11 datasets found
  1. c

    Urban Density Footprint in 2020

    • cacgeoportal.com
    • keep-cool-global-community.hub.arcgis.com
    • +2more
    Updated Apr 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Urban Density Footprint in 2020 [Dataset]. https://www.cacgeoportal.com/maps/9a541c1fd0884f898435fc48b9a7beb7
    Explore at:
    Dataset updated
    Apr 2, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This webmap is a subset of Global Urban Density Footprint in 2020 Tile Image Layer. This layer represents an estimate of the footprint of urban settings in 2020. It is intended as a fast-drawing cartographic layer to augment base maps and to focus a map reader's attention on the location of human population. This layer is not intended for analysis. This layer was derived from the 2020 slice of the WorldPop Population Density 2000-2020 100m and 1km layers.Also see the Populated Footprint layer, which like this layer, is intended to provide a fast-drawing cartographic context for the footprint of total population.The following processing steps were used to produce this layer in ArcGIS Pro:1. Int tool (Spatial Analyst) to truncate double precision values; all values less than 0.99 become 0.2. Reclassify tool (Spatial Analyst) to set values 0 through 1499 to NoData (Null) and all other values become 1.3. Copy Raster tool with Output Coordinate System environment set to Web Mercator, bit depth to 1 bit, and NoData Value to 0.Source:WorldPop Population Density 2000-2020 100m, which is created from WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation. The DOI for the original WorldPop.org total population population data is 10.5258/SOTON/WP00645.

  2. a

    Populated Footprints 2020

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • cacgeoportal.com
    Updated Mar 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Populated Footprints 2020 [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/cacgeoportal::populated-footprints-2020
    Explore at:
    Dataset updated
    Mar 29, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer is a subset of World Populated Footprint in 2020 Tile Image Layer.This layer represents an estimate of the footprint of human settlement in 2020. It is intended as a fast-drawing cartographic layer to augment base maps and to focus a map reader's attention on the location of human population. This layer is not intended for analysis.This layer was derived from the 2020 slice of the WorldPop Population Density 2000-2020 100m and 1km layers. WorldPop modeled this population footprint based on imagery datasets and population data from national statistical organizations and the United Nations. Zooming in to very large scales will often show discrepancies between reality and this or any model. Like all data sources imagery and population counts are subject to many types of error, thus this gridded footprint contains errors of omission and commission. The imagery base maps available in ArcGIS Online were not used in WorldPop's model. Imagery only informs the model of characteristics that indicate a potential for settlement, and cannot intrinsically indicate whether any or how many people live in a building. Also see the Urban Density Footprint layer, which like this layer, is intended to provide a fast-drawing cartographic context for urban populations.The following processing steps were used to produce this layer in ArcGIS Pro:1. Int tool (Spatial Analyst) to truncate double precision values; all values less than 0.99 become 0.2. Reclassify tool (Spatial Analyst) to set values 0 through 14 to NoData (Null) and all other values become 1. The figure of 14 was empirically derived as a good balance between reducing errors of commission, i.e., false-positive cells with lower values, while not introducing errors of omission by eliminating obviously populated cells.3. Copy Raster tool with Output Coordinate System environment set to Web Mercator, bit depth to 1 bit, and NoData Value to 0.Source:WorldPop Population Density 2000-2020 100m, which is created from WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation. The DOI for the original WorldPop.org total population population data is 10.5258/SOTON/WP00645.

  3. p

    Pacific Region Populated Footprint in 2020

    • pacificgeoportal.com
    • digital-earth-pacificcore.hub.arcgis.com
    • +1more
    Updated Sep 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pacific GeoPortal - Core Organization (2023). Pacific Region Populated Footprint in 2020 [Dataset]. https://www.pacificgeoportal.com/maps/2f1f04bc55d44c219d6fb42e49b5e001
    Explore at:
    Dataset updated
    Sep 25, 2023
    Dataset authored and provided by
    Pacific GeoPortal - Core Organization
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer is a subset of Populated Footprint in 2020 Global Coverage for the Pacific Region. This layer represents an estimate of the footprint of human settlement in 2020. It is intended as a fast-drawing cartographic layer to augment base maps and to focus a map reader's attention on the location of human population. This layer is not intended for analysis.This layer was derived from the 2020 slice of the WorldPop Population Density 2000-2020 100m and 1km layers. WorldPop modeled this population footprint based on imagery datasets and population data from national statistical organizations and the United Nations. Zooming in to very large scales will often show discrepancies between reality and this or any model. Like all data sources imagery and population counts are subject to many types of error, thus this gridded footprint contains errors of omission and commission. The imagery base maps available in ArcGIS Online were not used in WorldPop's model. Imagery only informs the model of characteristics that indicate a potential for settlement, and cannot intrinsically indicate whether any or how many people live in a building. Also see the Urban Density Footprint layer, which like this layer, is intended to provide a fast-drawing cartographic context for urban populations.The following processing steps were used to produce this layer in ArcGIS Pro:1. Int tool (Spatial Analyst) to truncate double precision values; all values less than 0.99 become 0.2. Reclassify tool (Spatial Analyst) to set values 0 through 14 to NoData (Null) and all other values become 1. The figure of 14 was empirically derived as a good balance between reducing errors of commission, i.e., false-positive cells with lower values, while not introducing errors of omission by eliminating obviously populated cells.3. Copy Raster tool with Output Coordinate System environment set to Web Mercator, bit depth to 1 bit, and NoData Value to 0.Source:WorldPop Population Density 2000-2020 100m, which is created from WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation. The DOI for the original WorldPop.org total population population data is 10.5258/SOTON/WP00645.

  4. a

    Pacific Region Urban Density Footprint in 2020

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • geoportal-pacificcore.hub.arcgis.com
    Updated Sep 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pacific GeoPortal - Core Organization (2023). Pacific Region Urban Density Footprint in 2020 [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/af4fb7413687499cb6475dfe339dbb1f
    Explore at:
    Dataset updated
    Sep 25, 2023
    Dataset authored and provided by
    Pacific GeoPortal - Core Organization
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer is a subset of Urban Density Footprint in 2020 global coverage to focus on the Pacific Region. This layer represents an estimate of the footprint of urban settings in 2020. It is intended as a fast-drawing cartographic layer to augment base maps and to focus a map reader's attention on the location of human population. This layer is not intended for analysis. This layer was derived from the 2020 slice of the WorldPop Population Density 2000-2020 100m and 1km layers.Also see the Populated Footprint layer, which like this layer, is intended to provide a fast-drawing cartographic context for the footprint of total population.The following processing steps were used to produce this layer in ArcGIS Pro:1. Int tool (Spatial Analyst) to truncate double precision values; all values less than 0.99 become 0.2. Reclassify tool (Spatial Analyst) to set values 0 through 1499 to NoData (Null) and all other values become 1.3. Copy Raster tool with Output Coordinate System environment set to Web Mercator, bit depth to 1 bit, and NoData Value to 0.Source:WorldPop Population Density 2000-2020 100m, which is created from WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation. The DOI for the original WorldPop.org total population population data is 10.5258/SOTON/WP00645.

  5. WDPA - World Database on Protected Areas polygons from WCMC

    • globil.panda.org
    • globil-panda.opendata.arcgis.com
    • +3more
    Updated Dec 30, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Wide Fund for Nature (2016). WDPA - World Database on Protected Areas polygons from WCMC [Dataset]. https://globil.panda.org/maps/61cde74cf99645b7b2c30212514ddae5
    Explore at:
    Dataset updated
    Dec 30, 2016
    Dataset authored and provided by
    World Wide Fund for Naturehttp://wwf.org/
    Area covered
    Description

    The World Database on Protected Areas (WDPA) is the most comprehensive global database of marine and terrestrial protected areas and is one of the key global biodiversity datasets being widely used by scientists, businesses, governments, International secretariats and others to inform planning, policy decisions and management.The WDPA is a joint project between the United Nations Environment Programme (UNEP) and the International Union for Conservation of Nature (IUCN). The compilation and management of the WDPA is carried out by UNEP World Conservation Monitoring Centre (UNEP-WCMC), in collaboration with governments, non-governmental organisations, academia and industry. There are monthly updates of the data which are made available online through the Protected Planet website where the data is both viewable and downloadable.Data and information on the world's protected areas compiled in the WDPA are used for reporting to the Convention on Biological Diversity on progress towards reaching the Aichi Biodiversity Targets (particularly Target 11), to the UN to track progress towards the 2030 Sustainable Development Goals, to some of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) core indicators, and other international assessments and reports including the Global Biodiversity Outlook, as well as for the publication of the United Nations List of Protected Areas. Every two years, UNEP-WCMC releases the Protected Planet Report on the status of the world's protected areas and recommendations on how to meet international goals and targets.Many platforms are incorporating the WDPA to provide integrated information to diverse users, including businesses and governments, in a range of sectors including mining, oil and gas, and finance. For example, the WDPA is included in the Integrated Biodiversity Assessment Tool, an innovative decision support tool that gives users easy access to up-to-date information that allows them to identify biodiversity risks and opportunities within a project boundary.The reach of the WDPA is further enhanced in services developed by other parties, such as theGlobal Forest Watch and the Digital Observatory for Protected Areas, which provide decision makers with access to monitoring and alert systems that allow whole landscapes to be managed better. Together, these applications of the WDPA demonstrate the growing value and significance of the Protected Planet initiative.For more details on the WDPA please read through the WDPA User Manual.

  6. a

    AL FloodComposite int

    • hub.arcgis.com
    Updated May 19, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SDGs (2016). AL FloodComposite int [Dataset]. https://hub.arcgis.com/maps/sdgs::al-floodcomposite-int
    Explore at:
    Dataset updated
    May 19, 2016
    Dataset authored and provided by
    SDGs
    Area covered
    Description

    This map service presents spatial information developed as part of the National Oceanic and Atmospheric Administration (NOAA) Office for Coastal Management’s Coastal Flood Exposure Mapper. The purpose of the online mapping tool is to provide coastal managers, planners, and stakeholders a preliminary look at exposures to coastal flooding hazards. The Mapper is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help communities initiate resilience planning efforts. Currently the extent of the Coastal Flood Exposure Mapper covers U.S. coastal areas along the Gulf of Mexico and Atlantic Ocean. NOAA provides the information “as-is” and shall incur no responsibility or liability as to the completeness or accuracy of this information. NOAA assumes no responsibility arising from the use of this information. For additional information, please contact the NOAA Office for Coastal Management (coastal.info@noaa.gov).

  7. Land Cover Classification (Sentinel-2)

    • fsc-geospatial-initiative-1-fsc-int.hub.arcgis.com
    • angola.africageoportal.com
    • +8more
    Updated Feb 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover Classification (Sentinel-2) [Dataset]. https://fsc-geospatial-initiative-1-fsc-int.hub.arcgis.com/datasets/esri::land-cover-classification-sentinel-2
    Explore at:
    Dataset updated
    Feb 17, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Land cover describes the surface of the earth. Land cover maps are useful in urban planning, resource management, change detection, agriculture, and a variety of other applications in which information related to earth surface is required. Land cover classification is a complex exercise and is hard to capture using traditional means. Deep learning models are highly capable of learning these complex semantics, giving superior results.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.InputRaster, mosaic dataset, or image service. (Preferred cell size is 10 meters.)Note: This model is trained to work on Sentinel-2 Imagery datasets which are in WGS 1984 Web Mercator (auxiliary sphere) coordinate system (WKID 3857).OutputClassified raster with the same classes as in Corine Land Cover (CLC) 2018.Applicable geographiesThis model is expected to work well in Europe and the United States.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 82.41% with Level-1C imagery and 84.0% with Level-2A imagery, for CLC class level 2 classification (15 classes). The table below summarizes the precision, recall and F1-score of the model on the validation dataset.ClassLevel-2A ImageryLevel-1C ImageryPrecisionRecallF1 ScorePrecisionRecallF1 ScoreUrban fabric0.810.830.820.820.840.83Industrial, commercial and transport units0.740.650.690.730.660.7Mine, dump and construction sites0.630.520.570.690.550.61Artificial, non-agricultural vegetated areas0.700.460.550.670.470.55Arable land0.860.900.880.860.890.87Permanent crops0.760.730.740.750.710.73Pastures0.750.710.730.740.710.73Heterogeneous agricultural areas0.610.560.580.620.510.56Forests0.880.930.900.880.920.9Scrub and/or herbaceous vegetation associations0.740.690.720.730.670.7Open spaces with little or no vegetation0.870.840.850.850.820.84Inland wetlands0.810.780.800.820.770.79Maritime wetlands0.740.760.750.870.890.88Inland waters0.940.920.930.940.910.92Marine waters0.980.990.980.970.980.98This model has an overall accuracy of 90.79% with Level-2A imagery for CLC class level 1 classification (5 classes). The table below summarizes the precision, recall and F1-score of the model on the validation dataset.ClassPrecisionRecallF1 ScoreArtificial surfaces0.850.810.83Agricultural areas0.900.910.91Forest and semi natural areas0.910.920.92Wetlands0.770.700.73Water bodies0.960.970.96Training dataThis model has been trained on the Corine Land Cover (CLC) 2018 with the same Sentinel 2 scenes that were used to produce the database. Scene IDs for the imagery were available in the metadata of the dataset.Sample resultsHere are a few results from the model. To view more, see this story.

  8. a

    Parcel Points File Geodatabase

    • hub.arcgis.com
    • maps-leegis.hub.arcgis.com
    Updated Aug 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lee County Florida GIS (2022). Parcel Points File Geodatabase [Dataset]. https://hub.arcgis.com/datasets/159f598c465a4cb7a7a7ba419668869f
    Explore at:
    Dataset updated
    Aug 15, 2022
    Dataset authored and provided by
    Lee County Florida GIS
    Description

    Parcels and property data maintained and provided by Lee County Property Appraiser are converted to points. Property attribute data joined to parcel GIS layer by Lee County Government GIS. This dataset is generally used in spatial analysis.Process description: Parcel polygons, condominium points and property data provided by the Lee County Property Appraiser are processed by Lee County's GIS Department using the following steps:Join property data to parcel polygons Join property data to condo pointsConvert parcel polygons to points using ESRI's ArcGIS tool "Feature to Point" and designate the "Source" field "P".Load Condominium points into this layer and designate the "Source" field "C". Add X/Y coordinates in Florida State Plane West, NAD 83, feet using the "Add X/Y" tool.Projected coordinate system name: NAD_1983_StatePlane_Florida_West_FIPS_0902_FeetGeographic coordinate system name: GCS_North_American_1983

     Name
     Type
     Length
     Description
    
    
     STRAP
     String
     25
     17-digit Property ID (Section, Township, Range, Area, Block, Lot)
    
    
     BLOCK
     String
     10
     5-digit portion of STRAP (positions 9-13)
    
    
     LOT
     String
     8
     Last 4-digits of STRAP
    
    
     FOLIOID
     Double
     8
     Unique Property ID
    
    
     MAINTDATE
     Date
     8
     Date LeePA staff updated record
    
    
     MAINTWHO
     String
     20
     LeePA staff who updated record
    
    
     UPDATED
     Date
     8
     Data compilation date
    
    
     HIDE_STRAP
     String
     1
     Confidential parcel ownership
    
    
     TRSPARCEL
     String
     17
     Parcel ID sorted by Township, Range & Section
    
    
     DORCODE
     String
     2
     Department of Revenue. See https://leepa.org/Docs/Codes/DOR_Code_List.pdf
    
    
     CONDOTYPE
     String
     1
     Type of condominium: C (commercial) or R (residential)
    
    
     UNITOFMEAS
     String
     2
     Type of Unit of Measure (ex: AC=acre, LT=lot, FF=frontage in feet)
    
    
     NUMUNITS
     Double
     8
     Number of Land Units (units defined in UNITOFMEAS)
    
    
     FRONTAGE
     Integer
     4
     Road Frontage in Feet
    
    
     DEPTH
     Integer
     4
     Property Depth in Feet
    
    
     GISACRES
     Double
     8
     Total Computed Acres from GIS
    
    
     TAXINGDIST
     String
     3
     Taxing District of Property
    
    
     TAXDISTDES
     String
     60
     Taxing District Description
    
    
     FIREDIST
     String
     3
     Fire District of Property
    
    
     FIREDISTDE
     String
     60
     Fire District Description
    
    
     ZONING
     String
     10
     Zoning of Property
    
    
     ZONINGAREA
     String
     3
     Governing Area for Zoning
    
    
     LANDUSECOD
     SmallInteger
     2
     Land Use Code
    
    
     LANDUSEDES
     String
     60
     Land Use Description
    
    
     LANDISON
     String
     5
     BAY,CANAL,CREEK,GULF,LAKE,RIVER & GOLF
    
    
     SITEADDR
     String
     55
     Lee County Addressing/E911
    
    
     SITENUMBER
     String
     10
     Property Location - Street Number
    
    
     SITESTREET
     String
     40
     Street Name
    
    
     SITEUNIT
     String
     5
     Unit Number
    
    
     SITECITY
     String
     20
     City
    
    
     SITEZIP
     String
     5
     Zip Code
    
    
     JUST
     Double
     8
     Market Value
    
    
     ASSESSED
     Double
     8
     Building Value + Land Value
    
    
     TAXABLE
     Double
     8
     Taxable Value
    
    
     LAND
     Double
     8
     Land Value
    
    
     BUILDING
     Double
     8
     Building Value
    
    
     LXFV
     Double
     8
     Land Extra Feature Value
    
    
     BXFV
     Double
     8
     Building Extra Feature value
    
    
     NEWBUILT
     Double
     8
     New Construction Value
    
    
     AGAMOUNT
     Double
     8
     Agriculture Exemption Value
    
    
     DISAMOUNT
     Double
     8
     Disability Exemption Value
    
    
     HISTAMOUNT
     Double
     8
     Historical Exemption Value
    
    
     HSTDAMOUNT
     Double
     8
     Homestead Exemption Value
    
    
     SNRAMOUNT
     Double
     8
     Senior Exemption Value
    
    
     WHLYAMOUNT
     Double
     8
     Wholly Exemption Value
    
    
     WIDAMOUNT
     Double
     8
     Widow Exemption Value
    
    
     WIDRAMOUNT
     Double
     8
     Widower Exemption Value
    
    
     BLDGCOUNT
     SmallInteger
     2
     Total Number of Buildings on Parcel
    
    
     MINBUILTY
     SmallInteger
     2
     Oldest Building Built
    
    
     MAXBUILTY
     SmallInteger
     2
     Newest Building Built
    
    
     TOTALAREA
     Double
     8
     Total Building Area
    
    
     HEATEDAREA
     Double
     8
     Total Heated Area
    
    
     MAXSTORIES
     Double
     8
     Tallest Building on Parcel
    
    
     BEDROOMS
     Integer
     4
     Total Number of Bedrooms
    
    
     BATHROOMS
     Double
     8
     Total Number of Bathrooms / Not For Comm
    
    
     GARAGE
     String
     1
     Garage on Property 'Y'
    
    
     CARPORT
     String
     1
     Carport on Property 'Y'
    
    
     POOL
     String
     1
     Pool on Property 'Y'
    
    
     BOATDOCK
     String
     1
     Boat Dock on Property 'Y'
    
    
     SEAWALL
     String
     1
     Sea Wall on Property 'Y'
    
    
     NBLDGCOUNT
     SmallInteger
     2
     Total Number of New Buildings on ParcelTotal Number of New Buildings on Parcel
    
    
     NMINBUILTY
     SmallInteger
     2
     Oldest New Building Built
    
    
     NMAXBUILTY
     SmallInteger
     2
     Newest New Building Built
    
    
     NTOTALAREA
     Double
     8
     Total New Building Area
    
    
     NHEATEDARE
     Double
     8
     Total New Heated Area
    
    
     NMAXSTORIE
     Double
     8
     Tallest New Building on Parcel
    
    
     NBEDROOMS
     Integer
     4
     Total Number of New Bedrooms
    
    
     NBATHROOMS
     Double
     8
     Total Number of New Bathrooms/Not For Comm
    
    
     NGARAGE
     String
     1
     New Garage on Property 'Y'
    
    
     NCARPORT
     String
     1
     New Carport on Property 'Y'
    
    
     NPOOL
     String
     1
     New Pool on Property 'Y'
    
    
     NBOATDOCK
     String
     1
     New Boat Dock on Property 'Y'
    
    
     NSEAWALL
     String
     1
     New Sea Wall on Property 'Y'
    
    
     O_NAME
     String
     30
     Owner Name
    
    
     O_OTHERS
     String
     120
     Other Owners
    
    
     O_CAREOF
     String
     30
     In Care Of Line
    
    
     O_ADDR1
     String
     30
     Owner Mailing Address Line 1
    
    
     O_ADDR2
     String
     30
     Owner Mailing Address Line 2
    
    
     O_CITY
     String
     30
     Owner Mailing City
    
    
     O_STATE
     String
     2
     Owner Mailing State
    
    
     O_ZIP
     String
     9
     Owner Mailing Zip
    
    
     O_COUNTRY
     String
     30
     Owner Mailing Country
    
    
     S_1DATE
     Date
     8
     Most Current Sale Date > $100.00
    
    
     S_1AMOUNT
     Double
     8
     Sale Amount
    
    
     S_1VI
     String
     1
     Sale Vacant or Improved
    
    
     S_1TC
     String
     2
     Sale Transaction Code
    
    
     S_1TOC
     String
     2
     Sale Transaction Override Code
    
    
     S_1OR_NUM
     String
     13
     Original Record (Lee County Clerk)
    
    
     S_2DATE
     Date
     8
     Previous Sale Date > $100.00
    
    
     S_2AMOUNT
     Double
     8
     Sale Amount
    
    
     S_2VI
     String
     1
     Sale Vacant or Improved
    
    
     S_2TC
     String
     2
     Sale Transaction Code
    
    
     S_2TOC
     String
     2
     Sale Transaction Override Code
    
    
     S_2OR_NUM
     String
     13
     Original Record (Lee County Clerk)
    
    
     S_3DATE
     Date
     8
     Next Previous Sale Date > $100.00
    
    
     S_3AMOUNT
     Double
     8
     Sale Amount
    
    
     S_3VI
     String
     1
     Sale Vacant or Improved
    
    
     S_3TC
     String
     2
     Sale Transaction Code
    
    
     S_3TOC
     String
     2
     Sale Transaction Override Code
    
    
     S_3OR_NUM
     String
     13
     Original Record (Lee County Clerk)
    
    
     S_4DATE
     Date
     8
     Next Previous Sale Date > $100.00
    
    
     S_4AMOUNT
     Double
     8
     Sale Amount
    
    
     S_4VI
     String
     1
     Sale Vacant or Improved
    
    
     S_4TC
     String
     2
     Sale Transaction Code
    
    
     S_4TOC
     String
     2
     Sale Transaction Override Code
    
    
     S_4OR_NUM
     String
     13
    
  9. Tree Point Classification

    • fsc-geospatial-initiative-1-fsc-int.hub.arcgis.com
    • cacgeoportal.com
    • +1more
    Updated Oct 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Tree Point Classification [Dataset]. https://fsc-geospatial-initiative-1-fsc-int.hub.arcgis.com/content/58d77b24469d4f30b5f68973deb65599
    Explore at:
    Dataset updated
    Oct 8, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    Classifying trees from point cloud data is useful in applications such as high-quality 3D basemap creation, urban planning, and forestry workflows. Trees have a complex geometrical structure that is hard to capture using traditional means. Deep learning models are highly capable of learning these complex structures and giving superior results.Using the modelFollow the guide to use the model. The model can be used with the 3D Basemaps solution and ArcGIS Pro's Classify Point Cloud Using Trained Model tool. Before using this model, ensure that the supported deep learning frameworks libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.InputThe model accepts unclassified point clouds with the attributes: X, Y, Z, and Number of Returns.Note: This model is trained to work on unclassified point clouds that are in a projected coordinate system, where the units of X, Y, and Z are based on the metric system of measurement. If the dataset is in degrees or feet, it needs to be re-projected accordingly. The provided deep learning model was trained using a training dataset with the full set of points. Therefore, it is important to make the full set of points available to the neural network while predicting - allowing it to better discriminate points of 'class of interest' versus background points. It is recommended to use 'selective/target classification' and 'class preservation' functionalities during prediction to have better control over the classification.This model was trained on airborne lidar datasets and is expected to perform best with similar datasets. Classification of terrestrial point cloud datasets may work but has not been validated. For such cases, this pre-trained model may be fine-tuned to save on cost, time and compute resources while improving accuracy. When fine-tuning this model, the target training data characteristics such as class structure, maximum number of points per block, and extra attributes should match those of the data originally used for training this model (see Training data section below).OutputThe model will classify the point cloud into the following 2 classes with their meaning as defined by the American Society for Photogrammetry and Remote Sensing (ASPRS) described below: 0 Background 5 Trees / High-vegetationApplicable geographiesThis model is expected to work well in all regions globally, with an exception of mountainous regions. However, results can vary for datasets that are statistically dissimilar to training data.Model architectureThis model uses the PointCNN model architecture implemented in ArcGIS API for Python.Accuracy metricsThe table below summarizes the accuracy of the predictions on the validation dataset. Class Precision Recall F1-score Trees / High-vegetation (5) 0.975374 0.965929 0.970628Training dataThis model is trained on a subset of UK Environment Agency's open dataset. The training data used has the following characteristics: X, Y and Z linear unit meter Z range -19.29 m to 314.23 m Number of Returns 1 to 5 Intensity 1 to 4092 Point spacing 0.6 ± 0.3 Scan angle -23 to +23 Maximum points per block 8192 Extra attributes Number of Returns Class structure [0, 5]Sample resultsHere are a few results from the model.

  10. WDPA - Marine and Coastal Protected Areas

    • ppw-atlas-mapsterman.hub.arcgis.com
    • uneca.africageoportal.com
    • +8more
    Updated Sep 12, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment World Conservation Monitoring Centre (2019). WDPA - Marine and Coastal Protected Areas [Dataset]. https://ppw-atlas-mapsterman.hub.arcgis.com/datasets/UNEP-WCMC::wdpa-marine-and-coastal-protected-areas
    Explore at:
    Dataset updated
    Sep 12, 2019
    Dataset provided by
    United Nations Environment Programmehttp://www.unep.org/
    World Conservation Monitoring Centrehttp://www.unep-wcmc.org/
    Authors
    UN Environment World Conservation Monitoring Centre
    Area covered
    Description

    The World Database on Protected Areas (WDPA) is the most comprehensive global database of marine and terrestrial protected areas, updated on a monthly basis, and is one of the key global biodiversity data sets being widely used by scientists, businesses, governments, International secretariats and others to inform planning, policy decisions and management.The WDPA is a joint project between UN Environment and the International Union for Conservation of Nature (IUCN). The compilation and management of the WDPA is carried out by UN Environment World Conservation Monitoring Centre (UNEP-WCMC), in collaboration with governments, non-governmental organisations, academia and industry. There are monthly updates of the data which are made available online through the Protected Planet website where the data is both viewable and downloadable.Data and information on the world's protected areas compiled in the WDPA are used for reporting to the Convention on Biological Diversity on progress towards reaching the Aichi Biodiversity Targets (particularly Target 11), to the UN to track progress towards the 2030 Sustainable Development Goals, to some of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) core indicators, and other international assessments and reports including the Global Biodiversity Outlook, as well as for the publication of the United Nations List of Protected Areas. Every two years, UNEP-WCMC releases the Protected Planet Report on the status of the world's protected areas and recommendations on how to meet international goals and targets.Many platforms are incorporating the WDPA to provide integrated information to diverse users, including businesses and governments, in a range of sectors including mining, oil and gas, and finance. For example, the WDPA is included in the Integrated Biodiversity Assessment Tool, an innovative decision support tool that gives users easy access to up-to-date information that allows them to identify biodiversity risks and opportunities within a project boundary.The reach of the WDPA is further enhanced in services developed by other parties, such as the Global Forest Watch and the Digital Observatory for Protected Areas, which provide decision makers with access to monitoring and alert systems that allow whole landscapes to be managed better. Together, these applications of the WDPA demonstrate the growing value and significance of the Protected Planet initiative.Marine and Coastal Protected Areas query:Any of these expressions must be true:Marine is '1'Marine is '2'

  11. a

    BLM Natl FIAT Potential Ecosystem Resilience and Resistance in Sagebrush...

    • gbp-blm-egis.hub.arcgis.com
    • datasets.ai
    • +1more
    Updated Mar 1, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Land Management (2015). BLM Natl FIAT Potential Ecosystem Resilience and Resistance in Sagebrush Habitat 2015 Integer Raster [Dataset]. https://gbp-blm-egis.hub.arcgis.com/datasets/d15990bd91db4720b010ff934c451ea9
    Explore at:
    Dataset updated
    Mar 1, 2015
    Dataset authored and provided by
    Bureau of Land Management
    Area covered
    Description

    A 30 meter integer grid representing ecosystem resilience and resistance in sagebrush habitat. “Resilience” and “resistance” to rangeland fire is the basis of the Fire and Invasive Assessment Tool (FIAT) analysis project. In simple terms, “resilience” is the ability of an area to recover from a disturbance, such as wildfire or drought. “Resistance” is the ability of an area of land to remain largely unchanged in the face of stress, disturbance, or invasive species. A resilient, resistant landscape will have integrity and be less susceptible to conversion to invasive annual grasses and landscape-scale, high-intensity fires and their effects. This raster was derived from the unique combinations of two datasets. The first dataset represents soil moisture and temperature regimes based on NRCS gSSURGO, STATSGO, and state SSURGO soil survey sources. The second dataset represents classes of sagebrush cover percentage. FIAT was developed using a process designed to identify strategies that ameliorate threats to Greater Sage-Grouse (GRSG; Centrocercus urophasianus) and their habitats. While the assessment is applicable across the range of sage-grouse, the analysis is limited to Western Association of Fish and Wildlife Management Agencies’ (WAFWA) Management Zones III, IV, and V (roughly the Great Basin region) because of the significant issues associated with invasive annual grasses and the high level of wildfires in this region. It incorporates emerging science, regional findings, and local data in identifying management opportunities that counter detrimental ecological trends in wildfire, invasive annual grasses, and conifer expansion. The purpose of the assessment is to identify potential project areas and management strategies in highly valued greater sage-grouse habitats which, if implemented, would reduce the threats to greater sage-grouse.

  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Central Asia and the Caucasus GeoPortal (2024). Urban Density Footprint in 2020 [Dataset]. https://www.cacgeoportal.com/maps/9a541c1fd0884f898435fc48b9a7beb7

Urban Density Footprint in 2020

Explore at:
Dataset updated
Apr 2, 2024
Dataset authored and provided by
Central Asia and the Caucasus GeoPortal
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Description

This webmap is a subset of Global Urban Density Footprint in 2020 Tile Image Layer. This layer represents an estimate of the footprint of urban settings in 2020. It is intended as a fast-drawing cartographic layer to augment base maps and to focus a map reader's attention on the location of human population. This layer is not intended for analysis. This layer was derived from the 2020 slice of the WorldPop Population Density 2000-2020 100m and 1km layers.Also see the Populated Footprint layer, which like this layer, is intended to provide a fast-drawing cartographic context for the footprint of total population.The following processing steps were used to produce this layer in ArcGIS Pro:1. Int tool (Spatial Analyst) to truncate double precision values; all values less than 0.99 become 0.2. Reclassify tool (Spatial Analyst) to set values 0 through 1499 to NoData (Null) and all other values become 1.3. Copy Raster tool with Output Coordinate System environment set to Web Mercator, bit depth to 1 bit, and NoData Value to 0.Source:WorldPop Population Density 2000-2020 100m, which is created from WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation. The DOI for the original WorldPop.org total population population data is 10.5258/SOTON/WP00645.

Search
Clear search
Close search
Google apps
Main menu