.
The GIS tools market can be segmented by component into software, hardware, and services. The software segment is anticipated to dominate the market due to the increasing demand for advanced GIS software solutions that offer enhanced data visualization, spatial analysis, and decision-making capabilities. GIS software encompasses a wide range of applications, including mapping, spatial data analysis, and geospatial data management, making it indispensable for various industries. The continuous development of user-friendly and feature-rich software solutions is expected to drive the growth of this segment.
Hardware components in the GIS tools market include devices such as GPS units, remote sensing devices, and plotting and digitizing tools. The hardware segment is also expected to witness substantial growth, driven by the increasing use of advanced hardware devices that provide accurate and real-time spatial data. The advancements in GPS technology and the development of sophisticated remote sensing devices are key factors contributing to the growth of the hardware segment. Additionally, the integration of hardware with IoT and AI technologies is enhancing the capabilities of GIS tools, further propelling market expansion.
The services segment includes consulting, integration, maintenance, and support services related to GIS tools. This segment is expected to grow significantly, driven by the increasing demand for specialized services that help organizations effectively implement and manage GIS solutions. Consulting services assist organizations in selecting the right GIS tools and optimizing their use, while integration services ensure seamless integr
The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cultural products constitute a significant portion of global trade, and understanding their export patterns can shed light on economic trends, trade dynamics, and market opportunities. This study conducted the spatio-temporal analysis of exports of cultural products, exploring the relationship between various influencing factors and their impact on the spatial distribution of these exports. Leveraging a diverse dataset encompassing 55 BRI countries for the period of 2005–2022, this research employs advanced spatial analysis techniques, including spatial autocorrelation and spatial regression models, to examine the spatial patterns and determinants of exports if cultural product exports. Moreover, this study delves into the multifaceted determinants affecting the spatial distribution of these exports. The findings of this study reveal significant spatio-temporal variations in the exports of cultural products. Spatial autocorrelation analysis indicates the presence of spatial clustering, suggesting that regions with high cultural product exports tend to be geographically close to each other. The spatial regression models further identify several key factors like economic development, productive capacities, cultural tourism, information development and human capital influence the spatial distribution of these exports. The findings of the study reveal that there is strong spatial relationship for exports of cultural products in BRI countries. The findings of this research contribute valuable insights for policymakers, businesses, and stakeholders regarding a deeper comprehension of the driving forces behind the spatial distribution of these cultural products, facilitating informed decision-making processes to optimize strategies for promoting and sustaining the trade of cultural products in an increasingly interconnected world.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global location analytics market size was valued at approximately USD 18.2 billion in 2023 and is projected to reach around USD 65.4 billion by 2032, growing at a robust CAGR of 15.2% during the forecast period from 2024 to 2032. This impressive growth can be attributed to the escalating demand for spatial data and analytical solutions across various industries, aiming to enhance decision-making processes and optimize business operations.
One of the primary growth factors driving the location analytics market is the increasing use of smartphones and the proliferation of Internet of Things (IoT) devices. These advancements have led to an explosion of location-based data, offering businesses the capability to analyze real-time information and make informed decisions. Moreover, the integration of location analytics with Geographic Information System (GIS) technologies has further enhanced the scope of applications, making it indispensable for sectors such as retail, transportation, and healthcare.
Another significant growth driver is the rising need for businesses to gain a competitive edge through location-based insights. Companies are leveraging location analytics to understand customer behaviors, optimize supply chains, and enhance marketing strategies. For instance, retail businesses are increasingly using location analytics to determine ideal store locations, manage inventory efficiently, and provide personalized customer experiences. Similarly, in the transportation and logistics sector, location analytics is crucial for route optimization, fleet management, and reducing operational costs.
The emergence of advanced technologies such as artificial intelligence (AI) and machine learning (ML) is also catalyzing the growth of the location analytics market. By incorporating AI and ML algorithms, location analytics solutions can offer predictive insights and trend analyses, enabling businesses to anticipate market changes and act proactively. This technological advancement is particularly beneficial for risk management and emergency response applications, where timely and accurate data is critical.
In this context, Points-of-Interest (POI) Data Solutions have emerged as a crucial component in the location analytics ecosystem. POI data provides detailed information about specific locations, such as businesses, landmarks, and other significant places, which can be leveraged by companies to enhance their spatial analysis capabilities. By integrating POI data, businesses can gain deeper insights into consumer behavior, optimize location-based services, and improve decision-making processes. This data is particularly valuable for sectors like retail and hospitality, where understanding the proximity and accessibility of various points of interest can significantly impact customer engagement and operational efficiency. As the demand for precise and comprehensive location data continues to grow, POI Data Solutions are set to play a pivotal role in advancing the capabilities of location analytics platforms.
Regionally, North America is expected to dominate the location analytics market due to the early adoption of advanced technologies and the presence of major market players in the region. Additionally, the Asia Pacific region is anticipated to witness significant growth, driven by the rapid urbanization, increasing smartphone penetration, and government initiatives promoting smart city projects. Europe is also poised for substantial growth, supported by stringent data regulations and the growing demand for spatial data analytics in various industries.
The location analytics market can be segmented by component into software and services. The software segment includes tools and platforms that facilitate spatial data analysis, while the services segment encompasses consulting, integration, and maintenance services. The software segment is expected to hold a significant market share due to the increasing adoption of location analytics software solutions by enterprises to gain actionable insights from spatial data. These software solutions are designed to integrate seamlessly with existing business systems, providing users with real-time data analysis and visualization capabilities.
Location analytics software is further categorized into desktop, mobile, and web-based platforms. Desktop solutions are traditionally used for comprehensive geospati
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global market size for Location Intelligence (LI) and Location Analytics is projected to grow from $XX billion in 2023 to $XX billion by 2032, exhibiting a CAGR of XX%. This remarkable growth is driven by the increasing adoption of geospatial data in business operations and the rising demand for location-based services in various industries.
One of the primary growth factors for the Location Intelligence and Location Analytics market is the proliferation of Internet of Things (IoT) devices. These devices generate vast amounts of location-based data that can be analyzed to provide valuable insights. Companies are increasingly recognizing the importance of leveraging this data to enhance operational efficiency, improve customer experience, and drive strategic decision-making. The integration of artificial intelligence (AI) and machine learning (ML) with Location Analytics further enhances the ability to process and analyze large datasets, providing more accurate and actionable insights.
Another significant driver is the growing need for real-time location-based services. In sectors such as retail, transportation, and logistics, real-time location analytics enable businesses to track assets, monitor workforce movements, and manage facilities more effectively. This real-time data helps in optimizing routes, reducing fuel consumption, and improving overall productivity. Additionally, the COVID-19 pandemic has accelerated the adoption of location-based services for contact tracing, social distancing monitoring, and ensuring workplace safety, further propelling market growth.
Advancements in geographic information systems (GIS) and the increasing availability of high-resolution satellite imagery are also contributing to market expansion. Modern GIS platforms offer sophisticated tools for spatial analysis, mapping, and visualization, enabling organizations to derive meaningful insights from complex geospatial data. The integration of location analytics with business intelligence (BI) tools allows for comprehensive analysis and visualization of data, leading to better strategic planning and decision-making.
Regionally, North America is expected to hold the largest market share, driven by the presence of major technology companies and early adoption of advanced technologies. The Asia Pacific region is anticipated to witness the highest growth rate, fueled by rapid urbanization, increasing investments in smart city projects, and the expanding e-commerce sector. Europe, Latin America, and the Middle East & Africa are also expected to contribute significantly to the market growth, with various industries adopting location-based services to enhance operational efficiency and customer engagement.
The Location Intelligence and Location Analytics market is segmented into two main components: Software and Services. The Software segment dominates the market, driven by the increasing demand for sophisticated analytics tools that can process and visualize geospatial data. Advanced software solutions offer capabilities such as spatial analysis, mapping, and real-time data processing, enabling businesses to gain deeper insights into their operations and customer behavior. The integration of AI and ML with location analytics software further enhances its analytical capabilities, making it a crucial component for businesses seeking to leverage geospatial data.
Within the Software segment, geographic information systems (GIS) and business intelligence (BI) tools play a pivotal role. GIS platforms provide extensive functionalities for spatial data analysis, mapping, and visualization, allowing organizations to derive actionable insights from complex datasets. The integration of BI tools with location analytics enables businesses to perform comprehensive analyses and generate interactive dashboards, facilitating informed decision-making. The increasing adoption of cloud-based software solutions is also driving market growth, offering scalability, flexibility, and cost-effectiveness to businesses of all sizes.
The Services segment encompasses various professional and managed services that support the deployment and utilization of location analytics solutions. Consulting services assist organizations in identifying their specific needs and developing customized solutions, while implementation services ensure seamless integration of location analytics tools with existing systems. Managed services provide ongoing support, maintenance, and optimization of location analy
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) Software market size was valued at approximately USD 7.8 billion in 2023 and is projected to reach USD 15.6 billion by 2032, growing at a compound annual growth rate (CAGR) of 8.3% during the forecast period. This impressive growth can be attributed to the increasing demand for efficient data management tools across various industries, which rely on spatial data for decision-making and strategic planning. The rapid advancements in technology, such as the integration of AI and IoT with GIS software, have further propelled the market, enabling organizations to harness the full potential of geographic data in innovative ways.
One of the primary growth drivers of the GIS Software market is the burgeoning need for urban planning and smart city initiatives worldwide. As urbanization trends escalate, cities are increasingly relying on GIS technology to manage resources more effectively, optimize transportation networks, and enhance public safety. The ability of GIS software to provide real-time data and spatial analysis is vital for city planners and administrators faced with the challenges of modern urban environments. Furthermore, the trend towards digital transformation in governmental organizations is boosting the adoption of GIS solutions, as they seek to improve operational efficiency and service delivery.
The agricultural sector is also experiencing significant transformations due to the integration of GIS software, which is another pivotal growth factor for the market. Precision agriculture, which involves the use of GIS technologies to monitor and manage farming practices, is enabling farmers to increase crop yields while reducing resource consumption. By leveraging spatial data, farmers can make informed decisions about planting, irrigation, and harvesting, ultimately leading to more sustainable agricultural practices. This trend is particularly prominent in regions where agriculture forms a substantial portion of the economy, encouraging the adoption of advanced GIS tools to maintain competitive advantage.
Another influential factor contributing to the growth of the GIS Software market is the increasing importance of environmental management and disaster response. GIS technology plays a crucial role in assessing environmental changes, managing natural resources, and planning responses to natural disasters. The ability to overlay various data sets onto geographic maps allows for better analysis and understanding of environmental phenomena, making GIS indispensable in tackling issues such as climate change and resource depletion. Moreover, governments and organizations are investing heavily in GIS tools that aid in disaster preparedness and response, ensuring timely and effective action during emergencies.
The evolution of GIS Mapping Software has been instrumental in transforming how spatial data is utilized across various sectors. These software solutions offer robust tools for visualizing, analyzing, and interpreting geographic data, enabling users to make informed decisions based on spatial insights. With the ability to integrate multiple data sources, GIS Mapping Software provides a comprehensive platform for conducting spatial analysis, which is crucial for applications ranging from urban planning to environmental management. As technology continues to advance, the capabilities of GIS Mapping Software are expanding, offering more sophisticated features such as 3D visualization and real-time data processing. These advancements are not only enhancing the utility of GIS tools but also making them more accessible to a wider range of users, thereby driving their adoption across different industries.
Regionally, North America and Europe have traditionally dominated the GIS Software market, thanks to their robust technological infrastructure and higher adoption rates of advanced technologies. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid urbanization, increased government spending on infrastructure development, and the expanding telecommunications sector. The growing awareness and adoption of GIS solutions in countries like China and India are significant contributors to this regional growth. Furthermore, Latin America and the Middle East & Africa regions are slowly catching up, with ongoing investments in smart city projects and infrastructure development driving the demand for GIS software.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This mapping application provides a spatially referenced archive of scanned Kentucky Transportation Cabinet (KYTC) project plans dating from 1909 to the present. The archive includes As-Built drawings and record plans, offering a valuable resource for historical research, project planning, and reference. Users can explore the map to access detailed documentation of infrastructure projects across the Commonwealth, supporting transparency and informed decision-making.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Geostatistics analyzes and predicts the values associated with spatial or spatial-temporal phenomena. It incorporates the spatial (and in some cases temporal) coordinates of the data within the analyses. It is a practical means of describing spatial patterns and interpolating values for locations where samples were not taken (and measures the uncertainty of those values, which is critical to informed decision making). This archive contains results of geostatistical analysis of COVID-19 case counts for all available US counties. Test results were obtained with ArcGIS Pro (ESRI). Sources are state health departments, which are scraped and aggregated by the Johns Hopkins Coronavirus Resource Center and then pre-processed by MappingSupport.com.
This update of the Zenodo dataset (version 6) consists of three compressed archives containing geostatistical analyses of SARS-CoV-2 testing data. This dataset utilizes many of the geostatistical techniques used in previous versions of this Zenodo archive, but has been significantly expanded to include analyses of up-to-date U.S. COVID-19 case data (from March 24th to September 8th, 2020):
Archive #1: “1.Geostat. Space-Time analysis of SARS-CoV-2 in the US (Mar24-Sept6).zip” – results of a geostatistical analysis of COVID-19 cases incorporating spatially-weighted hotspots that are conserved over one-week timespans. Results are reported starting from when U.S. COVID-19 case data first became available (March 24th, 2020) for 25 consecutive 1-week intervals (March 24th through to September 6th, 2020). Hotspots, where found, are reported in each individual state, rather than the entire continental United States.
Archive #2: "2.Geostat. Spatial analysis of SARS-CoV-2 in the US (Mar24-Sept8).zip" – the results from geostatistical spatial analyses only of corrected COVID-19 case data for the continental United States, spanning the period from March 24th through September 8th, 2020. The geostatistical techniques utilized in this archive includes ‘Hot Spot’ analysis and ‘Cluster and Outlier’ analysis.
Archive #3: "3.Kriging and Densification of SARS-CoV-2 in LA and MA.zip" – this dataset provides preliminary kriging and densification analysis of COVID-19 case data for certain dates within the U.S. states of Louisiana and Massachusetts.
These archives consist of map files (as both static images and as animations) and data files (including text files which contain the underlying data of said map files [where applicable]) which were generated when performing the following Geostatistical analyses: Hot Spot analysis (Getis-Ord Gi*) [‘Archive #1’: consecutive weeklong Space-Time Hot Spot analysis; ‘Archive #2’: daily Hot Spot Analysis], Cluster and Outlier analysis (Anselin Local Moran's I) [‘Archive #2’], Spatial Autocorrelation (Global Moran's I) [‘Archive #2’], and point-to-point comparisons with Kriging and Densification analysis [‘Archive #3’].
The Word document provided ("Description-of-Archive.Updated-Geostatistical-Analysis-of-SARS-CoV-2 (version 6).docx") details the contents of each file and folder within these three archives and gives general interpretations of these results.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global GIS Data Management market size is projected to grow from USD 12.5 billion in 2023 to USD 25.6 billion by 2032, exhibiting a CAGR of 8.4% during the forecast period. This impressive growth is driven by the increasing adoption of geographic information systems (GIS) across various sectors such as urban planning, disaster management, and agriculture. The rising need for effective data management systems to handle the vast amounts of spatial data generated daily also significantly contributes to the market's expansion.
One of the primary growth factors for the GIS Data Management market is the burgeoning demand for spatial data analytics. Businesses and governments are increasingly leveraging GIS data to make informed decisions and strategize operational efficiencies. With the rapid urbanization and industrialization worldwide, there's an unprecedented need to manage and analyze geographic data to plan infrastructure, monitor environmental changes, and optimize resource allocation. Consequently, the integration of GIS with advanced technologies like artificial intelligence and machine learning is becoming more prominent, further fueling market growth.
Another significant factor propelling the market is the advancement in GIS technology itself. The development of sophisticated software and hardware solutions for GIS data management is making it easier for organizations to capture, store, analyze, and visualize geographic data. Innovations such as 3D GIS, real-time data processing, and cloud-based GIS solutions are transforming the landscape of geographic data management. These advancements are not only enhancing the capabilities of GIS systems but also making them more accessible to a broader range of users, from small enterprises to large governmental agencies.
The growing implementation of GIS in disaster management and emergency response activities is also a critical factor driving market growth. GIS systems play a crucial role in disaster preparedness, response, and recovery by providing accurate and timely geographic data. This data helps in assessing risks, coordinating response activities, and planning resource deployment. With the increasing frequency and intensity of natural disasters, the reliance on GIS data management systems is expected to grow, resulting in higher demand for GIS solutions across the globe.
Geospatial Solutions are becoming increasingly integral to the GIS Data Management landscape, offering enhanced capabilities for spatial data analysis and visualization. These solutions provide a comprehensive framework for integrating various data sources, enabling users to gain deeper insights into geographic patterns and trends. As organizations strive to optimize their operations and decision-making processes, the demand for robust geospatial solutions is on the rise. These solutions not only facilitate the efficient management of spatial data but also support advanced analytics and real-time data processing. By leveraging geospatial solutions, businesses and governments can improve their strategic planning, resource allocation, and environmental monitoring efforts, thereby driving the overall growth of the GIS Data Management market.
Regionally, North America holds a significant share of the GIS Data Management market, driven by high technology adoption rates and substantial investments in GIS technologies by government and private sectors. However, Asia Pacific is anticipated to witness the highest growth rate during the forecast period. The rapid urbanization, economic development, and increasing adoption of advanced technologies in countries like China and India are major contributors to this growth. Governments in this region are also focusing on smart city projects and infrastructure development, which further boosts the demand for GIS data management solutions.
The GIS Data Management market is segmented by component into software, hardware, and services. The software segment is the largest and fastest-growing segment, driven by the continuous advancements in GIS software capabilities. GIS software applications enable users to analyze spatial data, create maps, and manage geographic information efficiently. The integration of GIS software with other enterprise systems and the development of user-friendly interfaces are key factors propelling the growth of this segment. Furthermore, the rise of mobile GIS applications, which allow field data collectio
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Nigeria Geospatial Analytics Market size was valued at USD 86.37 Million in 2024 and is expected to reach USD 146.41 Million by 2032, growing at a CAGR of 6.82% from 2026 to 2032.
Nigeria Geospatial Analytics Market: Definition/ Overview
Geospatial analytics involves the application of computational methods to analyze spatial data, deriving insights about geographic phenomena and relationships. This process integrates geographic information systems (GIS), remote sensing, and statistical techniques to identify patterns, trends, and anomalies within spatial datasets. It facilitates informed decision-making across various domains by providing spatial context and predictive modeling capabilities.
Geospatial analytics facilitates precise environmental monitoring through the detection and analysis of land cover changes, deforestation, and urban expansion. It supports informed infrastructure planning by optimizing site selection, assessing transportation networks, and managing utilities.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Geographic Information System (GIS) industry is experiencing robust growth, projected to maintain a Compound Annual Growth Rate (CAGR) of 10.80% from 2025 to 2033. This expansion is driven by increasing adoption across diverse sectors, including agriculture, utilities, mining, construction, transportation, and oil and gas. The rising need for precise location-based data for efficient operations, optimized resource management, and informed decision-making fuels this market growth. Advancements in hardware, such as high-resolution sensors and drones, coupled with sophisticated software capabilities like advanced spatial analytics and cloud-based GIS solutions, are key contributors. Furthermore, the proliferation of location-based services (LBS) and the growing adoption of telematics and navigation systems are expanding the applications of GIS technology. While data security concerns and the need for skilled professionals present some challenges, the overall market outlook remains positive. The segmentation of the GIS market reveals a strong demand across various components (hardware and software) and functionalities (mapping, surveying, telematics and navigation, and location-based services). North America currently holds a significant market share due to early adoption and technological advancements, but regions like Asia are exhibiting rapid growth fueled by infrastructure development and increasing digitalization. Leading companies like Bentley Systems, Esri, Trimble, and Hexagon AB are at the forefront of innovation, continuously developing and implementing advanced GIS solutions to meet the evolving needs of different industries. The forecast for the next decade points to further market consolidation, with leading players investing heavily in research and development to enhance their product offerings and expand their market reach. The continued integration of GIS with other technologies such as AI and IoT will further drive market expansion and create new opportunities for growth. Comprehensive Coverage GIS Industry Report (2019-2033) This in-depth report provides a comprehensive analysis of the Geographic Information System (GIS) industry, projecting robust growth from $XXX million in 2025 to $YYY million by 2033. The study covers the historical period (2019-2024), base year (2025), and forecast period (2025-2033), offering invaluable insights for businesses, investors, and policymakers. Keywords: GIS market, GIS software, GIS hardware, GIS solutions, geospatial technology, location intelligence, mapping software, surveying equipment, spatial analysis, geospatial analytics. Recent developments include: November 2022 : The new Geodata Portal and broadband maps for the state will be accessible starting on November 18, 2022, according to a statement from the Connecticut Office of Policy and Management (OPM). This announcement was made on GIS Day 2022, which encourages people to learn about geography and the practical uses of GIS that can improve society., November 2022 : The lt. governor of the Indian state, Jammu and Kashmir, launched a GIS-based system in the region. It highlights the significance of GIS technology in addressing new challenges and exploring new opportunities and its real-world applications, accelerating growth in business, government, and society.. Key drivers for this market are: Growing role of GIS in smart cities ecosystem, Integration of location-based mapping systems with business intelligence systems. Potential restraints include: Integration issues with traditional systems, Data quality and accuracy issues. Notable trends are: The Rising Smart Cities Development and Urban Planning to Drive the Market Growth.
Spatial assessments of Ecosystem Services (ES) are increasingly used in environmental management and spatial planning, but rarely provide information on the accuracy of predictions. Uncertainty estimates are essential to allow for confidence in the quality and credibility of ES assessments to enable informed decision-making. In marine environments, the need for uncertainty assessments for ES is unparalleled as they are data scarce, poorly (spatially) defined, with complex interconnectivity of seascapes. This study illustrates the uncertainty associated with a principle-based method for ES modelling by accounting for model variability, data coverage, and uncertainty in thresholds and parameters. A sensitivity analysis was applied on ES models for marine bivalves (Austrovenus stutchburyi and Paphies australis) and their contribution to Food provision, Water quality regulation, Nitrogen removal, and Sediment stabilisation. ES estimates from the sensitivity analysis were compared against ba..., , Software requirements: R and/or ArcGIS/QGIS, # Data from: Accounting for uncertainty in marine ecosystem service predictions for spatial prioritisation
Spatial assessments of Ecosystem Services (ES) are increasingly used in environmental management and spatial planning, but rarely provide information on the accuracy of predictions. Uncertainty estimates are essential to allow for confidence in the quality and credibility of ES assessments to enable informed decision-making. In marine environments, the need for uncertainty assessments for ES is unparalleled as they are data scarce, poorly (spatially) defined, with complex interconnectivity of seascapes. This study illustrates the uncertainty associated with a principle-based method for ES modelling by accounting for model variability, data coverage, and uncertainty in thresholds and parameters. A sensitivity analysis was applied on ES models for marine bivalves (Austrovenus stutchburyi and Paphies australis) and their contribution to Food provision, Water quality regulation, Nit...
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global Geographic Information Systems (GIS) market is projected to reach a value of USD 2890.3 million by 2033, expanding at a CAGR of 5.3% during the forecast period (2025-2033). The growing demand for GIS solutions for urban planning, infrastructure management, environmental monitoring, and disaster response is driving market growth. Additionally, the increasing adoption of cloud-based GIS platforms and the integration of GIS with other technologies such as artificial intelligence (AI) and the Internet of Things (IoT) are contributing to the market's expansion. Key trends shaping the GIS market include the rise of location intelligence, which involves using GIS data to make informed decisions about spatial relationships and patterns. The increasing availability of open-source GIS software and data is also driving market growth, as it enables organizations to access and utilize GIS without significant upfront costs. Furthermore, the adoption of GIS by governments and businesses for decision-making and planning purposes is contributing to the market's expansion. Among the application segments, transport and logistics are expected to witness significant growth as GIS plays a crucial role in optimizing routes, managing fleet operations, and improving supply chain efficiency.
Geolocet's Administrative Boundaries Spatial Data serves as the gateway to visualizing geographic distributions and patterns with precision. The comprehensive dataset covers all European countries, encompassing the boundaries of each country, as well as its political and statistical divisions. Tailoring data purchases to exact needs is possible, allowing for the selection of individual levels of geography or bundling all levels for a country with a discount. The seamless integration of administrative boundaries onto digital maps transforms raw data into actionable insights.
🌐 Coverage Across European Countries
Geolocet's Administrative Boundaries Data offers coverage across all European countries, ensuring access to the most up-to-date and accurate geographic information. From national borders to the finest-grained administrative units, this data enables informed choices based on verified and official sources.
🔍 Geographic Context for Strategic Decisions
Understanding the geographical context is crucial for strategic decision-making. Geolocet's Administrative Boundaries Spatial Data empowers exploration of geo patterns, planning expansions, analysis of regional demographics, and optimization of operations with precision. Whether it is for establishing new business locations, efficient resource allocation, or policy impact analysis, this data provides the essential geographic context for success.
🌍 Integration with Geolocet’s Demographic Data
The integration of Geolocet's Administrative Boundaries Spatial Data with Geolocet's Demographic Data creates a synergy that enriches insights. The combination of administrative boundaries and demographic information offers a comprehensive understanding of regions and their unique characteristics. This integration enables tailoring of strategies, marketing campaigns, and resource allocation to specific areas with confidence.
🌍 Integration with Geolocet’s POI Data
Combining Geolocet's Administrative Boundaries Spatial Data with our POI (Points of Interest) Data unveils not only the administrative divisions but also insights into the local characteristics of these areas. Overlaying POI data on administrative boundaries reveals details about the number and types of businesses, services, and amenities within specific regions. Whether conducting market research, identifying prime locations for retail outlets, or analyzing the accessibility of essential services, this combined data empowers a holistic view of target areas.
🔍 Customized Data Solutions with DaaS
Geolocet's Data as a Service (DaaS) model offers flexibility tailored to specific needs. The transparent pricing model ensures cost-efficiency, allowing payment solely for the required data. Whether nationwide administrative boundary data or specific regional details are needed, Geolocet provides a solution to match individual objectives. Contact us today to explore how Geolocet's Administrative Boundaries Spatial Data can elevate decision-making processes and provide the essential geographic data for success.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global GIS Data Management market is valued at approximately USD XXX million in 2025 and is anticipated to expand at a CAGR of approximately XX% over the forecast period 2025-2033. GIS Data Management is a process of managing spatial data, which includes collecting, processing, storing, analyzing, and visualizing data that has a geographic reference. GIS Data Management is essential for a wide range of applications, including environmental planning, urban planning, and transportation planning. The market is driven by the increasing adoption of GIS technology, the growing need for efficient and effective data management, and the need for better decision-making. The increasing adoption of GIS technology is due to the increasing awareness of the benefits of GIS, such as the ability to visualize and analyze data, and the ability to make better decisions. The growing need for efficient and effective data management is due to the increasing amount of data being collected, which is making it difficult to manage and use the data effectively. The need for better decision-making is due to the increasing complexity of problems facing organizations, which is making it difficult to make informed decisions. The market is restrained by the high cost of GIS technology and the lack of skilled labor. The high cost of GIS technology is due to the high cost of hardware, software, and training. The lack of skilled labor is due to the shortage of people with the necessary skills and experience to use GIS technology effectively. This report provides a comprehensive overview of the GIS data management market, including market trends, drivers, challenges, and opportunities. The report also includes key industry developments and profiles of leading players in the GIS data management market.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This software version has been superseded: please note a more recent version of the MCAS-S software is now available. See the ABARES website for details. MCAS-S version 3.2 The Multi-Criteria …Show full descriptionThis software version has been superseded: please note a more recent version of the MCAS-S software is now available. See the ABARES website for details. MCAS-S version 3.2 The Multi-Criteria Analysis Shell for Spatial Decision Support (MCAS-S) is a tool to view and combine mapped information. MCAS-S can inform spatial decision making and help with stakeholder engagement and communication. MCAS-S is powerful and easy to use. GIS (geographic information system) programming is not required, removing the usual technical obstacles to non-GIS users. MCAS-S projects are: • transparent - you can see all the inputs used to meet an objective and how these are combined • flexible - you can use MCAS-S to compare options and explore trade-offs. You can use your own input data • fast - you can immediately see changes to your objective when any input or combination method changes. The new version 3.2 has: • improved performance • a user guide incorporated into the software • live links to metadata • more options for processing and analysing time series data • simpler options for labelling and classifying data inputs. MCAS-S 3.2 is made freely available with the support of the MCAS-S development partners: ABARES, the NSW Office of Environment and Heritage, Barry Consulting, the Australian Collaborative Land Use and Management Program, the National Environmental Research Program Landscapes and Policy Hub at University of Tasmania and the Terrestrial Ecosystems Research Network.