100+ datasets found
  1. u

    GDAS Analysis (initial data)

    • data.ucar.edu
    • ckanprod.data-commons.k8s.ucar.edu
    grib
    Updated Oct 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Celeste Saulo (2025). GDAS Analysis (initial data) [Dataset]. http://doi.org/10.26023/PWB1-C6X7-PD0H
    Explore at:
    gribAvailable download formats
    Dataset updated
    Oct 7, 2025
    Authors
    Celeste Saulo
    Time period covered
    Jan 17, 2003 - Jan 19, 2003
    Area covered
    Earth
    Description

    This dataset contains the initial and boundary conditions in GRIB format files to be used as input to the models. SALLJEX was funded by NOAA/OGP, NSF(ATM0106776) and funding agencies from Brazil FAPESP Grant 01/13816-1) and Argentina (ANPCYT PICT 07-06671, UBACyT 055)

  2. f

    Initial data analysis checklist for data screening in longitudinal studies.

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated May 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lara Lusa; Cécile Proust-Lima; Carsten O. Schmidt; Katherine J. Lee; Saskia le Cessie; Mark Baillie; Frank Lawrence; Marianne Huebner (2024). Initial data analysis checklist for data screening in longitudinal studies. [Dataset]. http://doi.org/10.1371/journal.pone.0295726.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 29, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Lara Lusa; Cécile Proust-Lima; Carsten O. Schmidt; Katherine J. Lee; Saskia le Cessie; Mark Baillie; Frank Lawrence; Marianne Huebner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Initial data analysis checklist for data screening in longitudinal studies.

  3. u

    CPTEC Control Analysis (initial data for experiment 4)

    • data.ucar.edu
    • ckanprod.data-commons.k8s.ucar.edu
    ascii
    Updated Oct 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Celeste Saulo (2025). CPTEC Control Analysis (initial data for experiment 4) [Dataset]. http://doi.org/10.26023/H6Q5-MFZ6-Q10N
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Oct 7, 2025
    Authors
    Celeste Saulo
    Time period covered
    Jan 17, 2003 - Jan 19, 2003
    Area covered
    Earth
    Description

    This data set is provided by the CPTEC/INPE-Brazil and contains the initial and boundary conditions in binary files to be used as input to the models for experiment #4. A GRADS control file is included. SALLJEX was funded by NOAA/OGP, NSF(ATM0106776) and funding agencies from Brazil FAPESP Grant 01/13816-1) and Argentina (ANPCYT PICT 07-06671, UBACyT 055).

  4. Main challenges affecting data analytics for CX in the U.S. 2021

    • statista.com
    Updated Sep 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). Main challenges affecting data analytics for CX in the U.S. 2021 [Dataset]. https://www.statista.com/statistics/1196851/main-challenges-affecting-data-analytics-for-cx-in-the-us/
    Explore at:
    Dataset updated
    Sep 15, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2021 - Jun 2021
    Area covered
    United States
    Description

    According to the results of a survey on customer experience (CX) among businesses conducted in the United States in 2021, the main challenge affecting data analysis capability for CX is the lack of reliability and integrity of available data. Data security followed, being chosen by almost ** percent of the respondents.

  5. f

    Descriptive statistics.

    • plos.figshare.com
    xls
    Updated Oct 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mrinal Saha; Aparna Deb; Imtiaz Sultan; Sujat Paul; Jishan Ahmed; Goutam Saha (2023). Descriptive statistics. [Dataset]. http://doi.org/10.1371/journal.pgph.0002475.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Oct 31, 2023
    Dataset provided by
    PLOS Global Public Health
    Authors
    Mrinal Saha; Aparna Deb; Imtiaz Sultan; Sujat Paul; Jishan Ahmed; Goutam Saha
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Vitamin D insufficiency appears to be prevalent in SLE patients. Multiple factors potentially contribute to lower vitamin D levels, including limited sun exposure, the use of sunscreen, darker skin complexion, aging, obesity, specific medical conditions, and certain medications. The study aims to assess the risk factors associated with low vitamin D levels in SLE patients in the southern part of Bangladesh, a region noted for a high prevalence of SLE. The research additionally investigates the possible correlation between vitamin D and the SLEDAI score, seeking to understand the potential benefits of vitamin D in enhancing disease outcomes for SLE patients. The study incorporates a dataset consisting of 50 patients from the southern part of Bangladesh and evaluates their clinical and demographic data. An initial exploratory data analysis is conducted to gain insights into the data, which includes calculating means and standard deviations, performing correlation analysis, and generating heat maps. Relevant inferential statistical tests, such as the Student’s t-test, are also employed. In the machine learning part of the analysis, this study utilizes supervised learning algorithms, specifically Linear Regression (LR) and Random Forest (RF). To optimize the hyperparameters of the RF model and mitigate the risk of overfitting given the small dataset, a 3-Fold cross-validation strategy is implemented. The study also calculates bootstrapped confidence intervals to provide robust uncertainty estimates and further validate the approach. A comprehensive feature importance analysis is carried out using RF feature importance, permutation-based feature importance, and SHAP values. The LR model yields an RMSE of 4.83 (CI: 2.70, 6.76) and MAE of 3.86 (CI: 2.06, 5.86), whereas the RF model achieves better results, with an RMSE of 2.98 (CI: 2.16, 3.76) and MAE of 2.68 (CI: 1.83,3.52). Both models identify Hb, CRP, ESR, and age as significant contributors to vitamin D level predictions. Despite the lack of a significant association between SLEDAI and vitamin D in the statistical analysis, the machine learning models suggest a potential nonlinear dependency of vitamin D on SLEDAI. These findings highlight the importance of these factors in managing vitamin D levels in SLE patients. The study concludes that there is a high prevalence of vitamin D insufficiency in SLE patients. Although a direct linear correlation between the SLEDAI score and vitamin D levels is not observed, machine learning models suggest the possibility of a nonlinear relationship. Furthermore, factors such as Hb, CRP, ESR, and age are identified as more significant in predicting vitamin D levels. Thus, the study suggests that monitoring these factors may be advantageous in managing vitamin D levels in SLE patients. Given the immunological nature of SLE, the potential role of vitamin D in SLE disease activity could be substantial. Therefore, it underscores the need for further large-scale studies to corroborate this hypothesis.

  6. Coffee Shop Sales Analysis

    • kaggle.com
    Updated Apr 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Monis Amir (2024). Coffee Shop Sales Analysis [Dataset]. https://www.kaggle.com/datasets/monisamir/coffee-shop-sales-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 25, 2024
    Dataset provided by
    Kaggle
    Authors
    Monis Amir
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Analyzing Coffee Shop Sales: Excel Insights 📈

    In my first Data Analytics Project, I Discover the secrets of a fictional coffee shop's success with my data-driven analysis. By Analyzing a 5-sheet Excel dataset, I've uncovered valuable sales trends, customer preferences, and insights that can guide future business decisions. 📊☕

    DATA CLEANING 🧹

    • REMOVED DUPLICATES OR IRRELEVANT ENTRIES: Thoroughly eliminated duplicate records and irrelevant data to refine the dataset for analysis.

    • FIXED STRUCTURAL ERRORS: Rectified any inconsistencies or structural issues within the data to ensure uniformity and accuracy.

    • CHECKED FOR DATA CONSISTENCY: Verified the integrity and coherence of the dataset by identifying and resolving any inconsistencies or discrepancies.

    DATA MANIPULATION 🛠️

    • UTILIZED LOOKUPS: Used Excel's lookup functions for efficient data retrieval and analysis.

    • IMPLEMENTED INDEX MATCH: Leveraged the Index Match function to perform advanced data searches and matches.

    • APPLIED SUMIFS FUNCTIONS: Utilized SumIFs to calculate totals based on specified criteria.

    • CALCULATED PROFITS: Used relevant formulas and techniques to determine profit margins and insights from the data.

    PIVOTING THE DATA 𝄜

    • CREATED PIVOT TABLES: Utilized Excel's PivotTable feature to pivot the data for in-depth analysis.

    • FILTERED DATA: Utilized pivot tables to filter and analyze specific subsets of data, enabling focused insights. Specially used in “PEAK HOURS” and “TOP 3 PRODUCTS” charts.

    VISUALIZATION 📊

    • KEY INSIGHTS: Unveiled the grand total sales revenue while also analyzing the average bill per person, offering comprehensive insights into the coffee shop's performance and customer spending habits.

    • SALES TREND ANALYSIS: Used Line chart to compute total sales across various time intervals, revealing valuable insights into evolving sales trends.

    • PEAK HOUR ANALYSIS: Leveraged Clustered Column chart to identify peak sales hours, shedding light on optimal operating times and potential staffing needs.

    • TOP 3 PRODUCTS IDENTIFICATION: Utilized Clustered Bar chart to determine the top three coffee types, facilitating strategic decisions regarding inventory management and marketing focus.

    *I also used a Timeline to visualize chronological data trends and identify key patterns over specific times.

    While it's a significant milestone for me, I recognize that there's always room for growth and improvement. Your feedback and insights are invaluable to me as I continue to refine my skills and tackle future projects. I'm eager to hear your thoughts and suggestions on how I can make my next endeavor even more impactful and insightful.

    THANKS TO: WsCube Tech Mo Chen Alex Freberg

    TOOLS USED: Microsoft Excel

    DataAnalytics #DataAnalyst #ExcelProject #DataVisualization #BusinessIntelligence #SalesAnalysis #DataAnalysis #DataDrivenDecisions

  7. m

    Online-Appendix for: Development of an agent-based First Nation Land Use...

    • data.mendeley.com
    Updated Mar 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Fligg (2024). Online-Appendix for: Development of an agent-based First Nation Land Use Voting Model: experiments in policy adoption at Curve Lake First Nation, Canada [Dataset]. http://doi.org/10.17632/2p3x7cvsp9.3
    Explore at:
    Dataset updated
    Mar 13, 2024
    Authors
    Robert Fligg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Curve Lake First Nation Indian Reserve No. 35, Canada
    Description

    Online-Appendix includes: * The First Nation land-use voting model (FN-LUVM) ABM Netlogo executable file and data. - Overview, Design concepts and Details (ODD) , and MP4 video presentations. - the point rated information for the 156 respondents to the Curve Lake First Nation 2019 land-use survey. - data collected by FN-LUVM for computational experiments 1 and 2, and the statistical analysis conducted, including multinomial logistic regression, spearmans rank, and descriptive analysis on the initial data (LUS19). - Bar charts of 37 computational experiments.

  8. Sales Executive Dashboard Report

    • kaggle.com
    zip
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jogleen Calipon (2025). Sales Executive Dashboard Report [Dataset]. https://www.kaggle.com/datasets/joelearns/sales-executive-dashboard-report
    Explore at:
    zip(3092158 bytes)Available download formats
    Dataset updated
    Aug 1, 2025
    Authors
    Jogleen Calipon
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This project is built on the AdventureWorks dataset, originally provided by Microsoft for SQL Server samples. This comprehensive dataset models a bicycle manufacturer and its sales to global markets, offering a realistic foundation for a data analytics portfolio.

    The raw data can be accessed and downloaded directly from the official Microsoft GitHub repository: https://github.com/microsoft/sql-server-samples/tree/master/samples/databases/adventure-works

    Project Overview

    The work presented in this portfolio project demonstrates my end-to-end data analysis skills, from initial data cleaning and modeling to creating an interactive, insight-driven dashboard. Within this project, you will find examples of various data visualizations and a dashboard layout that follows the F-pattern for optimized user experience.

    I encourage you to download the dataset and follow along with my analysis. Feel free to replicate my work, critique my methods, or build upon it with your own creative insights and improvements. Your feedback and engagement are highly welcomed!

  9. m

    COVID-19 Combined Data-set with Improved Measurement Errors

    • data.mendeley.com
    Updated May 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Afshin Ashofteh (2020). COVID-19 Combined Data-set with Improved Measurement Errors [Dataset]. http://doi.org/10.17632/nw5m4hs3jr.3
    Explore at:
    Dataset updated
    May 13, 2020
    Authors
    Afshin Ashofteh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Public health-related decision-making on policies aimed at controlling the COVID-19 pandemic outbreak depends on complex epidemiological models that are compelled to be robust and use all relevant available data. This data article provides a new combined worldwide COVID-19 dataset obtained from official data sources with improved systematic measurement errors and a dedicated dashboard for online data visualization and summary. The dataset adds new measures and attributes to the normal attributes of official data sources, such as daily mortality, and fatality rates. We used comparative statistical analysis to evaluate the measurement errors of COVID-19 official data collections from the Chinese Center for Disease Control and Prevention (Chinese CDC), World Health Organization (WHO) and European Centre for Disease Prevention and Control (ECDC). The data is collected by using text mining techniques and reviewing pdf reports, metadata, and reference data. The combined dataset includes complete spatial data such as countries area, international number of countries, Alpha-2 code, Alpha-3 code, latitude, longitude, and some additional attributes such as population. The improved dataset benefits from major corrections on the referenced data sets and official reports such as adjustments in the reporting dates, which suffered from a one to two days lag, removing negative values, detecting unreasonable changes in historical data in new reports and corrections on systematic measurement errors, which have been increasing as the pandemic outbreak spreads and more countries contribute data for the official repositories. Additionally, the root mean square error of attributes in the paired comparison of datasets was used to identify the main data problems. The data for China is presented separately and in more detail, and it has been extracted from the attached reports available on the main page of the CCDC website. This dataset is a comprehensive and reliable source of worldwide COVID-19 data that can be used in epidemiological models assessing the magnitude and timeline for confirmed cases, long-term predictions of deaths or hospital utilization, the effects of quarantine, stay-at-home orders and other social distancing measures, the pandemic’s turning point or in economic and social impact analysis, helping to inform national and local authorities on how to implement an adaptive response approach to re-opening the economy, re-open schools, alleviate business and social distancing restrictions, design economic programs or allow sports events to resume.

  10. Data from: Evaluating Supplemental Samples in Longitudinal Research:...

    • tandf.figshare.com
    txt
    Updated Feb 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laura K. Taylor; Xin Tong; Scott E. Maxwell (2024). Evaluating Supplemental Samples in Longitudinal Research: Replacement and Refreshment Approaches [Dataset]. http://doi.org/10.6084/m9.figshare.12162072.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 9, 2024
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Laura K. Taylor; Xin Tong; Scott E. Maxwell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Despite the wide application of longitudinal studies, they are often plagued by missing data and attrition. The majority of methodological approaches focus on participant retention or modern missing data analysis procedures. This paper, however, takes a new approach by examining how researchers may supplement the sample with additional participants. First, refreshment samples use the same selection criteria as the initial study. Second, replacement samples identify auxiliary variables that may help explain patterns of missingness and select new participants based on those characteristics. A simulation study compares these two strategies for a linear growth model with five measurement occasions. Overall, the results suggest that refreshment samples lead to less relative bias, greater relative efficiency, and more acceptable coverage rates than replacement samples or not supplementing the missing participants in any way. Refreshment samples also have high statistical power. The comparative strengths of the refreshment approach are further illustrated through a real data example. These findings have implications for assessing change over time when researching at-risk samples with high levels of permanent attrition.

  11. n

    ECMWF ERA5t: surface level analysis parameter data

    • data-search.nerc.ac.uk
    • catalogue.ceda.ac.uk
    Updated Jul 28, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). ECMWF ERA5t: surface level analysis parameter data [Dataset]. https://data-search.nerc.ac.uk/geonetwork/srv/search?format=Data%20are%20netCDF%20formatted%20with%20internal%20compression.
    Explore at:
    Dataset updated
    Jul 28, 2021
    Description

    This dataset contains ERA5 initial release (ERA5t) surface level analysis parameter data. ERA5t is the European Centre for Medium-Range Weather Forecasts (ECWMF) ERA5 reanalysis project initial release available upto 5 days behind the present data. CEDA will maintain a 6 month rolling archive of these data with overlap to the verified ERA5 data - see linked datasets on this record. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record. Model level analysis and surface forecast data to complement this dataset are also available. Data from a 10 member ensemble, run at lower spatial and temporal resolution, were also produced to provide an uncertainty estimate for the output from the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation producing data in this dataset.

  12. Z

    Additional materials used in the paper "Towards Continuous Scientific Data...

    • data-staging.niaid.nih.gov
    • data.niaid.nih.gov
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adusumilli, Ravali; Ratnakar, Varun; Garijo, Daniel; Gil, Yolanda; Mallick, Parag (2020). Additional materials used in the paper "Towards Continuous Scientific Data Analysis and Hypothesis Evolution" on the Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) [Dataset]. https://data-staging.niaid.nih.gov/resources?id=zenodo_190374
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Information Sciences Institute
    Stanford School of Medicine, Canary Center for Early Cancer Detection, Stanford University
    Authors
    Adusumilli, Ravali; Ratnakar, Varun; Garijo, Daniel; Gil, Yolanda; Mallick, Parag
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This bundle contains a web page describing the materials used in the evaluation of the paper, along with references to the software and datasets, provenance metadata and workflows used. All the scripts and descriptions are included as well.

  13. ECMWF ERA5: ensemble spreads of surface level analysis parameter data

    • catalogue.ceda.ac.uk
    • data-search.nerc.ac.uk
    Updated Jul 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (ECMWF) (2025). ECMWF ERA5: ensemble spreads of surface level analysis parameter data [Dataset]. https://catalogue.ceda.ac.uk/uuid/3c3c845f1dfb4788a2577651cd758ee9
    Explore at:
    Dataset updated
    Jul 7, 2025
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    European Centre for Medium-Range Weather Forecasts (ECMWF)
    License

    https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf

    Area covered
    Earth
    Variables measured
    time, latitude, longitude, Skin temperature, Total cloud cover, 2 metre temperature, cloud_area_fraction, Sea ice area fraction, sea_ice_area_fraction, Mean sea level pressure, and 7 more
    Description

    This dataset contains ensemble spreads for the ERA5 surface level analysis parameter data ensemble means (see linked dataset). ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. The ensemble means and spreads are calculated from the ERA5 10 member ensemble, run at a reduced resolution compared with the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation, for which these data have been produced to provide an uncertainty estimate. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.

    Note, ensemble standard deviation is often referred to as ensemble spread and is calculated as the standard deviation of the 10-members in the ensemble (i.e., including the control). It is not the sample standard deviation, and thus were calculated by dividing by 10 rather than 9 (N-1). See linked datasets for ensemble member and ensemble mean data.

    The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects.

    An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.

  14. m

    Rentokil Initial plc Alternative Data Analytics

    • meyka.com
    Updated Oct 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meyka (2025). Rentokil Initial plc Alternative Data Analytics [Dataset]. https://meyka.com/stock/RTO/alt-data/
    Explore at:
    Dataset updated
    Oct 2, 2025
    Dataset provided by
    Meyka
    Description

    Non-traditional data signals from social media and employment platforms for RTO stock analysis

  15. n

    Data from: Designing industry 4.0 implementation from the initial background...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Nov 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Valérie Rocchi; Daniel Brissaud (2021). Designing industry 4.0 implementation from the initial background and context of companies [Dataset]. http://doi.org/10.5061/dryad.qrfj6q5h6
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 3, 2021
    Dataset provided by
    Université Grenoble Alpes
    Authors
    Valérie Rocchi; Daniel Brissaud
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Industry 4.0 is a promising concept that allows industries to meet customers’ demands with flexible and resilient processes, and highly personalised products. This concept is made up of different dimensions. For a long time, innovative digital technology has been thought of as the only dimension to succeed in digital transformation projects. Next, other dimensions have been identified such as organisation, strategy, and human resources as being key while rolling out digital technology in factories. From these findings, researchers have designed industry 4.0 theoretical models and then, built readiness models that allow for analysing the gap between the company initial situation and the theoretical model. Nevertheless, this purely deductive approach does not take into consideration a company’s background and context, and eventually favours one single digital transformation model. This article aims at analysing four actual digital transformation projects and demonstrating that the digital transformation’s success or failure depends on the combination of two variables related to a company’s background and context. This research is based on a double approach: deductive and inductive. First, a literature review has been carried out to define industry 4.0 concept and its main dimensions and digital transformation success factors, as well as barriers, have been investigated. Second, a qualitative survey has been designed to study in-depth four actual industry digital transformation projects, their genesis as well as their execution, to analyse the key variables in succeeding or failing. 46 semi-structured interviews were carried out with projects’ members. The interviews have been analysed with thematic content analysis. Then, each digital transformation project has been modelled regarding the key variables and analysed with regards to succeeding or failing. Investigated projects have consolidated the models of digital transformation. Finally, nine digital transformation models have been identified. Industry practitioners could design their digital transformation project organisation and strategy according to the right model.

    Methods This study relies on a qualitative survey carried on four french industries based on semi-structured interviews.

    The method used to analyse the collected data is the analysis content and especially thematic analysis.

  16. d

    Data from: Global-scale modeling of early factors and country-specific...

    • datadryad.org
    • data.niaid.nih.gov
    zip
    Updated Nov 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sujoy Ghosh (2022). Global-scale modeling of early factors and country-specific trajectories of COVID-19 incidence: a cross-sectional study of the first 6 months of the pandemic [Dataset]. http://doi.org/10.5061/dryad.612jm6465
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 29, 2022
    Dataset provided by
    Dryad
    Authors
    Sujoy Ghosh
    Time period covered
    Oct 18, 2022
    Description

    Any software capable of opening Microsoft Excel files will be adequate.

  17. Rmd code logistic federated.

    • plos.figshare.com
    txt
    Updated Nov 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Romain Jégou; Camille Bachot; Charles Monteil; Eric Boernert; Jacek Chmiel; Mathieu Boucher; David Pau (2024). Rmd code logistic federated. [Dataset]. http://doi.org/10.1371/journal.pone.0312697.s010
    Explore at:
    txtAvailable download formats
    Dataset updated
    Nov 14, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Romain Jégou; Camille Bachot; Charles Monteil; Eric Boernert; Jacek Chmiel; Mathieu Boucher; David Pau
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    MethodsThe objective of this project was to determine the capability of a federated analysis approach using DataSHIELD to maintain the level of results of a classical centralized analysis in a real-world setting. This research was carried out on an anonymous synthetic longitudinal real-world oncology cohort randomly splitted in three local databases, mimicking three healthcare organizations, stored in a federated data platform integrating DataSHIELD. No individual data transfer, statistics were calculated simultaneously but in parallel within each healthcare organization and only summary statistics (aggregates) were provided back to the federated data analyst.Descriptive statistics, survival analysis, regression models and correlation were first performed on the centralized approach and then reproduced on the federated approach. The results were then compared between the two approaches.ResultsThe cohort was splitted in three samples (N1 = 157 patients, N2 = 94 and N3 = 64), 11 derived variables and four types of analyses were generated. All analyses were successfully reproduced using DataSHIELD, except for one descriptive variable due to data disclosure limitation in the federated environment, showing the good capability of DataSHIELD. For descriptive statistics, exactly equivalent results were found for the federated and centralized approaches, except some differences for position measures. Estimates of univariate regression models were similar, with a loss of accuracy observed for multivariate models due to source database variability.ConclusionOur project showed a practical implementation and use case of a real-world federated approach using DataSHIELD. The capability and accuracy of common data manipulation and analysis were satisfying, and the flexibility of the tool enabled the production of a variety of analyses while preserving the privacy of individual data. The DataSHIELD forum was also a practical source of information and support. In order to find the right balance between privacy and accuracy of the analysis, set-up of privacy requirements should be established prior to the start of the analysis, as well as a data quality review of the participating healthcare organization.

  18. n

    ECMWF ERA5: model level analysis parameter data

    • data-search.nerc.ac.uk
    • catalogue.ceda.ac.uk
    Updated Feb 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ECMWF ERA5: model level analysis parameter data [Dataset]. https://data-search.nerc.ac.uk/geonetwork/srv/search?keyword=model%20level
    Explore at:
    Dataset updated
    Feb 7, 2022
    Description

    This dataset contains ERA5 model level analysis parameter data. ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record. Surface level analysis and forecast data to complement this dataset are also available. Data from a 10 member ensemble, run at lower spatial and temporal resolution, were also produced to provide an uncertainty estimate for the output from the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation producing data in this dataset. The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects. An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.

  19. U

    Beginning Postsecondary Students Longitudinal Study Second Follow-up Data...

    • dataverse-staging.rdmc.unc.edu
    • search.gesis.org
    Updated Nov 30, 2007
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNC Dataverse (2007). Beginning Postsecondary Students Longitudinal Study Second Follow-up Data Analysis System (DAS), BPS:96/01 [Dataset]. https://dataverse-staging.rdmc.unc.edu/dataset.xhtml?persistentId=hdl:1902.29/CD-0142
    Explore at:
    Dataset updated
    Nov 30, 2007
    Dataset provided by
    UNC Dataverse
    License

    https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=hdl:1902.29/CD-0142https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=hdl:1902.29/CD-0142

    Time period covered
    1972 - 2001
    Description

    "Studies included on this CD are BPS:96/2001 Beginning Postsecondary Students 1996/2001 Longitudinal Study and all other NCES data analysis systems available as of December, 2002. Additional studies on the CD-ROM include BPS:90/94 Beginning Postsecondary Students-Second Follow-up; BB:97 Baccalaureate and Beyond Second Follow- up; National Postsecondary Student Aid Survey (NPSAS) NPSAS:2000 Undergraduate Students; NPSAS:2000 Graduate and First-Professional Students; NPSAS:96 Undergraduate Stud ents; NPSAS:96 Graduate and First- Professional Students; NPSAS:93 Undergraduate Students; NPSAS:93 Graduate Students; NPSAS:90 Undergraduate Students; NPSAS:90 Graduate/First Professionals; NPSAS:87 Undergraduates; NPSAS:87 Graduate and First-Professional Students; National Study of Postsecondary Faculty: 1999; 1993 National Study of Postsecondary Faculty; National Survey of Postsecondary Faculty: 1987; National Education Longitudinal Study: 1988/2000; High School & Beyond: Sophomores, 1980-1992; High School & Beyond: 1980-86 Seniors; National Longitudinal Study of the High School Class of 1972; and National Household Education Survey of Adult Education 1995."Note to Users: This CD is part of a collection located in the Data Archive of the Odum Institute for Research in Social Science at the University of North Carolina in Chapel Hill. The collection is located in Room 10, Manning Hall. Users may check the CDs out subscribing to the honor s ystem. Items may be checked out for a period of two weeks. Loan forms are located adjacent to the collection.

  20. d

    Analysis of Pre-Retrofit Building and Utility Data - Southeast United States...

    • catalog.data.gov
    Updated Jul 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ibacos Innovation (2025). Analysis of Pre-Retrofit Building and Utility Data - Southeast United States [Dataset]. https://catalog.data.gov/dataset/analysis-of-pre-retrofit-building-and-utility-data-southeast-united-states
    Explore at:
    Dataset updated
    Jul 22, 2025
    Dataset provided by
    Ibacos Innovation
    Area covered
    Southeastern United States, United States
    Description

    This project delves into the workflow and results of regression models on monthly and daily utility data (meter readings of electricity consumption), outlining a process for screening and gathering useful results from inverse models. Energy modeling predictions created in Building Energy Optimization software (BEopt) Version 2.0.0.3 (BEopt 2013) are used to infer causes of differences among similar homes. This simple data analysis is useful for the purposes of targeting audits and maximizing the accuracy of energy savings predictions with minimal costs. The data for this project are from two adjacent military housing communities of 1,166 houses in the southeastern United States. One community was built in the 1970s, and the other was built in the mid-2000s. Both communities are all electric; the houses in the older community were retrofitted with ground source heat pumps in the early 1990s, and the newer community was built to an early version of ENERGY STAR with air source heat pumps. The houses in the older community will receive phased retrofits (approximately 10 per month) in the coming years. All houses have had daily electricity metering readings since early 2011. This project explores a dataset at a simple level and describes applications of a utility data normalization. There are far more sophisticated ways to analyze a dataset of dynamic, high resolution data; however, this report focuses on simple processes to create big-picture overviews of building portfolios as an initial step in a community-scale analysis. TO4 9.1.2: Comm. Scale Military Housing Upgrades

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Celeste Saulo (2025). GDAS Analysis (initial data) [Dataset]. http://doi.org/10.26023/PWB1-C6X7-PD0H

GDAS Analysis (initial data)

Explore at:
gribAvailable download formats
Dataset updated
Oct 7, 2025
Authors
Celeste Saulo
Time period covered
Jan 17, 2003 - Jan 19, 2003
Area covered
Earth
Description

This dataset contains the initial and boundary conditions in GRIB format files to be used as input to the models. SALLJEX was funded by NOAA/OGP, NSF(ATM0106776) and funding agencies from Brazil FAPESP Grant 01/13816-1) and Argentina (ANPCYT PICT 07-06671, UBACyT 055)

Search
Clear search
Close search
Google apps
Main menu