5 datasets found
  1. a

    Disability Status of the Civilian Noninstitutionalized Population 2017-2021...

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • covid19-uscensus.hub.arcgis.com
    Updated Mar 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2023). Disability Status of the Civilian Noninstitutionalized Population 2017-2021 - COUNTIES [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/USCensus::disability-status-of-the-civilian-noninstitutionalized-population-2017-2021-counties
    Explore at:
    Dataset updated
    Mar 24, 2023
    Dataset authored and provided by
    US Census Bureau
    Area covered
    Description

    This layer shows Disability Status of the Civilian Noninstitutionalized Population. This is shown by state and county boundaries. This service contains the 2017-2021 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show Total Civilian Noninstitutionalized Population - with a disability 65 and over. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2017-2021ACS Table(s): DP02, S2201, S1810Data downloaded from: Census Bureau's API for American Community Survey Date of API call: February 16, 2023National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.

  2. m

    Climate Ready Boston Social Vulnerability

    • gis.data.mass.gov
    • data.boston.gov
    • +3more
    Updated Sep 22, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BostonMaps (2017). Climate Ready Boston Social Vulnerability [Dataset]. https://gis.data.mass.gov/datasets/boston::climate-ready-boston-social-vulnerability
    Explore at:
    Dataset updated
    Sep 22, 2017
    Dataset authored and provided by
    BostonMaps
    Area covered
    Description

    Social vulnerability is defined as the disproportionate susceptibility of some social groups to the impacts of hazards, including death, injury, loss, or disruption of livelihood. In this dataset from Climate Ready Boston, groups identified as being more vulnerable are older adults, children, people of color, people with limited English proficiency, people with low or no incomes, people with disabilities, and people with medical illnesses. Source:The analysis and definitions used in Climate Ready Boston (2016) are based on "A framework to understand the relationship between social factors that reduce resilience in cities: Application to the City of Boston." Published 2015 in the International Journal of Disaster Risk Reduction by Atyia Martin, Northeastern University.Population Definitions:Older Adults:Older adults (those over age 65) have physical vulnerabilities in a climate event; they suffer from higher rates of medical illness than the rest of the population and can have some functional limitations in an evacuation scenario, as well as when preparing for and recovering from a disaster. Furthermore, older adults are physically more vulnerable to the impacts of extreme heat. Beyond the physical risk, older adults are more likely to be socially isolated. Without an appropriate support network, an initially small risk could be exacerbated if an older adult is not able to get help.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for population over 65 years of age.Attribute label: OlderAdultChildren: Families with children require additional resources in a climate event. When school is cancelled, parents need alternative childcare options, which can mean missing work. Children are especially vulnerable to extreme heat and stress following a natural disaster.Data source: 2010 American Community Survey 5-year Estimates (ACS) data by census tract for population under 5 years of age.Attribute label: TotChildPeople of Color: People of color make up a majority (53 percent) of Boston’s population. People of color are more likely to fall into multiple vulnerable groups aswell. People of color statistically have lower levels of income and higher levels of poverty than the population at large. People of color, many of whom also have limited English proficiency, may not have ready access in their primary language to information about the dangers of extreme heat or about cooling center resources. This risk to extreme heat can be compounded by the fact that people of color often live in more densely populated urban areas that are at higher risk for heat exposure due to the urban heat island effect.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract: Black, Native American, Asian, Island, Other, Multi, Non-white Hispanics.Attribute label: POC2Limited English Proficiency: Without adequate English skills, residents can miss crucial information on how to preparefor hazards. Cultural practices for information sharing, for example, may focus on word-of-mouth communication. In a flood event, residents can also face challenges communicating with emergency response personnel. If residents are more sociallyisolated, they may be less likely to hear about upcoming events. Finally, immigrants, especially ones who are undocumented, may be reluctant to use government services out of fear of deportation or general distrust of the government or emergency personnel.Data Source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract, defined as speaks English only or speaks English “very well”.Attribute label: LEPLow to no Income: A lack of financial resources impacts a household’s ability to prepare for a disaster event and to support friends and neighborhoods. For example, residents without televisions, computers, or data-driven mobile phones may face challenges getting news about hazards or recovery resources. Renters may have trouble finding and paying deposits for replacement housing if their residence is impacted by flooding. Homeowners may be less able to afford insurance that will cover flood damage. Having low or no income can create difficulty evacuating in a disaster event because of a higher reliance on public transportation. If unable to evacuate, residents may be more at risk without supplies to stay in their homes for an extended period of time. Low- and no-income residents can also be more vulnerable to hot weather if running air conditioning or fans puts utility costs out of reach.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for low-to- no income populations. The data represents a calculated field that combines people who were 100% below the poverty level and those who were 100–149% of the poverty level.Attribute label: Low_to_NoPeople with Disabilities: People with disabilities are among the most vulnerable in an emergency; they sustain disproportionate rates of illness, injury, and death in disaster events.46 People with disabilities can find it difficult to adequately prepare for a disaster event, including moving to a safer place. They are more likely to be left behind or abandoned during evacuations. Rescue and relief resources—like emergency transportation or shelters, for example— may not be universally accessible. Research has revealed a historic pattern of discrimination against people with disabilities in times of resource scarcity, like after a major storm and flood.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for total civilian non-institutionalized population, including: hearing difficulty, vision difficulty, cognitive difficulty, ambulatory difficulty, self-care difficulty, and independent living difficulty. Attribute label: TotDisMedical Illness: Symptoms of existing medical illnesses are often exacerbated by hot temperatures. For example, heat can trigger asthma attacks or increase already high blood pressure due to the stress of high temperatures put on the body. Climate events can interrupt access to normal sources of healthcare and even life-sustaining medication. Special planning is required for people experiencing medical illness. For example, people dependent on dialysis will have different evacuation and care needs than other Boston residents in a climate event.Data source: Medical illness is a proxy measure which is based on EASI data accessed through Simply Map. Health data at the local level in Massachusetts is not available beyond zip codes. EASI modeled the health statistics for the U.S. population based upon age, sex, and race probabilities using U.S. Census Bureau data. The probabilities are modeled against the census and current year and five year forecasts. Medical illness is the sum of asthma in children, asthma in adults, heart disease, emphysema, bronchitis, cancer, diabetes, kidney disease, and liver disease. A limitation is that these numbers may be over-counted as the result of people potentially having more than one medical illness. Therefore, the analysis may have greater numbers of people with medical illness within census tracts than actually present. Overall, the analysis was based on the relationship between social factors.Attribute label: MedIllnesOther attribute definitions:GEOID10: Geographic identifier: State Code (25), Country Code (025), 2010 Census TractAREA_SQFT: Tract area (in square feet)AREA_ACRES: Tract area (in acres)POP100_RE: Tract population countHU100_RE: Tract housing unit countName: Boston Neighborhood

  3. T

    Vital Signs: Daily Miles Traveled - by county (per-capita)

    • data.bayareametro.gov
    • open-data-demo.mtc.ca.gov
    application/rdfxml +5
    Updated Jul 21, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Transportation (2017). Vital Signs: Daily Miles Traveled - by county (per-capita) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Daily-Miles-Traveled-by-county-per-cap/3r4v-5gbu
    Explore at:
    json, csv, application/rssxml, application/rdfxml, tsv, xmlAvailable download formats
    Dataset updated
    Jul 21, 2017
    Dataset authored and provided by
    California Department of Transportation
    Description

    VITAL SIGNS INDICATOR Daily Miles Traveled (T15)

    FULL MEASURE NAME Per-capita vehicle miles traveled

    LAST UPDATED July 2017

    DESCRIPTION Daily miles traveled, commonly referred to as vehicle miles traveled (VMT), reflects the total and per-person number of miles traveled in personal vehicles on a typical weekday. The dataset includes metropolitan area, regional and county tables for per-capita vehicle miles traveled.

    DATA SOURCE California Department of Transportation: California Public Road Data/Highway Performance Monitoring System 2001-2015 http://www.dot.ca.gov/hq/tsip/hpms/datalibrary.php

    California Department of Finance: Population and Housing Estimates Forms E-8 and E-5 2001-2015 http://www.dof.ca.gov/research/demographic/reports/estimates/e-8/ http://www.dof.ca.gov/research/demographic/reports/estimates/e-5/2011-20/view.php

    U.S. Census Bureau: Summary File 1 2010 http://factfinder2.census.gov

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Vehicle miles traveled reflects the mileage accrued within the county and not necessarily the residents of that county; even though most trips are due to local residents, additional VMT can be accrued by through-trips. City data was thus discarded due to this limitation and the analysis only examine county and regional data, where through-trips are generally less common.

    The metropolitan area comparison was performed by summing all of the urbanized areas within each metropolitan area (9-nine region for the San Francisco Bay Area and the primary MSA for all others). For the metro analysis, no VMT data is available outside of other urbanized areas; it is only available for intraregional analysis purposes.

    VMT per capita is calculated by dividing VMT by an estimate of the traveling population. The traveling population does not include people living in institutionalized facilities, which are defined by the Census. Because institutionalized population is not estimated each year, the proportion of people living in institutionalized facilities from the 2010 Census was applied to the total population estimates for all years.

  4. Vital Signs: Daily Miles Traveled - Bay Area (per-capita)

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Jul 21, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Transportation (2017). Vital Signs: Daily Miles Traveled - Bay Area (per-capita) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Daily-Miles-Traveled-Bay-Area-per-capi/wsse-e9tk
    Explore at:
    application/rssxml, tsv, xml, application/rdfxml, csv, jsonAvailable download formats
    Dataset updated
    Jul 21, 2017
    Dataset authored and provided by
    California Department of Transportationhttp://dot.ca.gov/
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Daily Miles Traveled (T15)

    FULL MEASURE NAME Per-capita vehicle miles traveled

    LAST UPDATED July 2017

    DESCRIPTION Daily miles traveled, commonly referred to as vehicle miles traveled (VMT), reflects the total and per-person number of miles traveled in personal vehicles on a typical weekday. The dataset includes metropolitan area, regional and county tables for per-capita vehicle miles traveled.

    DATA SOURCE California Department of Transportation: California Public Road Data/Highway Performance Monitoring System 2001-2015 http://www.dot.ca.gov/hq/tsip/hpms/datalibrary.php

    California Department of Finance: Population and Housing Estimates Forms E-8 and E-5 2001-2015 http://www.dof.ca.gov/research/demographic/reports/estimates/e-8/ http://www.dof.ca.gov/research/demographic/reports/estimates/e-5/2011-20/view.php

    U.S. Census Bureau: Summary File 1 2010 http://factfinder2.census.gov

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Vehicle miles traveled reflects the mileage accrued within the county and not necessarily the residents of that county; even though most trips are due to local residents, additional VMT can be accrued by through-trips. City data was thus discarded due to this limitation and the analysis only examine county and regional data, where through-trips are generally less common.

    The metropolitan area comparison was performed by summing all of the urbanized areas within each metropolitan area (9-nine region for the San Francisco Bay Area and the primary MSA for all others). For the metro analysis, no VMT data is available outside of other urbanized areas; it is only available for intraregional analysis purposes.

    VMT per capita is calculated by dividing VMT by an estimate of the traveling population. The traveling population does not include people living in institutionalized facilities, which are defined by the Census. Because institutionalized population is not estimated each year, the proportion of people living in institutionalized facilities from the 2010 Census was applied to the total population estimates for all years.

  5. f

    Cleaned NHANES 1988-2018

    • figshare.com
    txt
    Updated Feb 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vy Nguyen; Lauren Y. M. Middleton; Neil Zhao; Lei Huang; Eliseu Verly; Jacob Kvasnicka; Luke Sagers; Chirag Patel; Justin Colacino; Olivier Jolliet (2025). Cleaned NHANES 1988-2018 [Dataset]. http://doi.org/10.6084/m9.figshare.21743372.v9
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 18, 2025
    Dataset provided by
    figshare
    Authors
    Vy Nguyen; Lauren Y. M. Middleton; Neil Zhao; Lei Huang; Eliseu Verly; Jacob Kvasnicka; Luke Sagers; Chirag Patel; Justin Colacino; Olivier Jolliet
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The National Health and Nutrition Examination Survey (NHANES) provides data and have considerable potential to study the health and environmental exposure of the non-institutionalized US population. However, as NHANES data are plagued with multiple inconsistencies, processing these data is required before deriving new insights through large-scale analyses. Thus, we developed a set of curated and unified datasets by merging 614 separate files and harmonizing unrestricted data across NHANES III (1988-1994) and Continuous (1999-2018), totaling 135,310 participants and 5,078 variables. The variables conveydemographics (281 variables),dietary consumption (324 variables),physiological functions (1,040 variables),occupation (61 variables),questionnaires (1444 variables, e.g., physical activity, medical conditions, diabetes, reproductive health, blood pressure and cholesterol, early childhood),medications (29 variables),mortality information linked from the National Death Index (15 variables),survey weights (857 variables),environmental exposure biomarker measurements (598 variables), andchemical comments indicating which measurements are below or above the lower limit of detection (505 variables).csv Data Record: The curated NHANES datasets and the data dictionaries includes 23 .csv files and 1 excel file.The curated NHANES datasets involves 20 .csv formatted files, two for each module with one as the uncleaned version and the other as the cleaned version. The modules are labeled as the following: 1) mortality, 2) dietary, 3) demographics, 4) response, 5) medications, 6) questionnaire, 7) chemicals, 8) occupation, 9) weights, and 10) comments."dictionary_nhanes.csv" is a dictionary that lists the variable name, description, module, category, units, CAS Number, comment use, chemical family, chemical family shortened, number of measurements, and cycles available for all 5,078 variables in NHANES."dictionary_harmonized_categories.csv" contains the harmonized categories for the categorical variables.“dictionary_drug_codes.csv” contains the dictionary for descriptors on the drugs codes.“nhanes_inconsistencies_documentation.xlsx” is an excel file that contains the cleaning documentation, which records all the inconsistencies for all affected variables to help curate each of the NHANES modules.R Data Record: For researchers who want to conduct their analysis in the R programming language, only cleaned NHANES modules and the data dictionaries can be downloaded as a .zip file which include an .RData file and an .R file.“w - nhanes_1988_2018.RData” contains all the aforementioned datasets as R data objects. We make available all R scripts on customized functions that were written to curate the data.“m - nhanes_1988_2018.R” shows how we used the customized functions (i.e. our pipeline) to curate the original NHANES data.Example starter codes: The set of starter code to help users conduct exposome analysis consists of four R markdown files (.Rmd). We recommend going through the tutorials in order.“example_0 - merge_datasets_together.Rmd” demonstrates how to merge the curated NHANES datasets together.“example_1 - account_for_nhanes_design.Rmd” demonstrates how to conduct a linear regression model, a survey-weighted regression model, a Cox proportional hazard model, and a survey-weighted Cox proportional hazard model.“example_2 - calculate_summary_statistics.Rmd” demonstrates how to calculate summary statistics for one variable and multiple variables with and without accounting for the NHANES sampling design.“example_3 - run_multiple_regressions.Rmd” demonstrates how run multiple regression models with and without adjusting for the sampling design.

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
US Census Bureau (2023). Disability Status of the Civilian Noninstitutionalized Population 2017-2021 - COUNTIES [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/USCensus::disability-status-of-the-civilian-noninstitutionalized-population-2017-2021-counties

Disability Status of the Civilian Noninstitutionalized Population 2017-2021 - COUNTIES

Explore at:
Dataset updated
Mar 24, 2023
Dataset authored and provided by
US Census Bureau
Area covered
Description

This layer shows Disability Status of the Civilian Noninstitutionalized Population. This is shown by state and county boundaries. This service contains the 2017-2021 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show Total Civilian Noninstitutionalized Population - with a disability 65 and over. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2017-2021ACS Table(s): DP02, S2201, S1810Data downloaded from: Census Bureau's API for American Community Survey Date of API call: February 16, 2023National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.

Search
Clear search
Close search
Google apps
Main menu