100+ datasets found
  1. r

    R codes and dataset for Visualisation of Diachronic Constructional Change...

    • researchdata.edu.au
    • bridges.monash.edu
    Updated Apr 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gede Primahadi Wijaya Rajeg; Gede Primahadi Wijaya Rajeg (2019). R codes and dataset for Visualisation of Diachronic Constructional Change using Motion Chart [Dataset]. http://doi.org/10.26180/5c844c7a81768
    Explore at:
    Dataset updated
    Apr 1, 2019
    Dataset provided by
    Monash University
    Authors
    Gede Primahadi Wijaya Rajeg; Gede Primahadi Wijaya Rajeg
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Publication


    Primahadi Wijaya R., Gede. 2014. Visualisation of diachronic constructional change using Motion Chart. In Zane Goebel, J. Herudjati Purwoko, Suharno, M. Suryadi & Yusuf Al Aried (eds.). Proceedings: International Seminar on Language Maintenance and Shift IV (LAMAS IV), 267-270. Semarang: Universitas Diponegoro. doi: https://doi.org/10.4225/03/58f5c23dd8387

    Description of R codes and data files in the repository

    This repository is imported from its GitHub repo. Versioning of this figshare repository is associated with the GitHub repo's Release. So, check the Releases page for updates (the next version is to include the unified version of the codes in the first release with the tidyverse).

    The raw input data consists of two files (i.e. will_INF.txt and go_INF.txt). They represent the co-occurrence frequency of top-200 infinitival collocates for will and be going to respectively across the twenty decades of Corpus of Historical American English (from the 1810s to the 2000s).

    These two input files are used in the R code file 1-script-create-input-data-raw.r. The codes preprocess and combine the two files into a long format data frame consisting of the following columns: (i) decade, (ii) coll (for "collocate"), (iii) BE going to (for frequency of the collocates with be going to) and (iv) will (for frequency of the collocates with will); it is available in the input_data_raw.txt.

    Then, the script 2-script-create-motion-chart-input-data.R processes the input_data_raw.txt for normalising the co-occurrence frequency of the collocates per million words (the COHA size and normalising base frequency are available in coha_size.txt). The output from the second script is input_data_futurate.txt.

    Next, input_data_futurate.txt contains the relevant input data for generating (i) the static motion chart as an image plot in the publication (using the script 3-script-create-motion-chart-plot.R), and (ii) the dynamic motion chart (using the script 4-script-motion-chart-dynamic.R).

    The repository adopts the project-oriented workflow in RStudio; double-click on the Future Constructions.Rproj file to open an RStudio session whose working directory is associated with the contents of this repository.

  2. d

    Child 1: Nutrient and streamflow model-input data

    • catalog.data.gov
    • data.usgs.gov
    Updated Oct 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Child 1: Nutrient and streamflow model-input data [Dataset]. https://catalog.data.gov/dataset/child-1-nutrient-and-streamflow-model-input-data
    Explore at:
    Dataset updated
    Oct 8, 2025
    Dataset provided by
    U.S. Geological Survey
    Description

    Trends in nutrient fluxes and streamflow for selected tributaries in the Lake Erie watershed were calculated using monitoring data at 10 locations. Trends in flow-normalized nutrient fluxes were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). Site information and streamflow and water-quality records are contained in 3 zipped files named as follows: INFO (site information), Daily (daily streamflow records), and Sample (water-quality records). The INFO, Daily (flow), and Sample files contain the input data, by water-quality parameter and by site as .csv files, used to run trend analyses. These files were generated by the R (version 3.1.2) software package called EGRET - Exploration and Graphics for River Trends (version 2.5.1) (Hirsch and DeCicco, 2015), and can be used directly as input to run graphical procedures and WRTDS trend analyses using EGRET R software. The .csv files are identified according to water-quality parameter (TP, SRP, TN, NO23, and TKN) and site reference number (e.g. TPfiles.1.INFO.csv, SRPfiles.1.INFO.csv, TPfiles.2.INFO.csv, etc.). Water-quality parameter abbreviations and site reference numbers are defined in the file "Site-summary_table.csv" on the landing page, where there is also a site-location map ("Site_map.pdf"). Parameter information details, including abbreviation definitions, appear in the abstract on the Landing Page. SRP data records were available at only 6 of the 10 trend sites, which are identified in the file "site-summary_table.csv" (see landing page) as monitored by the organization NCWQR (National Center for Water Quality Research). The SRP sites are: RAIS, MAUW, SAND, HONE, ROCK, and CUYA. The model-input dataset is presented in 3 parts: 1. INFO.zip (site information) 2. Daily.zip (daily streamflow records) 3. Sample.zip (water-quality records) Reference: Hirsch, R.M., and De Cicco, L.A., 2015 (revised). User Guide to Exploration and Graphics for RivEr Trends (EGRET) and dataRetrieval: R Packages for Hydrologic Data, Version 2.0, U.S. Geological Survey Techniques Methods, 4-A10. U.S. Geological Survey, Reston, VA., 93 p. (at: http://dx.doi.org/10.3133/tm4A10).

  3. n

    Data from: Generalizable EHR-R-REDCap pipeline for a national...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Jan 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sophia Shalhout; Farees Saqlain; Kayla Wright; Oladayo Akinyemi; David Miller (2022). Generalizable EHR-R-REDCap pipeline for a national multi-institutional rare tumor patient registry [Dataset]. http://doi.org/10.5061/dryad.rjdfn2zcm
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 9, 2022
    Dataset provided by
    Harvard Medical School
    Massachusetts General Hospital
    Authors
    Sophia Shalhout; Farees Saqlain; Kayla Wright; Oladayo Akinyemi; David Miller
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Objective: To develop a clinical informatics pipeline designed to capture large-scale structured EHR data for a national patient registry.

    Materials and Methods: The EHR-R-REDCap pipeline is implemented using R-statistical software to remap and import structured EHR data into the REDCap-based multi-institutional Merkel Cell Carcinoma (MCC) Patient Registry using an adaptable data dictionary.

    Results: Clinical laboratory data were extracted from EPIC Clarity across several participating institutions. Labs were transformed, remapped and imported into the MCC registry using the EHR labs abstraction (eLAB) pipeline. Forty-nine clinical tests encompassing 482,450 results were imported into the registry for 1,109 enrolled MCC patients. Data-quality assessment revealed highly accurate, valid labs. Univariate modeling was performed for labs at baseline on overall survival (N=176) using this clinical informatics pipeline.

    Conclusion: We demonstrate feasibility of the facile eLAB workflow. EHR data is successfully transformed, and bulk-loaded/imported into a REDCap-based national registry to execute real-world data analysis and interoperability.

    Methods eLAB Development and Source Code (R statistical software):

    eLAB is written in R (version 4.0.3), and utilizes the following packages for processing: DescTools, REDCapR, reshape2, splitstackshape, readxl, survival, survminer, and tidyverse. Source code for eLAB can be downloaded directly (https://github.com/TheMillerLab/eLAB).

    eLAB reformats EHR data abstracted for an identified population of patients (e.g. medical record numbers (MRN)/name list) under an Institutional Review Board (IRB)-approved protocol. The MCCPR does not host MRNs/names and eLAB converts these to MCCPR assigned record identification numbers (record_id) before import for de-identification.

    Functions were written to remap EHR bulk lab data pulls/queries from several sources including Clarity/Crystal reports or institutional EDW including Research Patient Data Registry (RPDR) at MGB. The input, a csv/delimited file of labs for user-defined patients, may vary. Thus, users may need to adapt the initial data wrangling script based on the data input format. However, the downstream transformation, code-lab lookup tables, outcomes analysis, and LOINC remapping are standard for use with the provided REDCap Data Dictionary, DataDictionary_eLAB.csv. The available R-markdown ((https://github.com/TheMillerLab/eLAB) provides suggestions and instructions on where or when upfront script modifications may be necessary to accommodate input variability.

    The eLAB pipeline takes several inputs. For example, the input for use with the ‘ehr_format(dt)’ single-line command is non-tabular data assigned as R object ‘dt’ with 4 columns: 1) Patient Name (MRN), 2) Collection Date, 3) Collection Time, and 4) Lab Results wherein several lab panels are in one data frame cell. A mock dataset in this ‘untidy-format’ is provided for demonstration purposes (https://github.com/TheMillerLab/eLAB).

    Bulk lab data pulls often result in subtypes of the same lab. For example, potassium labs are reported as “Potassium,” “Potassium-External,” “Potassium(POC),” “Potassium,whole-bld,” “Potassium-Level-External,” “Potassium,venous,” and “Potassium-whole-bld/plasma.” eLAB utilizes a key-value lookup table with ~300 lab subtypes for remapping labs to the Data Dictionary (DD) code. eLAB reformats/accepts only those lab units pre-defined by the registry DD. The lab lookup table is provided for direct use or may be re-configured/updated to meet end-user specifications. eLAB is designed to remap, transform, and filter/adjust value units of semi-structured/structured bulk laboratory values data pulls from the EHR to align with the pre-defined code of the DD.

    Data Dictionary (DD)

    EHR clinical laboratory data is captured in REDCap using the ‘Labs’ repeating instrument (Supplemental Figures 1-2). The DD is provided for use by researchers at REDCap-participating institutions and is optimized to accommodate the same lab-type captured more than once on the same day for the same patient. The instrument captures 35 clinical lab types. The DD serves several major purposes in the eLAB pipeline. First, it defines every lab type of interest and associated lab unit of interest with a set field/variable name. It also restricts/defines the type of data allowed for entry for each data field, such as a string or numerics. The DD is uploaded into REDCap by every participating site/collaborator and ensures each site collects and codes the data the same way. Automation pipelines, such as eLAB, are designed to remap/clean and reformat data/units utilizing key-value look-up tables that filter and select only the labs/units of interest. eLAB ensures the data pulled from the EHR contains the correct unit and format pre-configured by the DD. The use of the same DD at every participating site ensures that the data field code, format, and relationships in the database are uniform across each site to allow for the simple aggregation of the multi-site data. For example, since every site in the MCCPR uses the same DD, aggregation is efficient and different site csv files are simply combined.

    Study Cohort

    This study was approved by the MGB IRB. Search of the EHR was performed to identify patients diagnosed with MCC between 1975-2021 (N=1,109) for inclusion in the MCCPR. Subjects diagnosed with primary cutaneous MCC between 2016-2019 (N= 176) were included in the test cohort for exploratory studies of lab result associations with overall survival (OS) using eLAB.

    Statistical Analysis

    OS is defined as the time from date of MCC diagnosis to date of death. Data was censored at the date of the last follow-up visit if no death event occurred. Univariable Cox proportional hazard modeling was performed among all lab predictors. Due to the hypothesis-generating nature of the work, p-values were exploratory and Bonferroni corrections were not applied.

  4. d

    Data from: Input data, model output, and R scripts for a machine learning...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Input data, model output, and R scripts for a machine learning streamflow model on the Wyoming Range, Wyoming, 2012–17 [Dataset]. https://catalog.data.gov/dataset/input-data-model-output-and-r-scripts-for-a-machine-learning-streamflow-model-on-the-wyomi
    Explore at:
    Dataset updated
    Nov 20, 2025
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Wyoming, Wyoming Range
    Description

    A machine learning streamflow (MLFLOW) model was developed in R (model is in the Rscripts folder) for modeling monthly streamflow from 2012 to 2017 in three watersheds on the Wyoming Range in the upper Green River basin. Geospatial information for 125 site features (vector data are in the Sites.shp file) and discrete streamflow observation data and environmental predictor data were used in fitting the MLFLOW model and predicting with the fitted model. Tabular calibration and validation data are in the Model_Fitting_Site_Data.csv file, totaling 971 discrete observations and predictions of monthly streamflow. Geospatial information for 17,518 stream grid cells (raster data are in the Streams.tif file) and environmental predictor data were used for continuous streamflow predictions with the MLFLOW model. Tabular prediction data for all the study area (17,518 stream grid cells) and study period (72 months; 2012–17) are in the Model_Prediction_Stream_Data.csv file, totaling 1,261,296 predictions of spatially and temporally continuous monthly streamflow. Additional information about the datasets is in the metadata included in the four zipped dataset files and about the MLFLOW model is in the readme included in the zipped model archive folder.

  5. m

    Input files required for R code to analyse data for the PAFA project

    • figshare.manchester.ac.uk
    csv
    Updated Nov 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaufa Shareef (2025). Input files required for R code to analyse data for the PAFA project [Dataset]. http://doi.org/10.48420/29340302.v1
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 22, 2025
    Dataset provided by
    University of Manchester
    Authors
    Shaufa Shareef
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This folder contains the input files required for the R code used to analyse data for the Patterns and prevalence of food allergy in adulthood in the UK (PAFA) project. This includes:pafa_data_dictionary_anonymised.csv: The data dictionary describing each column in the anonymised PAFA dataset. "snomed_field_name" lists all column names in the dataset; "field_name_extended" lists the original column name in the REDCap data download, which was then recoded to include SNOMED and FoodEx2 codes for future analyses; "variable_field_name" denotes the corresponding coded field name in the REDCap form; "field_type" denotes the type of REDCap field; "field_label" describes the field name in plain language; "choices_calculations_or_slider_labels" describes the choices provided to the participant for that question.foodex2_codes_with_other.csv: A CSV file with key-value pairs for identifying foods coded in the dataset.

  6. Data from: Optimized SMRT-UMI protocol produces highly accurate sequence...

    • data.niaid.nih.gov
    • zenodo.org
    • +1more
    zip
    Updated Dec 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dylan Westfall; Mullins James (2023). Optimized SMRT-UMI protocol produces highly accurate sequence datasets from diverse populations – application to HIV-1 quasispecies [Dataset]. http://doi.org/10.5061/dryad.w3r2280w0
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 7, 2023
    Dataset provided by
    HIV Prevention Trials Networkhttp://www.hptn.org/
    National Institute of Allergy and Infectious Diseaseshttp://www.niaid.nih.gov/
    HIV Vaccine Trials Networkhttp://www.hvtn.org/
    PEPFAR
    Authors
    Dylan Westfall; Mullins James
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Pathogen diversity resulting in quasispecies can enable persistence and adaptation to host defenses and therapies. However, accurate quasispecies characterization can be impeded by errors introduced during sample handling and sequencing which can require extensive optimizations to overcome. We present complete laboratory and bioinformatics workflows to overcome many of these hurdles. The Pacific Biosciences single molecule real-time platform was used to sequence PCR amplicons derived from cDNA templates tagged with universal molecular identifiers (SMRT-UMI). Optimized laboratory protocols were developed through extensive testing of different sample preparation conditions to minimize between-template recombination during PCR and the use of UMI allowed accurate template quantitation as well as removal of point mutations introduced during PCR and sequencing to produce a highly accurate consensus sequence from each template. Handling of the large datasets produced from SMRT-UMI sequencing was facilitated by a novel bioinformatic pipeline, Probabilistic Offspring Resolver for Primer IDs (PORPIDpipeline), that automatically filters and parses reads by sample, identifies and discards reads with UMIs likely created from PCR and sequencing errors, generates consensus sequences, checks for contamination within the dataset, and removes any sequence with evidence of PCR recombination or early cycle PCR errors, resulting in highly accurate sequence datasets. The optimized SMRT-UMI sequencing method presented here represents a highly adaptable and established starting point for accurate sequencing of diverse pathogens. These methods are illustrated through characterization of human immunodeficiency virus (HIV) quasispecies. Methods This serves as an overview of the analysis performed on PacBio sequence data that is summarized in Analysis Flowchart.pdf and was used as primary data for the paper by Westfall et al. "Optimized SMRT-UMI protocol produces highly accurate sequence datasets from diverse populations – application to HIV-1 quasispecies" Five different PacBio sequencing datasets were used for this analysis: M027, M2199, M1567, M004, and M005 For the datasets which were indexed (M027, M2199), CCS reads from PacBio sequencing files and the chunked_demux_config files were used as input for the chunked_demux pipeline. Each config file lists the different Index primers added during PCR to each sample. The pipeline produces one fastq file for each Index primer combination in the config. For example, in dataset M027 there were 3–4 samples using each Index combination. The fastq files from each demultiplexed read set were moved to the sUMI_dUMI_comparison pipeline fastq folder for further demultiplexing by sample and consensus generation with that pipeline. More information about the chunked_demux pipeline can be found in the README.md file on GitHub. The demultiplexed read collections from the chunked_demux pipeline or CCS read files from datasets which were not indexed (M1567, M004, M005) were each used as input for the sUMI_dUMI_comparison pipeline along with each dataset's config file. Each config file contains the primer sequences for each sample (including the sample ID block in the cDNA primer) and further demultiplexes the reads to prepare data tables summarizing all of the UMI sequences and counts for each family (tagged.tar.gz) as well as consensus sequences from each sUMI and rank 1 dUMI family (consensus.tar.gz). More information about the sUMI_dUMI_comparison pipeline can be found in the paper and the README.md file on GitHub. The consensus.tar.gz and tagged.tar.gz files were moved from sUMI_dUMI_comparison pipeline directory on the server to the Pipeline_Outputs folder in this analysis directory for each dataset and appended with the dataset name (e.g. consensus_M027.tar.gz). Also in this analysis directory is a Sample_Info_Table.csv containing information about how each of the samples was prepared, such as purification methods and number of PCRs. There are also three other folders: Sequence_Analysis, Indentifying_Recombinant_Reads, and Figures. Each has an .Rmd file with the same name inside which is used to collect, summarize, and analyze the data. All of these collections of code were written and executed in RStudio to track notes and summarize results. Sequence_Analysis.Rmd has instructions to decompress all of the consensus.tar.gz files, combine them, and create two fasta files, one with all sUMI and one with all dUMI sequences. Using these as input, two data tables were created, that summarize all sequences and read counts for each sample that pass various criteria. These are used to help create Table 2 and as input for Indentifying_Recombinant_Reads.Rmd and Figures.Rmd. Next, 2 fasta files containing all of the rank 1 dUMI sequences and the matching sUMI sequences were created. These were used as input for the python script compare_seqs.py which identifies any matched sequences that are different between sUMI and dUMI read collections. This information was also used to help create Table 2. Finally, to populate the table with the number of sequences and bases in each sequence subset of interest, different sequence collections were saved and viewed in the Geneious program. To investigate the cause of sequences where the sUMI and dUMI sequences do not match, tagged.tar.gz was decompressed and for each family with discordant sUMI and dUMI sequences the reads from the UMI1_keeping directory were aligned using geneious. Reads from dUMI families failing the 0.7 filter were also aligned in Genious. The uncompressed tagged folder was then removed to save space. These read collections contain all of the reads in a UMI1 family and still include the UMI2 sequence. By examining the alignment and specifically the UMI2 sequences, the site of the discordance and its case were identified for each family as described in the paper. These alignments were saved as "Sequence Alignments.geneious". The counts of how many families were the result of PCR recombination were used in the body of the paper. Using Identifying_Recombinant_Reads.Rmd, the dUMI_ranked.csv file from each sample was extracted from all of the tagged.tar.gz files, combined and used as input to create a single dataset containing all UMI information from all samples. This file dUMI_df.csv was used as input for Figures.Rmd. Figures.Rmd used dUMI_df.csv, sequence_counts.csv, and read_counts.csv as input to create draft figures and then individual datasets for eachFigure. These were copied into Prism software to create the final figures for the paper.

  7. w

    Dataset of books called An introduction to data analysis in R : hands-on...

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called An introduction to data analysis in R : hands-on coding, data mining, visualization and statistics from scratch [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=An+introduction+to+data+analysis+in+R+%3A+hands-on+coding%2C+data+mining%2C+visualization+and+statistics+from+scratch
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 1 row and is filtered where the book is An introduction to data analysis in R : hands-on coding, data mining, visualization and statistics from scratch. It features 7 columns including author, publication date, language, and book publisher.

  8. Dataset 5: R script and input data

    • figshare.com
    txt
    Updated Jan 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ulrike Bayr (2021). Dataset 5: R script and input data [Dataset]. http://doi.org/10.6084/m9.figshare.12301307.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 21, 2021
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Ulrike Bayr
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    1. CSV-files as input for R code containing results from the GIS-analysis for points and polygons2. CSV-file with 3D-errors based on DTM 1m and DTM 10m (output from WSL Monoplotting Tool)2. R script
  9. AWC to 60cm DSM data of the Roper catchment NT generated by the Roper River...

    • data.csiro.au
    • researchdata.edu.au
    Updated Apr 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ian Watson; Mark Thomas; Seonaid Philip; Uta Stockmann; Ross Searle; Linda Gregory; jason hill; Elisabeth Bui; John Gallant; Peter R Wilson; Peter Wilson (2024). AWC to 60cm DSM data of the Roper catchment NT generated by the Roper River Water Resource Assessment [Dataset]. http://doi.org/10.25919/y0v9-7b58
    Explore at:
    Dataset updated
    Apr 16, 2024
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    Ian Watson; Mark Thomas; Seonaid Philip; Uta Stockmann; Ross Searle; Linda Gregory; jason hill; Elisabeth Bui; John Gallant; Peter R Wilson; Peter Wilson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 1, 2020 - Jun 30, 2023
    Area covered
    Dataset funded by
    CSIROhttp://www.csiro.au/
    Northern Territory Department of Environment, Parks and Water Security
    Description

    AWC to 60cm is one of 18 attributes of soils chosen to underpin the land suitability assessment of the Roper River Water Resource Assessment (ROWRA) through the digital soil mapping process (DSM). AWC (available water capacity) indicates the ability of a soil to retain and supply water for plant growth. This AWC raster data represents a modelled dataset of AWC to 60cm (mm of water to 60cm of soil depth) and is derived from analysed site data, spline calculations and environmental covariates. AWC is a parameter used in land suitability assessments for rainfed cropping and for water use efficiency in irrigated land uses. This raster data provides improved soil information used to underpin and identify opportunities and promote detailed investigation for a range of sustainable regional development options and was created within the ‘Land Suitability’ activity of the CSIRO ROWRA. A companion dataset and statistics reflecting reliability of this data are also provided and can be found described in the lineage section of this metadata record. Processing information is supplied in ranger R scripts and attributes were modelled using a Random Forest approach. The DSM process is described in the CSIRO ROWRA published report ‘Soils and land suitability for the Roper catchment, Northern Territory’. A technical report from the CSIRO Roper River Water Resource Assessment to the Government of Australia. The Roper River Water Resource Assessment provides a comprehensive overview and integrated evaluation of the feasibility of aquaculture and agriculture development in the Roper catchment NT as well as the ecological, social and cultural (indigenous water values, rights and aspirations) impacts of development. Lineage: This AWC to 60cm dataset has been generated from a range of inputs and processing steps. Following is an overview. For more information refer to the CSIRO ROWRA published reports and in particular ' Soils and land suitability for the Roper catchment, Northern Territory’. A technical report from the CSIRO Roper River Water Resource Assessment to the Government of Australia. 1. Collated existing data (relating to: soils, climate, topography, natural resources, remotely sensed, of various formats: reports, spatial vector, spatial raster etc). 2. Selection of additional soil and land attribute site data locations by a conditioned Latin hypercube statistical sampling method applied across the covariate data space. 3. Fieldwork was carried out to collect new attribute data, soil samples for analysis and build an understanding of geomorphology and landscape processes. 4. Database analysis was performed to extract the data to specific selection criteria required for the attribute to be modelled. 5. The R statistical programming environment was used for the attribute computing. Models were built from selected input data and covariate data using predictive learning from a Random Forest approach implemented in the ranger R package. 6. Create AWC to 60cm Digital Soil Mapping (DSM) attribute raster dataset. DSM data is a geo-referenced dataset, generated from field observations and laboratory data, coupled with environmental covariate data through quantitative relationships. It applies pedometrics - the use of mathematical and statistical models that combine information from soil observations with information contained in correlated environmental variables, remote sensing images and some geophysical measurements. 7. Companion predicted reliability data was produced from the 500 individual Random Forest attribute models created. 8. QA Quality assessment of this DSM attribute data was conducted by three methods. Method 1: Statistical (quantitative) method of the model and input data. Testing the quality of the DSM models was carried out using data withheld from model computations and expressed as OOB and R squared results, giving an estimate of the reliability of the model predictions. These results are supplied. Method 2: Statistical (quantitative) assessment of the spatial attribute output data presented as a raster of the attributes “reliability”. This used the 500 individual trees of the attributes RF models to generate 500 datasets of the attribute to estimate model reliability for each attribute. For continuous attributes the method for estimating reliability is the Coefficient of Variation. This data is supplied. Method 3: Collecting independent external validation site data combined with on-ground expert (qualitative) examination of outputs during validation field trips. Across each of the study areas a two week validation field trip was conducted using a new validation site set which was produced by a random sampling design based on conditioned Latin Hypercube sampling using the reliability data of the attribute. The modelled DSM attribute value was assessed against the actual on-ground value. These results are published in the report cited in this metadata record.

  10. d

    Data from: Streamflow, Dissolved Organic Carbon, and Nitrate Input Datasets...

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Streamflow, Dissolved Organic Carbon, and Nitrate Input Datasets and Model Results Using the Weighted Regressions on Time, Discharge, and Season (WRTDS) Model for Buck Creek Watersheds, Adirondack Park, New York, 2001 to 2021 [Dataset]. https://catalog.data.gov/dataset/streamflow-dissolved-organic-carbon-and-nitrate-input-datasets-and-model-results-using-the
    Explore at:
    Dataset updated
    Nov 26, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This data release supports an analysis of changes in dissolved organic carbon (DOC) and nitrate concentrations in Buck Creek watershed near Inlet, New York 2001 to 2021. The Buck Creek watershed is a 310-hectare forested watershed that is recovering from acidic deposition within the Adirondack region. The data release includes pre-processed model inputs and model outputs for the Weighted Regressions on Time, Discharge and Season (WRTDS) model (Hirsch and others, 2010) to estimate daily flow normalized concentrations of DOC and nitrate during a 20-year period of analysis. WRTDS uses daily discharge and concentration observations implemented through the Exploration and Graphics for River Trends R package (EGRET) to predict solute concentration using decimal time and discharge as explanatory variables (Hirsch and De Cicco, 2015; Hirsch and others, 2010). Discharge and concentration data are available from the U.S. Geological Survey National Water Information System (NWIS) database (U.S. Geological Survey, 2016). The time series data were analyzed for the entire period, water years 2001 (WY2001) to WY2021 where WY2001 is the period from October 1, 2000 to September 30, 2001. This data release contains 5 comma-separated values (CSV) files, one R script, and one XML metadata file. There are four input files (“Daily.csv”, “INFO.csv”, “Sample_doc.csv”, and “Sample_nitrate.csv”) that contain site information, daily mean discharge, and mean daily DOC or nitrate concentrations. The R script (“Buck Creek WRTDS R script.R”) uses the four input datasets and functions from the EGRET R package to generate estimations of flow normalized concentrations. The output file (“WRTDS_results.csv”) contains model output at daily time steps for each sub-watershed and for each solute. Files are automatically associated with the R script when opened in RStudio using the provided R project file ("Files.Rproj"). All input, output, and R files are in the "Files.zip" folder.

  11. Z

    Data and Code for "A Ray-Based Input Distance Function to Model Zero-Valued...

    • data.niaid.nih.gov
    Updated Jun 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Price, Juan José; Henningsen, Arne (2023). Data and Code for "A Ray-Based Input Distance Function to Model Zero-Valued Output Quantities: Derivation and an Empirical Application" [Dataset]. https://data.niaid.nih.gov/resources?id=ZENODO_7882078
    Explore at:
    Dataset updated
    Jun 17, 2023
    Dataset provided by
    Universidad Adolfo Ibáñez
    University of Copenhagen
    Authors
    Price, Juan José; Henningsen, Arne
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data and code archive provides all the data and code for replicating the empirical analysis that is presented in the journal article "A Ray-Based Input Distance Function to Model Zero-Valued Output Quantities: Derivation and an Empirical Application" authored by Juan José Price and Arne Henningsen and published in the Journal of Productivity Analysis (DOI: 10.1007/s11123-023-00684-1).

    We conducted the empirical analysis with the "R" statistical software (version 4.3.0) using the add-on packages "combinat" (version 0.0.8), "miscTools" (version 0.6.28), "quadprog" (version 1.5.8), sfaR (version 1.0.0), stargazer (version 5.2.3), and "xtable" (version 1.8.4) that are available at CRAN. We created the R package "micEconDistRay" that provides the functions for empirical analyses with ray-based input distance functions that we developed for the above-mentioned paper. Also this R package is available at CRAN (https://cran.r-project.org/package=micEconDistRay).

    This replication package contains the following files and folders:

    README This file

    MuseumsDk.csv The original data obtained from the Danish Ministry of Culture and from Statistics Denmark. It includes the following variables:

    museum: Name of the museum.

    type: Type of museum (Kulturhistorisk museum = cultural history museum; Kunstmuseer = arts museum; Naturhistorisk museum = natural history museum; Blandet museum = mixed museum).

    munic: Municipality, in which the museum is located.

    yr: Year of the observation.

    units: Number of visit sites.

    resp: Whether or not the museum has special responsibilities (0 = no special responsibilities; 1 = at least one special responsibility).

    vis: Number of (physical) visitors.

    aarc: Number of articles published (archeology).

    ach: Number of articles published (cultural history).

    aah: Number of articles published (art history).

    anh: Number of articles published (natural history).

    exh: Number of temporary exhibitions.

    edu: Number of primary school classes on educational visits to the museum.

    ev: Number of events other than exhibitions.

    ftesc: Scientific labor (full-time equivalents).

    ftensc: Non-scientific labor (full-time equivalents).

    expProperty: Running and maintenance costs [1,000 DKK].

    expCons: Conservation expenditure [1,000 DKK].

    ipc: Consumer Price Index in Denmark (the value for year 2014 is set to 1).

    prepare_data.R This R script imports the data set MuseumsDk.csv, prepares it for the empirical analysis (e.g., removing unsuitable observations, preparing variables), and saves the resulting data set as DataPrepared.csv.

    DataPrepared.csv This data set is prepared and saved by the R script prepare_data.R. It is used for the empirical analysis.

    make_table_descriptive.R This R script imports the data set DataPrepared.csv and creates the LaTeX table /tables/table_descriptive.tex, which provides summary statistics of the variables that are used in the empirical analysis.

    IO_Ray.R This R script imports the data set DataPrepared.csv, estimates a ray-based Translog input distance functions with the 'optimal' ordering of outputs, imposes monotonicity on this distance function, creates the LaTeX table /tables/idfRes.tex that presents the estimated parameters of this function, and creates several figures in the folder /figures/ that illustrate the results.

    IO_Ray_ordering_outputs.R This R script imports the data set DataPrepared.csv, estimates a ray-based Translog input distance functions, imposes monotonicity for each of the 720 possible orderings of the outputs, and saves all the estimation results as (a huge) R object allOrderings.rds.

    allOrderings.rds (not included in the ZIP file, uploaded separately) This is a saved R object created by the R script IO_Ray_ordering_outputs.R that contains the estimated ray-based Translog input distance functions (with and without monotonicity imposed) for each of the 720 possible orderings.

    IO_Ray_model_averaging.R This R script loads the R object allOrderings.rds that contains the estimated ray-based Translog input distance functions for each of the 720 possible orderings, does model averaging, and creates several figures in the folder /figures/ that illustrate the results.

    /tables/ This folder contains the two LaTeX tables table_descriptive.tex and idfRes.tex (created by R scripts make_table_descriptive.R and IO_Ray.R, respectively) that provide summary statistics of the data set and the estimated parameters (without and with monotonicity imposed) for the 'optimal' ordering of outputs.

    /figures/ This folder contains 48 figures (created by the R scripts IO_Ray.R and IO_Ray_model_averaging.R) that illustrate the results obtained with the 'optimal' ordering of outputs and the model-averaged results and that compare these two sets of results.

  12. f

    Input data for modeling the phytoplasma disease bois noir on a local scale

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Nov 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Biedermann, Robert; Breuer, Michael; Hartig, Florian; Fahrentrapp, Johannes; Panassiti, Bernd (2016). Input data for modeling the phytoplasma disease bois noir on a local scale [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001611143
    Explore at:
    Dataset updated
    Nov 19, 2016
    Authors
    Biedermann, Robert; Breuer, Michael; Hartig, Florian; Fahrentrapp, Johannes; Panassiti, Bernd
    Description

    The dataset is part of the article “Identifying local drivers of a vector-pathogen-disease system using Bayesian modeling”.The dataset contains all necessary input data to run R-code for the joint model for the phytoplasma disease bois noir as described in AppendixB.

  13. Input data and code supporting the cod_v2 population estimates

    • eprints.soton.ac.uk
    • zenodo.org
    Updated Nov 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Boo, Gianluca; Leasure, Douglas R; Darin, Edith; Dooley, Claire A (2021). Input data and code supporting the cod_v2 population estimates [Dataset]. http://doi.org/10.5281/zenodo.5712953
    Explore at:
    Dataset updated
    Nov 17, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Boo, Gianluca; Leasure, Douglas R; Darin, Edith; Dooley, Claire A
    Description

    The model.zip file contains input data and code supporting the cod_v2 population estimates. The file modelData.RData provides the input data to the JAGS model and the file modelCode.R contains the source code for the model in the JAGS language. The files can be used to run the model for further assessments and as a starting point for further model development. The data and the model were developed using the statistical software R version 4.0.2 (https://cran.r-project.org/bin/windows/base/old/4.0.2) and JAGS 4.3.0 (https://mcmc-jags.sourceforge.io), a program for analysis of Bayesian graphical models using Gibbs sampling, through the R package runjags 2.2.0 (https://cran.r-project.org/web/packages/runjags).

  14. U

    Input data of WRTDS models to determine trends in the sediment loads of...

    • data.usgs.gov
    • search.dataone.org
    • +2more
    Updated Nov 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scott Ensign; Gregory Noe (2021). Input data of WRTDS models to determine trends in the sediment loads of Coastal Plain rivers [Dataset]. http://doi.org/10.5066/F7125R4D
    Explore at:
    Dataset updated
    Nov 19, 2021
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Scott Ensign; Gregory Noe
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Jan 1, 1967 - Dec 31, 2016
    Description

    This USGS data release represents the input data, R script, and output data for WRTDS analyses used to identify trends in suspended sediment loads of Coastal Plain streams and rivers in the eastern United States.

  15. Input data for the IMACLIM-R France model

    • zenodo.org
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2024). Input data for the IMACLIM-R France model [Dataset]. http://doi.org/10.5281/zenodo.13991156
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    France
    Description

    Data to run the IMACLIM-R France code

    https://github.com/CIRED/IMACLIM-R_France

  16. U

    Input data for chloride-specific conductance regression models

    • data.usgs.gov
    • s.cnmilf.com
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rosemary Fanelli; Andrew Sekellick; Joel Moore, Input data for chloride-specific conductance regression models [Dataset]. http://doi.org/10.5066/P9YN2QST
    Explore at:
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Rosemary Fanelli; Andrew Sekellick; Joel Moore
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Sep 17, 1953 - Sep 28, 2018
    Description

    This data set includes input data for the development of regression models to predict chloride from specific conductance (SC) data at 56 U. S. Geological Survey water quality monitoring stations in the eastern United States. Each site has 20 or more simultaneous observations of SC and chloride. Data were downloaded from the National Water Information System (NWIS) using the R package dataRetrieval. Datasets for each site were evaluated and outliers were removed prior to the development of the regression model. This file contains only the final input dataset for the regression models. Please refer to Moore and others (in review) for more details. Moore, J., R. Fanelli, and A. Sekellick. In review. High-frequency data reveal deicing salts drive elevated conductivity and chloride along with pervasive and frequent exceedances of the EPA aquatic life criteria for chloride in urban streams. Submitted to Environmental Science and Technology.

  17. U

    Model archive, input data, modeled estimates of water use 2005-2021, and...

    • data.usgs.gov
    • datasets.ai
    • +1more
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Catherine Chamberlin (2024). Model archive, input data, modeled estimates of water use 2005-2021, and forecasts of water use in 2030 and 2040 in Providence, Rhode Island [Dataset]. http://doi.org/10.5066/P94XIQ7W
    Explore at:
    Dataset updated
    Jul 24, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Catherine Chamberlin
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Jan 1, 2005 - Dec 31, 2040
    Area covered
    Providence, Rhode Island
    Description

    A water use study was conducted to understand the drivers of historical water use in the Providence Water Supply Board network (the service area of Providence Water Supply Board and its wholesale customers) and to forecast future water use in the same network. A cubist regression model was developed to model daily per capita water use rates for three water use categories in each of the 10 public water suppliers within this network using data from 2005-2021. The three water use categories are domestic water use, commercial water use, and industrial water use. This cubist regression model was then used to forecast water use in 2030 and 2040 based on simulated future scenarios of low and high climate warming; low and high economic growth; and low, medium, and high population growth. This data release contains the input data used to develop the cubist regression model, the simulated future scenarios, the model estimates generated by the model, and an R script that creates the cubist r ...

  18. Petre_Slide_CategoricalScatterplotFigShare.pptx

    • figshare.com
    pptx
    Updated Sep 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benj Petre; Aurore Coince; Sophien Kamoun (2016). Petre_Slide_CategoricalScatterplotFigShare.pptx [Dataset]. http://doi.org/10.6084/m9.figshare.3840102.v1
    Explore at:
    pptxAvailable download formats
    Dataset updated
    Sep 19, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Benj Petre; Aurore Coince; Sophien Kamoun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Categorical scatterplots with R for biologists: a step-by-step guide

    Benjamin Petre1, Aurore Coince2, Sophien Kamoun1

    1 The Sainsbury Laboratory, Norwich, UK; 2 Earlham Institute, Norwich, UK

    Weissgerber and colleagues (2015) recently stated that ‘as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies’. They called for more scatterplot and boxplot representations in scientific papers, which ‘allow readers to critically evaluate continuous data’ (Weissgerber et al., 2015). In the Kamoun Lab at The Sainsbury Laboratory, we recently implemented a protocol to generate categorical scatterplots (Petre et al., 2016; Dagdas et al., 2016). Here we describe the three steps of this protocol: 1) formatting of the data set in a .csv file, 2) execution of the R script to generate the graph, and 3) export of the graph as a .pdf file.

    Protocol

    • Step 1: format the data set as a .csv file. Store the data in a three-column excel file as shown in Powerpoint slide. The first column ‘Replicate’ indicates the biological replicates. In the example, the month and year during which the replicate was performed is indicated. The second column ‘Condition’ indicates the conditions of the experiment (in the example, a wild type and two mutants called A and B). The third column ‘Value’ contains continuous values. Save the Excel file as a .csv file (File -> Save as -> in ‘File Format’, select .csv). This .csv file is the input file to import in R.

    • Step 2: execute the R script (see Notes 1 and 2). Copy the script shown in Powerpoint slide and paste it in the R console. Execute the script. In the dialog box, select the input .csv file from step 1. The categorical scatterplot will appear in a separate window. Dots represent the values for each sample; colors indicate replicates. Boxplots are superimposed; black dots indicate outliers.

    • Step 3: save the graph as a .pdf file. Shape the window at your convenience and save the graph as a .pdf file (File -> Save as). See Powerpoint slide for an example.

    Notes

    • Note 1: install the ggplot2 package. The R script requires the package ‘ggplot2’ to be installed. To install it, Packages & Data -> Package Installer -> enter ‘ggplot2’ in the Package Search space and click on ‘Get List’. Select ‘ggplot2’ in the Package column and click on ‘Install Selected’. Install all dependencies as well.

    • Note 2: use a log scale for the y-axis. To use a log scale for the y-axis of the graph, use the command line below in place of command line #7 in the script.

    7 Display the graph in a separate window. Dot colors indicate

    replicates

    graph + geom_boxplot(outlier.colour='black', colour='black') + geom_jitter(aes(col=Replicate)) + scale_y_log10() + theme_bw()

    References

    Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.

    Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, et al. (2016) Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE 11(2):e0149035

    Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol 13(4):e1002128

    https://cran.r-project.org/

    http://ggplot2.org/

  19. The Pizza Problem

    • kaggle.com
    zip
    Updated Feb 8, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeremy Jeanne (2019). The Pizza Problem [Dataset]. https://www.kaggle.com/jeremyjeanne/google-hashcode-pizza-training-2019
    Explore at:
    zip(178852 bytes)Available download formats
    Dataset updated
    Feb 8, 2019
    Authors
    Jeremy Jeanne
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Problem description

    Pizza

    The pizza is represented as a rectangular, 2-dimensional grid of R rows and C columns. The cells within the grid are referenced using a pair of 0-based coordinates [r, c] , denoting respectively the row and the column of the cell.

    Each cell of the pizza contains either:

    mushroom, represented in the input file as M
    tomato, represented in the input file as T
    

    Slice

    A slice of pizza is a rectangular section of the pizza delimited by two rows and two columns, without holes. The slices we want to cut out must contain at least L cells of each ingredient (that is, at least L cells of mushroom and at least L cells of tomato) and at most H cells of any kind in total - surprising as it is, there is such a thing as too much pizza in one slice. The slices being cut out cannot overlap. The slices being cut do not need to cover the entire pizza.

    Goal

    The goal is to cut correct slices out of the pizza maximizing the total number of cells in all slices. Input data set The input data is provided as a data set file - a plain text file containing exclusively ASCII characters with lines terminated with a single ‘ ’ character at the end of each line (UNIX- style line endings).

    File format

    The file consists of:

    one line containing the following natural numbers separated by single spaces:
    R (1 ≤ R ≤ 1000) is the number of rows
    C (1 ≤ C ≤ 1000) is the number of columns
    L (1 ≤ L ≤ 1000) is the minimum number of each ingredient cells in a slice
    H (1 ≤ H ≤ 1000) is the maximum total number of cells of a slice
    

    Google 2017, All rights reserved.

    R lines describing the rows of the pizza (one after another). Each of these lines contains C characters describing the ingredients in the cells of the row (one cell after another). Each character is either ‘M’ (for mushroom) or ‘T’ (for tomato).

    Example

    3 5 1 6
    TTTTT
    TMMMT
    TTTTT
    

    3 rows, 5 columns, min 1 of each ingredient per slice, max 6 cells per slice

    Example input file.

    Submissions

    File format

    The file must consist of:

    one line containing a single natural number S (0 ≤ S ≤ R × C) , representing the total number of slices to be cut,
    U lines describing the slices. Each of these lines must contain the following natural numbers separated by single spaces:
    r 1 , c 1 , r 2 , c 2 describe a slice of pizza delimited by the rows r (0 ≤ r1,r2 < R, 0 ≤ c1, c2 < C) 1 and r 2 and the columns c 1 and c 2 , including the cells of the delimiting rows and columns. The rows ( r 1 and r 2 ) can be given in any order. The columns ( c 1 and c 2 ) can be given in any order too.
    

    Example

    0 0 2 1
    0 2 2 2
    0 3 2 4
    

    3 slices.

    First slice between rows (0,2) and columns (0,1).
    Second slice between rows (0,2) and columns (2,2).
    Third slice between rows (0,2) and columns (3,4).
    Example submission file.
    

    © Google 2017, All rights reserved.

    Slices described in the example submission file marked in green, orange and purple. Validation

    For the solution to be accepted:

    the format of the file must match the description above,
    each cell of the pizza must be included in at most one slice,
    each slice must contain at least L cells of mushroom,
    each slice must contain at least L cells of tomato,
    total area of each slice must be at most H
    

    Scoring

    The submission gets a score equal to the total number of cells in all slices. Note that there are multiple data sets representing separate instances of the problem. The final score for your team is the sum of your best scores on the individual data sets. Scoring example

    The example submission file given above cuts the slices of 6, 3 and 6 cells, earning 6 + 3 + 6 = 15 points.

  20. Explore data formats and ingestion methods

    • kaggle.com
    zip
    Updated Feb 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gabriel Preda (2021). Explore data formats and ingestion methods [Dataset]. https://www.kaggle.com/gpreda/iris-dataset
    Explore at:
    zip(31084 bytes)Available download formats
    Dataset updated
    Feb 12, 2021
    Authors
    Gabriel Preda
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Why this Dataset

    This dataset brings to you Iris Dataset in several data formats (see more details in the next sections).

    You can use it to test the ingestion of data in all these formats using Python or R libraries. We also prepared Python Jupyter Notebook and R Markdown report that input all these formats:

    Iris Dataset

    Iris Dataset was created by R. A. Fisher and donated by Michael Marshall.

    Repository on UCI site: https://archive.ics.uci.edu/ml/datasets/iris

    Data Source: https://archive.ics.uci.edu/ml/machine-learning-databases/iris/

    The file downloaded is iris.data and is formatted as a comma delimited file.

    This small data collection was created to help you test your skills with ingesting various data formats.

    Content

    This file was processed to convert the data in the following formats: * csv - comma separated values format * tsv - tab separated values format * parquet - parquet format
    * feather - feather format * parquet.gzip - compressed parquet format * h5 - hdf5 format * pickle - Python binary object file - pickle format * xslx - Excel format
    * npy - Numpy (Python library) binary format * npz - Numpy (Python library) binary compressed format * rds - Rds (R specific data format) binary format

    Acknowledgements

    I would like to acknowledge the work of the creator of the dataset - R. A. Fisher and of the donor - Michael Marshall.

    Inspiration

    Use these data formats to test your skills in ingesting data in various formats.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Gede Primahadi Wijaya Rajeg; Gede Primahadi Wijaya Rajeg (2019). R codes and dataset for Visualisation of Diachronic Constructional Change using Motion Chart [Dataset]. http://doi.org/10.26180/5c844c7a81768

R codes and dataset for Visualisation of Diachronic Constructional Change using Motion Chart

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 1, 2019
Dataset provided by
Monash University
Authors
Gede Primahadi Wijaya Rajeg; Gede Primahadi Wijaya Rajeg
License

Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically

Description

Publication


Primahadi Wijaya R., Gede. 2014. Visualisation of diachronic constructional change using Motion Chart. In Zane Goebel, J. Herudjati Purwoko, Suharno, M. Suryadi & Yusuf Al Aried (eds.). Proceedings: International Seminar on Language Maintenance and Shift IV (LAMAS IV), 267-270. Semarang: Universitas Diponegoro. doi: https://doi.org/10.4225/03/58f5c23dd8387

Description of R codes and data files in the repository

This repository is imported from its GitHub repo. Versioning of this figshare repository is associated with the GitHub repo's Release. So, check the Releases page for updates (the next version is to include the unified version of the codes in the first release with the tidyverse).

The raw input data consists of two files (i.e. will_INF.txt and go_INF.txt). They represent the co-occurrence frequency of top-200 infinitival collocates for will and be going to respectively across the twenty decades of Corpus of Historical American English (from the 1810s to the 2000s).

These two input files are used in the R code file 1-script-create-input-data-raw.r. The codes preprocess and combine the two files into a long format data frame consisting of the following columns: (i) decade, (ii) coll (for "collocate"), (iii) BE going to (for frequency of the collocates with be going to) and (iv) will (for frequency of the collocates with will); it is available in the input_data_raw.txt.

Then, the script 2-script-create-motion-chart-input-data.R processes the input_data_raw.txt for normalising the co-occurrence frequency of the collocates per million words (the COHA size and normalising base frequency are available in coha_size.txt). The output from the second script is input_data_futurate.txt.

Next, input_data_futurate.txt contains the relevant input data for generating (i) the static motion chart as an image plot in the publication (using the script 3-script-create-motion-chart-plot.R), and (ii) the dynamic motion chart (using the script 4-script-motion-chart-dynamic.R).

The repository adopts the project-oriented workflow in RStudio; double-click on the Future Constructions.Rproj file to open an RStudio session whose working directory is associated with the contents of this repository.

Search
Clear search
Close search
Google apps
Main menu