70 datasets found
  1. a

    Integrating Data in ArcGIS Pro

    • hub.arcgis.com
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2020). Integrating Data in ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/3a11f895a7dc4d28ad45cee9cc5ba6d8
    Explore at:
    Dataset updated
    Mar 25, 2020
    Dataset authored and provided by
    State of Delaware
    Description

    In this course, you will learn about some common types of data used for GIS mapping and analysis, and practice adding data to a file geodatabase to support a planned project.Goals Create a file geodatabase. Add data to a file geodatabase. Create an empty geodatabase feature class.

  2. 02.1 Integrating Data in ArcGIS Pro

    • hub.arcgis.com
    • training-iowadot.opendata.arcgis.com
    Updated Feb 16, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 02.1 Integrating Data in ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/cd5acdcc91324ea383262de3ecec17d0
    Explore at:
    Dataset updated
    Feb 16, 2017
    Dataset authored and provided by
    Iowa Department of Transportationhttps://iowadot.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    You have been assigned a new project, which you have researched, and you have identified the data that you need.The next step is to gather, organize, and potentially create the data that you need for your project analysis.In this course, you will learn how to gather and organize data using ArcGIS Pro. You will also create a file geodatabase where you will store the data that you import and create.After completing this course, you will be able to perform the following tasks:Create a geodatabase in ArcGIS Pro.Create feature classes in ArcGIS Pro by exporting and importing data.Create a new, empty feature class in ArcGIS Pro.

  3. n

    ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) Project...

    • nbam.ntia.gov
    Updated Dec 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NBAM_Org (2024). ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) Project Package [Dataset]. https://nbam.ntia.gov/content/37fa42c6313e4bdb9d8a9c05d2624891
    Explore at:
    Dataset updated
    Dec 20, 2024
    Dataset authored and provided by
    NBAM_Org
    Description

    The ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) Project Package includes all of the layers that are in the NTIA Permitting and Environmental Information Application as well as the APPEIT Tool which will allow users to input a project area and determine what layers from the application overlap with it. An overview of the project package and the APPEIT tool is provided below.

    User instructions on how to use the tool are available here. A video explaining how to use the Project Package is also available here.

    Project Package Overview

    This map package includes all of the layers from the NTIA Permitting and Environmental Information Application. The layers included are all feature services from various Federal and State agencies. The map package was created with ArcGIS Pro 3.4.0. The map package was created to allow users easy access to all feature services including symbology. The map package will allow users to avoid downloading datasets individually and easily incorporate into their own GIS system. The map package includes three maps.

    1. Permitting and Environmental Information Application Layers for GIS Analysis - This map includes all of the map tabs shown in the application, except State Data which is provided in another tab. This map includes feature services that can be used for analysis with other project layers such as a route or project area.

    2. Permitting and Environmental Information Application Layers – For Reference Only - This map includes layers that cannot be used for analysis since they are either imagery or tile layers.

    3. State Data - Reference Only - This map includes all relevant state data that is shown in the application.

    The NTIA Permitting and Environmental Information Application was created to help with your permitting planning and environmental review preparation efforts by providing access to multiple maps from publicly available sources, including federal review, permitting, and resource agencies. The application should be used for informational purposes only and is intended solely to assist users with preliminary identification of areas that may require permits or planning to avoid potentially significant impacts to environmental resources subject to the National Environmental Policy Act (NEPA) and other statutory requirements. Multiple maps are provided in the application which are created from public sources. This application does not have an exhaustive list of everything you need for permitting or environmental review for a project but is an initial starting point to see what might be required.

    APPEIT Tool OverviewThe Department of Commerce’s National Telecommunications and Information Administration (NTIA) is providing the ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) to help federal broadband grant recipients and subgrantees identify permits and environmental factors as they plan routes for their broadband deployments. Identifying permit requirements early, initiating pre-application coordination with permitting agencies, and avoiding environmental impacts help drive successful infrastructure projects. NTIA’s public release of the APPEIT tool supports government-wide efforts to improve permitting and explore how online and digital technologies can promote efficient environmental reviews.

    This Esri ArcGIS Pro tool is included in the map package and was created to support permitting, planning, and environmental review preparation efforts by providing access to data layers from publicly available sources, including federal review, permitting, and resource agencies. An SOP on how to use the tool is available here. For the full list of APPEIT layers, see Appendix Table 1 in the SOP. The tool is comprised of an ArcGIS Pro Project containing a custom ArcGIS Toolbox tool, linked web map shared by the NTIA’s National Broadband Map (NBAM), a report template, and a Tasks item to guide users through using the tool. This ArcGIS Pro project and its contents (maps and data) are consolidated into this (.ppkx) project file.

    To use APPEIT, users will input a project area boundary or project route line in a shapefile or feature class format. The tool will return as a CSV and PDF report that lists any federal layers from the ArcGIS Pro Permitting and Environmental Information Web Map that intersect the project. Users may only input a single project area or line at a time; multiple projects or project segments will need to be screened separately. For project route lines, users are required to specify a buffer distance. The buffer distance that is used for broadband projects should be determined by the area of anticipated impact and should generally not exceed 500 feet. For example, the State of Maryland recommends a 100-foot buffer for broadband permitting. The tool restricts buffers to two miles to ensure relevant results.

    Disclaimer

    This document is intended solely to assist federal broadband grant recipients and subgrantees in better understanding Infrastructure Investment and Jobs Act (IIJA) broadband grant programs and the requirements set forth in the Notice of Funding Opportunity (NOFO) for this program. This document does not and is not intended to supersede, modify, or otherwise alter applicable statutory or regulatory requirements, the terms and conditions of the award, or the specific application requirements set forth in the NOFO. In all cases, statutory and regulatory mandates, the terms and conditions of the award, the requirements set forth in the NOFO, and follow-on policies and guidance, shall prevail over any inconsistencies contained in this document.

    NTIA’s ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) should be used for informational purposes only and is intended solely to assist users with preliminary identification of broadband deployments that may require permits or planning to avoid potentially significant impacts to environmental resources subject to the National Environmental Policy Act (NEPA) and other statutory requirements.

    The tool is not an exhaustive or complete resource and does not and is not intended to substitute for, supersede, modify, or otherwise alter any applicable statutory or regulatory requirements, or the specific application requirements set forth in any NTIA NOFO, Terms and Conditions, or Special Award Condition. In all cases, statutory and regulatory mandates, and the requirements set forth in NTIA grant documents, shall prevail over any inconsistencies contained in these templates.

    The tool relies on publicly available data available on the websites of other federal, state, local, and Tribal agencies, and in some instances, private organizations and research institutions. Layers identified with a double asterisk include information relevant to determining if an “extraordinary circumstance” may warrant more detailed environmental review when a categorical exclusion may otherwise apply. While NTIA continues to make amendments to its websites to comply with Section 508, NTIA cannot ensure Section 508 compliance of federal and non-federal websites or resources users may access from links on NTIA websites.

    All data is presented “as is,” “as available” for informational purposes. NTIA does not warrant the accuracy, adequacy, or completeness of this information and expressly disclaims liability for any errors or omissions.

    Please e-mail NTIAanalytics@ntia.gov with any questions.

  4. B

    BIM Software Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). BIM Software Market Report [Dataset]. https://www.marketreportanalytics.com/reports/bim-software-market-87985
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Apr 23, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Building Information Modeling (BIM) software market, valued at $8.72 billion in 2025, is experiencing robust growth, projected to expand at a compound annual growth rate (CAGR) of 13.90% from 2025 to 2033. This expansion is fueled by several key factors. Increasing adoption of digital technologies within the architecture, engineering, and construction (AEC) industries is a primary driver. BIM software offers significant advantages in improving project planning, collaboration, and cost management, leading to increased efficiency and reduced errors. The rising complexity of construction projects globally, coupled with stringent regulatory requirements for building safety and sustainability, further necessitates the use of advanced BIM solutions. Growth is also being driven by the increasing availability of cloud-based BIM platforms, which enhance accessibility and collaboration among stakeholders. The market is segmented by solution type (software and services), application (commercial, residential, industrial, and others), and end-user (contractors, architects, facilities managers, and others). North America currently holds a significant market share, driven by early adoption and robust technological infrastructure; however, Asia Pacific is projected to witness substantial growth due to rapid urbanization and infrastructure development. The competitive landscape is marked by both established players like Autodesk, Bentley Systems, and Nemetschek, and emerging innovative companies. These companies are continuously investing in research and development to enhance functionalities, integrate new technologies like artificial intelligence and machine learning, and develop user-friendly interfaces to cater to a wider user base. While the market faces some restraints such as the high initial investment costs of BIM software and the need for skilled professionals, the long-term benefits and increasing awareness of its advantages are expected to outweigh these challenges. The market's future trajectory is positive, with continued growth driven by technological advancements, industry adoption, and the overarching need for efficient and sustainable construction practices. The projected market size in 2033 will significantly surpass the 2025 value, reflecting the considerable growth potential of the BIM software market. Recent developments include: July 2024 - Esri and Autodesk have deepened their partnership to enhance data interoperability between Geographic Information Systems (GIS) and Building Information Modeling (BIM), with ArcGIS Pro now offering direct-read support for BIM and CAD elements from Autodesk's tools. This collaboration aims to integrate GIS and BIM workflows more seamlessly, potentially transforming how architects, engineers, and construction professionals work with geospatial and design data in the AEC industry., June 2024 - Hexagon, the Swedish technology giant, has acquired Voyansi, a Cordoba-based company specializing in Building Information Modelling (BIM), to enhance its portfolio of BIM solutions. This acquisition not only strengthens Hexagon's position in the global BIM market but also recognizes the talent in Argentina's tech sector, particularly in Córdoba, where Voyansi has been developing design, architecture, and engineering services for global construction markets for the past 15 years., April 2024 - Hyundai Engineering has partnered with Trimble Solution Korea to co-develop a Building Information Modeling (BIM) process management program, aiming to enhance construction site productivity through advanced 3D modeling technology. This collaboration highlights the growing importance of BIM in the construction industry, with the potential to optimize steel structure and precast concrete construction management, shorten project timelines, and reduce costs compared to traditional construction methods.. Key drivers for this market are: Governmental Mandates and International Standards Encouraging BIM Adoption, Boosting Project Performance and Productivity. Potential restraints include: Governmental Mandates and International Standards Encouraging BIM Adoption, Boosting Project Performance and Productivity. Notable trends are: Government Mandates Fueling BIM Growth.

  5. a

    IRWIN Data Service User's Guide ( 20190325)

    • gis-fema.hub.arcgis.com
    • prep-response-portal.napsgfoundation.org
    • +2more
    Updated Nov 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2019). IRWIN Data Service User's Guide ( 20190325) [Dataset]. https://gis-fema.hub.arcgis.com/documents/29d7b53aecc1491b9d42fd559368b22f
    Explore at:
    Dataset updated
    Nov 5, 2019
    Dataset authored and provided by
    NAPSG Foundation
    Description

    IntroductionIRWIN ArcGIS Online GeoPlatform Services The Integrated Reporting of Wildland-Fire Information (IRWIN) Production data is replicated every 60 seconds to the ArcGIS Online GeoPlatform organization so that read-only views can be provided for consumers. This replicated view is called the hosted datastore. The “IRWIN Data” group is a set of Feature Layer views based on the replicated IRWIN layers. These feature layers provide a near real-time feed of all valid IRWIN data. All incidents that have been shared through the integration service since May 20, 2014 are available through this service. The incident data provides the location of existing fires, size, conditions and several other attributes that help classify fires. The IRWIN Data service allows users to create a web map, share it with their organization, or pull it into ArcMap or ArcGIS Pro for more in-depth analysis.InstructionsTo allow the emergency management GIS staff to join the IRWIN Data group, they will need to set up an ArcGIS Online account through our account manager. Please send the response to Samantha Gibbes (Samantha.C.Gibbes@saic.com) and Kayloni Ahtong (kayloni_ahtong@ios.doi.gov). Use the below template and fill in each part as best as possible, where the point of contact (POC) is the person responsible for the account.Reply Email Body: The (name of application) application requests the following user account and access to the IRWIN Data group.POC Name: First name Last name and titlePOC Email: Username: <>_irwin (choose a username, something short, followed by _irwin)Business Justification: Once you are set up with the account, I will coordinate a call to go over any questions.

  6. w

    Fuquay-Varina Utilities - Water System - Water Meters

    • data.wake.gov
    • hub.arcgis.com
    • +1more
    Updated Mar 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Town of Fuquay-Varina (2022). Fuquay-Varina Utilities - Water System - Water Meters [Dataset]. https://data.wake.gov/datasets/tofv::fuquay-varina-utilities-water-system-water-meters
    Explore at:
    Dataset updated
    Mar 12, 2022
    Dataset authored and provided by
    Town of Fuquay-Varina
    Area covered
    Description

    Water Meter points within Fuquay-Varina. Most meter devices are owned and maintained by the Town, which provides water utility services. However, on some commercial sites, for example, the meter box and meter yoke are actually privately owned and maintained while the meter device is owned and maintained by the Town. This water meter dataset is constantly under development and improvement as there is increasing demand to integrate GIS meter information with other solutions. Please note that some meter points are not field-validated and some are not associated with a valid METERID for water service, and may essentially be duplicated legacy locations from old GIS data. Please note that ALL public utility data layers can be downloaded in a single .mpkx (ArcGIS Pro map package file), updated every Friday evening. This .mpkx file can be opened directly with ArcGIS Pro version 3+. Alternatively, you can extract the file geodatabase within it by renaming the file ending .mpkx to .zip and treating it like a zip archive file, for use in any version of ArcGIS Pro or ArcMap software. You can also use QGIS, a powerful, free, and open-source GIS software.The Town of Fuquay-Varina creates, maintains, and serves out a variety of utility information to the public, including its Potable Water System, Sanitary Sewer System, and Stormwater Collection System features. This is the same utility data displayed in our public web map. This utility data includes some features designated as 'private' that are not owned or maintained by the Town, but may be helpful for modeling and other informational purposes. Please pay particular attention to the terms of use and disclaimer associated with these data. Some data includes the use of Subtypes and Domains that may not translate well to Shapefile or GeoJSON downloads available through our Open Data site. Please beware the dangers of cartographic misrepresentation if you are unfamiliar with filtering and symbolizing data based on attributes. Water System Layers:Water LinesWater ValvesWater ManholesFire HydrantsFire Department ConnectionsWater MetersRPZ (Backflow Preventers)Water TankWater Booster StationsHarnett County Water District AreaSewer System Layers:Gravity Sewer LinesForced Sewer LinesSewer ManholesSewer ValvesSewer CleanoutsSewer Pump StationsWastewater Treatment PlantsStormwater System Layers:Stormwater Lines (Pipes)Stormwater Points (Inlets/Outlets/Manholes)Stormwater Control Measure Points (SCM's, such as Wet Ponds / Retention Basins)

  7. r

    Add GTFS to a Network Dataset

    • opendata.rcmrd.org
    Updated Jun 27, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS for Transportation Analytics (2013). Add GTFS to a Network Dataset [Dataset]. https://opendata.rcmrd.org/content/0fa52a75d9ba4abcad6b88bb6285fae1
    Explore at:
    Dataset updated
    Jun 27, 2013
    Dataset authored and provided by
    ArcGIS for Transportation Analytics
    Description

    Deprecation notice: This tool is deprecated because this functionality is now available with out-of-the-box tools in ArcGIS Pro. The tool author will no longer be making further enhancements or fixing major bugs.Use Add GTFS to a Network Dataset to incorporate transit data into a network dataset so you can perform schedule-aware analyses using the Network Analyst tools in ArcMap.After creating your network dataset, you can use the ArcGIS Network Analyst tools, like Service Area and OD Cost Matrix, to perform transit/pedestrian accessibility analyses, make decisions about where to locate new facilities, find populations underserved by transit or particular types of facilities, or visualize the areas reachable from your business at different times of day. You can also publish services in ArcGIS Server that use your network dataset.The Add GTFS to a Network Dataset tool suite consists of a toolbox to pre-process the GTFS data to prepare it for use in the network dataset and a custom GTFS transit evaluator you must install that helps the network dataset read the GTFS schedules. A user's guide is included to help you set up your network dataset and run analyses.Instructions:Download the tool. It will be a zip file.Unzip the file and put it in a permanent location on your machine where you won't lose it. Do not save the unzipped tool folder on a network drive, the Desktop, or any other special reserved Windows folders (like C:\Program Files) because this could cause problems later.The unzipped file contains an installer, AddGTFStoaNetworkDataset_Installer.exe. Double-click this to run it. The installation should proceed quickly, and it should say "Completed" when finished.Read the User's Guide for instructions on creating and using your network dataset.System requirements:ArcMap 10.1 or higher with a Desktop Standard (ArcEditor) license. (You can still use it if you have a Desktop Basic license, but you will have to find an alternate method for one of the pre-processing tools.) ArcMap 10.6 or higher is recommended because you will be able to construct your network dataset much more easily using a template rather than having to do it manually step by step. This tool does not work in ArcGIS Pro. See the User's Guide for more information.Network Analyst extensionThe necessary permissions to install something on your computer.Data requirements:Street data for the area covered by your transit system, preferably data including pedestrian attributes. If you need help preparing high-quality street data for your network, please review this tutorial.A valid GTFS dataset. If your GTFS dataset has blank values for arrival_time and departure_time in stop_times.txt, you will not be able to run this tool. You can download and use the Interpolate Blank Stop Times tool to estimate blank arrival_time and departure_time values for your dataset if you still want to use it.Help forum

  8. a

    Python for ArcGIS - Working with ArcGIS Notebooks

    • edu.hub.arcgis.com
    Updated Oct 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education and Research (2024). Python for ArcGIS - Working with ArcGIS Notebooks [Dataset]. https://edu.hub.arcgis.com/documents/16fbaf21dc7b41c187ebcfd9f6ea1d58
    Explore at:
    Dataset updated
    Oct 8, 2024
    Dataset authored and provided by
    Education and Research
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This resource was created by Esri Canada Education and Research. To browse our full collection of higher-education learning resources, please visit https://hed.esri.ca/resourcefinder/.This tutorial introduces you to using Python code in a Jupyter Notebook, an open source web application that enables you to create and share documents that contain rich text, equations and multimedia, alongside executable code and visualization of analysis outputs. The tutorial begins by stepping through the basics of setting up and being productive with Python notebooks. You will be introduced to ArcGIS Notebooks, which are Python Notebooks that are well-integrated within the ArcGIS platform. Finally, you will be guided through a series of ArcGIS Notebooks that illustrate how to create compelling notebooks for data science that integrate your own Python scripts using the ArcGIS API for Python and ArcPy in combination with thousands of open source Python libraries to enhance your analysis and visualization.To download the dataset Labs, click the Open button to the top right. This will automatically download a ZIP file containing all files and data required.You can also clone the tutorial documents and datasets for this GitHub repo: https://github.com/highered-esricanada/arcgis-notebooks-tutorial.git.Software & Solutions Used: Required: This tutorial was last tested on August 27th, 2024, using ArcGIS Pro 3.3. If you're using a different version of ArcGIS Pro, you may encounter different functionality and results.Recommended: ArcGIS Online subscription account with permissions to use advanced Notebooks and GeoEnrichmentOptional: Notebook Server for ArcGIS Enterprise 11.3+Time to Complete: 2 h (excludes processing time)File Size: 196 MBDate Created: January 2022Last Updated: August 27, 2024

  9. 1. ArcGIS Pro basic - Nyt kursus - ikke testet

    • gis.rksk.dk
    Updated Nov 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ringkøbing Skjern Kommune ***ArcGIS Online *** (2022). 1. ArcGIS Pro basic - Nyt kursus - ikke testet [Dataset]. https://gis.rksk.dk/documents/e0dfc614ca614bec99b8e9a5792d3176
    Explore at:
    Dataset updated
    Nov 14, 2022
    Dataset provided by
    https://arcgis.com/
    Authors
    Ringkøbing Skjern Kommune ***ArcGIS Online ***
    Description

    ArcGIS Pro provides the tools to integrate, visualize, analyze, and share your data. This course introduces you to the powerful capabilities of ArcGIS Pro and how it can be used in your work.Kontakt os for adgang

  10. Aerial Data and Processed Models of Port Arthur Coastal Neighborhood and...

    • osti.gov
    • data.ess-dive.lbl.gov
    • +1more
    Updated Dec 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOE:DE-SC0023216 (2023). Aerial Data and Processed Models of Port Arthur Coastal Neighborhood and Pleasure Island Golf Course, June 2024 [Dataset]. http://doi.org/10.15485/2406464
    Explore at:
    Dataset updated
    Dec 31, 2023
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    DOE:DE-SC0023216
    Southeast Texas Urban Integrated Field Laboratory (SETx UIFL) – Equitable solutions for communities caught between floods and air pollution
    Environmental System Science Data Infrastructure for a Virtual Ecosystem
    Area covered
    Port Arthur
    Description

    Our Co-design team is from the University of Texas, working on a Department of Energy-funded project focused on the Beaumont-Port Arthur area. As part of this project, we will be developing climate-resilient design solutions for areas of the region. More on www.caee.utexas.edu.We captured aerial photos in the Port Arthur Coastal Neighborhood Community and the Golf Course on Pleasure Island, Texas, in June 2024.Aerial photos taken were through DroneDeploy autonomous flight, and models were processed through the DroneDeploy engine as well. All aerial photos are in .JPG format and contained in zipped files for each area.The processed data package includes 3D models, geospatial data, mappings, and point clouds. Please be aware that DTM, Elevation toolbox, Point cloud, and Orthomosaic use EPSG: 6588. And 3D Model uses EPSG: 3857.For using these data:- The Adobe Suite gives you great software to open .Tif files.- You can use LASUtility (Windows), ESRI ArcGIS Pro (Windows), or Blaze3D (Windows, Linux) to open a LAS file and view the data it contains.- Open an .OBJ file with a large number of free and commercial applications. Some examples include Microsoft 3D Builder, Apple Preview, Blender, and Autodesk.- You may use ArcGIS, Merkaartor, Blender (with the Google Earth Importer plug-in), Global Mapper, and Marble to open .KML files.- The .tfw world file is a text file used to georeference the GeoTIFF raster images, like the orthomosaic and the DSM. You need suitable software like ArcView to open a .TFW file.This dataset provides researchers with sufficient geometric data and the status quo of the land surface at the locations mentioned above. This dataset could streamline researchers' decision-making processes and enhance the design as well.

  11. d

    Real-time kinematic (RTK) Drone-collected Data and Processed Models of Port...

    • dataone.org
    • osti.gov
    Updated Oct 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paul Buschow; Linchao Luo; William Mobley; Suzanne Pierce (2024). Real-time kinematic (RTK) Drone-collected Data and Processed Models of Port Arthur Coastal Neighborhood and Pleasure Island Golf Course, June 2024 [Dataset]. http://doi.org/10.15485/2447557
    Explore at:
    Dataset updated
    Oct 26, 2024
    Dataset provided by
    ESS-DIVE
    Authors
    Paul Buschow; Linchao Luo; William Mobley; Suzanne Pierce
    Time period covered
    Jun 17, 2024 - Jun 20, 2024
    Area covered
    Description

    The Southeast Texas Urban Integrated field lab’s Co-design team captured aerial photos in the Port Arthur Coastal Neighborhood Community and the Golf Course on Pleasure Island, Texas, in June 2024. Aerial photos taken were through autonomous flight, and models were processed through the DroneDeploy engine. All aerial photos are in .JPG format and contained in zipped files for each area. The processed data package includes 3D models, geospatial data, mappings, and point clouds. Please be aware that DTM, Elevation toolbox, Point Cloud, and Orthomosaic use EPSG: 6588. And 3D Model uses EPSG: 3857. For using these data: - The Adobe Suite gives you great software to open .Tif files. - You can use LASUtility (Windows), ESRI ArcGIS Pro (Windows), or Blaze3D (Windows, Linux) to open a LAS file and view the data it contains. - Open an .OBJ file with a large number of free and commercial applications. Some examples include Microsoft 3D Builder, Apple Preview, Blender, and Autodesk. - You may use ArcGIS, Merkaartor, Blender (with the Google Earth Importer plug-in), Global Mapper, and Marble to open .KML files. - The .tfw world file is a text file used to georeference the GeoTIFF raster images, like the orthomosaic and the DSM. You need suitable software like ArcView to open a .TFW file. This dataset provides researchers with sufficient geometric data and the status quo of the land surface at the locations mentioned above. This dataset will support researchers' decision-making processes under uncertainties.

  12. a

    Visualize A Space Time Cube in 3D

    • gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com
    • hub.arcgis.com
    Updated Dec 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Society for Conservation GIS (2020). Visualize A Space Time Cube in 3D [Dataset]. https://gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com/maps/acddde8dae114381889b436fa0ff4b2f
    Explore at:
    Dataset updated
    Dec 3, 2020
    Dataset authored and provided by
    Society for Conservation GIS
    Description

    Stamp Out COVID-19An apple a day keeps the doctor away.Linda Angulo LopezDecember 3, 2020https://theconversation.com/coronavirus-where-do-new-viruses-come-from-136105SNAP Participation Rates, was explored and analysed on ArcGIS Pro, the results of which can help decision makers set up further SNAP-D initiatives.In the USA foods are stored in every State and U.S. territory and may be used by state agencies or local disaster relief organizations to provide food to shelters or people who are in need.US Food Stamp Program has been ExtendedThe Supplemental Nutrition Assistance Program, SNAP, is a State Organized Food Stamp Program in the USA and was put in place to help individuals and families during this exceptional time. State agencies may request to operate a Disaster Supplemental Nutrition Assistance Program (D-SNAP) .D-SNAP Interactive DashboardAlmost all States have set up Food Relief Programs, in response to COVID-19.Scroll Down to Learn more about the SNAP Participation Analysis & ResultsSNAP Participation AnalysisInitial results of yearly participation rates to geography show statistically significant trends, to get acquainted with the results, explore the following 3D Time Cube Map:Visualize A Space Time Cube in 3Dhttps://arcg.is/1q8LLPnetCDF ResultsWORKFLOW: a space-time cube was generated as a netCDF structure with the ArcGIS Pro Space-Time Mining Tool : Create a Space Time Cube from Defined Locations, other tools were then used to incorporate the spatial and temporal aspects of the SNAP County Participation Rate Feature to reveal and render statistically significant trends about Nutrition Assistance in the USA.Hot Spot Analysis Explore the results in 2D or 3D.2D Hot Spotshttps://arcg.is/1Pu5WH02D Hot Spot ResultsWORKFLOW: Hot Spot Analysis, with the Hot Spot Analysis Tool shows that there are various trends across the USA for instance the Southeastern States have a mixture of consecutive, intensifying, and oscillating hot spots.3D Hot Spotshttps://arcg.is/1b41T43D Hot Spot ResultsThese trends over time are expanded in the above 3D Map, by inspecting the stacked columns you can see the trends over time which give result to the overall Hot Spot Results.Not all counties have significant trends, symbolized as Never Significant in the Space Time Cubes.Space-Time Pattern Mining AnalysisThe North-central areas of the USA, have mostly diminishing cold spots.2D Space-Time Mininghttps://arcg.is/1PKPj02D Space Time Mining ResultsWORKFLOW: Analysis, with the Emerging Hot Spot Analysis Tool shows that there are various trends across the USA for instance the South-Eastern States have a mixture of consecutive, intensifying, and oscillating hot spots.Results ShowThe USA has counties with persistent malnourished populations, they depend on Food Aide.3D Space-Time Mininghttps://arcg.is/01fTWf3D Space Time Mining ResultsIn addition to obvious planning for consistent Hot-Hot Spot Areas, areas oscillating Hot-Cold and/or Cold-Hot Spots can be identified for further analysis to mitigate the upward trend in food insecurity in the USA, since 2009 which has become even worse since the outbreak of the COVID-19 pandemic.After Notes:(i) The Johns Hopkins University has an Interactive Dashboard of the Evolution of the COVID-19 Pandemic.Coronavirus COVID-19 (2019-nCoV)(ii) Since March 2020 in a Response to COVID-19, SNAP has had to extend its benefits to help people in need. The Food Relief is coordinated within States and by local and voluntary organizations to provide nutrition assistance to those most affected by a disaster or emergency.Visit SNAPs Interactive DashboardFood Relief has been extended, reach out to your state SNAP office, if you are in need.(iii) Follow these Steps to build an ArcGIS Pro StoryMap:Step 1: [Get Data][Open An ArcGIS Pro Project][Run a Hot Spot Analysis][Review analysis parameters][Interpret the results][Run an Outlier Analysis][Interpret the results]Step 2: [Open the Space-Time Pattern Mining 2 Map][Create a space-time cube][Visualize a space-time cube in 2D][Visualize a space-time cube in 3D][Run a Local Outlier Analysis][Visualize a Local Outlier Analysis in 3DStep 3: [Communicate Analysis][Identify your Audience & Takeaways][Create an Outline][Find Images][Prepare Maps & Scenes][Create a New Story][Add Story Elements][Add Maps & Scenes] [Review the Story][Publish & Share]A submission for the Esri MOOCSpatial Data Science: The New Frontier in AnalyticsLinda Angulo LopezLauren Bennett . Shannon Kalisky . Flora Vale . Alberto Nieto . Atma Mani . Kevin Johnston . Orhun Aydin . Ankita Bakshi . Vinay Viswambharan . Jennifer Bell & Nick Giner

  13. d

    Data for: Solar bike path feasibility study in California

    • search.dataone.org
    • datadryad.org
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seungjin Lee; Kasra Mazarei Saadabadi; Alfredo A. Martinez-Morales (2025). Data for: Solar bike path feasibility study in California [Dataset]. http://doi.org/10.5061/dryad.4tmpg4fn1
    Explore at:
    Dataset updated
    Jul 17, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Seungjin Lee; Kasra Mazarei Saadabadi; Alfredo A. Martinez-Morales
    Area covered
    California
    Description

    This project explores the feasibility of integrating solar-powered infrastructure into bike pathways as a sustainable energy and transportation solution for California. Using advanced tools like ArcGIS (for analysis), PVWatts, SAM, and JEDI, this study evaluates the economic, environmental, and technical implications through a conceptual case study based in Riverside. Insights drawn from global case studies and stakeholder feedback highlight challenges such as financial constraints, regulatory complexities, and technical design considerations, while also identifying opportunities for renewable energy generation, greenhouse gas emission reductions, and enhanced urban mobility. The conceptual case study serves as a framework for assessing potential benefits and informing actionable strategies. Recommendations address barriers and align implementation with California’s climate action and sustainability goals, offering a roadmap for integrating renewable energy with active transportation sy..., The data collection and processing methods for this project utilized a combination of publicly available tools and resources to ensure accuracy and usability. Key geospatial, energy modeling, and economic analysis data were gathered using reliable tools such as ArcGIS, SAM, JEDI, and PVWatts, with outputs systematically processed into accessible formats. This approach enabled comprehensive analysis of bike path integration, energy performance, and economic impacts.

    Data Collection:

    BikePaths_Riverside.qgz: Geospatial data detailing bike paths in Riverside was gathered from publicly available sources and initially analyzed using ArcGIS Pro. To ensure open access and reusability, the data has been converted to a .qgz project file compatible with QGIS (version 3.42), a free and open-source GIS platform.

    SAM_Input_Variable_Values.csv: Input parameters were collected based on standard system specifications, financial assumptions, and default or adjusted inputs available in the System Ad..., , # Data for: Solar bike path feasibility study in California

    https://doi.org/10.5061/dryad.4tmpg4fn1

    Description of the data and file structure

    The data was collected to evaluate the feasibility, technical requirements, and potential impacts of integrating solar-powered infrastructure into bike pathways. The study utilized geospatial data from ArcGIS for spatial analysis and site evaluation, combined with energy modeling tools such as PVWatts and SAM to estimate energy production, greenhouse gas reductions, and financial metrics. The JEDI model was employed to assess economic and job creation impacts. These efforts were guided by a conceptual case study in Riverside, California, to simulate real-world scenarios and inform actionable strategies for renewable energy integration. Feedback from stakeholders further shaped the analysis, addressing technical, economic, and regulatory challenges while aligning with California's sustainability goa...,

  14. d

    Connecticut CAMA and Parcel Layer

    • catalog.data.gov
    Updated May 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Connecticut (2025). Connecticut CAMA and Parcel Layer [Dataset]. https://catalog.data.gov/dataset/connecticut-cama-and-parcel-layer-5244a
    Explore at:
    Dataset updated
    May 10, 2025
    Dataset provided by
    State of Connecticut
    Area covered
    Connecticut
    Description

    Coordinate system Update:Notably, this dataset will be provided in NAD 83 Connecticut State Plane (2011) (EPSG 2234) projection, instead of WGS 1984 Web Mercator Auxiliary Sphere (EPSG 3857) which is the coordinate system of the 2023 dataset and will remain in Connecticut State Plane moving forward.Ownership Suppression and Data Access:The updated dataset now includes parcel data for all towns across the state, with some towns featuring fully suppressed ownership information. In these instances, the owner’s name will be replaced with the label "Current Owner," the co-owner’s name will be listed as "Current Co-Owner," and the mailing address will appear as the property address itself. For towns with suppressed ownership data, users should be aware that there was no "Suppression" field in the submission to verify specific details. This measure was implemented this year to help verify compliance with Suppression.New Data Fields:The new dataset introduces the "Land Acres" field, which will display the total acreage for each parcel. This additional field allows for more detailed analysis and better supports planning, zoning, and property valuation tasks. An important new addition is the FIPS code field, which provides the Federal Information Processing Standards (FIPS) code for each parcel’s corresponding block. This allows users to easily identify which block the parcel is in.Updated Service URL:The new parcel service URL includes all the updates mentioned above, such as the improved coordinate system, new data fields, and additional geospatial information. Users are strongly encouraged to transition to the new service as soon as possible to ensure that their workflows remain uninterrupted. The URL for this service will remain persistent moving forward. Once you have transitioned to the new service, the URL will remain constant, ensuring long term stability.For a limited time, the old service will continue to be available, but it will eventually be retired. Users should plan to switch to the new service well before this cutoff to avoid any disruptions in data access.The dataset has combined the Parcels and Computer-Assisted Mass Appraisal (CAMA) data for 2024 into a single dataset. This dataset is designed to make it easier for stakeholders and the GIS community to use and access the information as a geospatial dataset. Included in this dataset are geometries for all 169 municipalities and attribution from the CAMA data for all but one municipality. Pursuant to Section 7-100l of the Connecticut General Statutes, each municipality is required to transmit a digital parcel file and an accompanying assessor’s database file (known as a CAMA report), to its respective regional council of governments (COG) by May 1 annually. These data were gathered from the CT municipalities by the COGs and then submitted to CT OPM. This dataset was created on 10/31/2024 from data collected in 2023-2024. Data was processed using Python scripts and ArcGIS Pro, ensuring standardization and integration of the data.<p style='margin-top:0px; margin-bottom:1.5rem; font-family:"Avenir Next W01", "Avenir Next W00", "Avenir Next", Avenir, "Helv

  15. O

    Connecticut State Parcel Layer 2023

    • data.ct.gov
    • geodata.ct.gov
    • +2more
    application/rdfxml +5
    Updated Jan 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Policy and Management (2025). Connecticut State Parcel Layer 2023 [Dataset]. https://data.ct.gov/Environment-and-Natural-Resources/Connecticut-State-Parcel-Layer-2023/v875-mr5r/data
    Explore at:
    application/rssxml, csv, xml, tsv, json, application/rdfxmlAvailable download formats
    Dataset updated
    Jan 29, 2025
    Dataset authored and provided by
    Office of Policy and Management
    Area covered
    Connecticut
    Description

    The dataset has combined the Parcels and Computer-Assisted Mass Appraisal (CAMA) data for 2023 into a single dataset. This dataset is designed to make it easier for stakeholders and the GIS community to use and access the information as a geospatial dataset. Included in this dataset are geometries for all 169 municipalities and attribution from the CAMA data for all but one municipality. Pursuant to Section 7-100l of the Connecticut General Statutes, each municipality is required to transmit a digital parcel file and an accompanying assessor’s database file (known as a CAMA report), to its respective regional council of governments (COG) by May 1 annually.

    These data were gathered from the CT municipalities by the COGs and then submitted to CT OPM. This dataset was created on 12/08/2023 from data collected in 2022-2023. Data was processed using Python scripts and ArcGIS Pro, ensuring standardization and integration of the data.

    CAMA Notes:

    The CAMA underwent several steps to standardize and consolidate the information. Python scripts were used to concatenate fields and create a unique identifier for each entry. The resulting dataset contains 1,353,595 entries and information on property assessments and other relevant attributes.

    • CAMA was provided by the towns.

    • Canaan parcels are viewable, but no additional information is available since no CAMA data was submitted.

    Spatial Data Notes:

    Data processing involved merging the parcels from different municipalities using ArcGIS Pro and Python. The resulting dataset contains 1,247,506 parcels.

    • No alteration has been made to the spatial geometry of the data.

    • Fields that are associated with CAMA data were provided by towns.

    • The data fields that have information from the CAMA were sourced from the towns’ CAMA data.

    • If no field for the parcels was provided for linking back to the CAMA by the town a new field within the original data was selected if it had a match rate above 50%, that joined back to the CAMA.

    • Linking fields were renamed to "Link".

    • All linking fields had a census town code added to the beginning of the value to create a unique identifier per town.

    • Any field that was not town name, Location, Editor, Edit Date, or a field associated back to the CAMA, was not used in the creation of this Dataset.

    • Only the fields related to town name, location, editor, edit date, and link fields associated with the towns’ CAMA were included in the creation of this dataset. Any other field provided in the original data was deleted or not used.

    • Field names for town (Muni, Municipality) were renamed to "Town Name".

    The attributes included in the data:

    • Town Name

    • Owner

    • Co-Owner

    • Link

    • Editor

    • Edit Date

    • Collection year – year the parcels were submitted

    • Location

    • Mailing Address

    • Mailing City

    • Mailing State

    • Assessed Total

    • Assessed Land

    • Assessed Building

    • Pre-Year Assessed Total

    • Appraised Land

    • Appraised Building

    • Appraised Outbuilding

    • Condition

    • Model

    • Valuation

    • Zone

    • State Use

    • State Use Description

    • Living Area

    • Effective Area

    • Total rooms

    • Number of bedrooms

    • Number of Baths

    • Number of Half-Baths

    • Sale Price

    • Sale Date

    • Qualified

    • Occupancy

    • Prior Sale Price

    • Prior Sale Date

    • Prior Book and Page

    • Planning Region

    *Please note that not all parcels have a link to a CAMA entry.

    *If any discrepancies are discovered within the data, whether pertaining to geographical inaccuracies or attribute inaccuracy, please directly contact the respective municipalities to request any necessary amendments

    As of 2/15/2023 - Occupancy, State Use, State Use Description, and Mailing State added to dataset

    Additional information about the specifics of data availability and compliance will be coming soon.

  16. o

    Habitat Suitability Analysis of Larval Pacific Lamprey Habitat in the...

    • explore.openaire.eu
    Updated May 31, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ethan Hoffman; Craig Stuart; Lory Salazar-Velasquez; Krista Finlay (2022). Habitat Suitability Analysis of Larval Pacific Lamprey Habitat in the Columbia River Estuary [Dataset]. http://doi.org/10.5281/zenodo.6525886
    Explore at:
    Dataset updated
    May 31, 2022
    Authors
    Ethan Hoffman; Craig Stuart; Lory Salazar-Velasquez; Krista Finlay
    Area covered
    Pacific Ocean, Columbia River, Columbia River Estuary
    Description

    Pacific lamprey (Entosphenus tridentata) are native fish to the Columbia River Basin. Over the past 60 years, anthropogenic disturbances have contributed to a 95% decline of historical population numbers. Member-tribes of the Columbia River Inter-Tribal Fish Commission have acknowledged the importance of Pacific lamprey to the Columbia River ecosystem and expressed concern about the loss of an essential tribal cultural resource. As a result, the Columbia River Inter-Tribal Fish Commission created the Tribal Pacific Lamprey Restoration Plan to halt their decline, re-establish the species, and restore the population to sustainable, harvestable levels throughout their historical range. Limited knowledge about the movement and preferred habitat of larval Pacific lamprey, such as optimal habitat conditions, demographic information, and species resilience, results in challenges to monitor and protect the species. Pacific lamprey is known to use the mainstem Columbia River to migrate between their spawning grounds and the Pacific Ocean. However, dams, levees, and culverts within the Columbia River Estuary and adjacent tributaries have restricted the lamprey's access to spawning grounds and other upstream habitats. These restrictions have prompted conservation and restoration efforts to better understand how Pacific lamprey utilizes the Columbia River Estuary. Here, we address these knowledge gaps in an effort to aid restoration initiatives by completing a Habitat Suitability Analysis to determine where optimal larval Pacific lamprey habitat may exist in the Columbia River Estuary. The project identified the spatial and temporal distribution of suitable habitat for larval Pacific lamprey and generated recommendations to address habitat-related knowledge gaps and further evaluate anthropogenic threats to their recovery. The results of the Habitat Suitability Analysis suggest that habitat conditions in the Columbia River itself are unable to support larval lamprey year-round, but may provide suitable habitat on a seasonal basis due to spatial and temporal limitations. However, we stress that our analyses were necessarily limited to aquatic conditions and that the temperature of the water column used in our analyses may differ from the temperature within fine sediments, where larval lamprey burrow. Our results imply that suitable lamprey habitat is present at times throughout the year in the Columbia River Estuary, and these locations can be used to support habitat restoration and conservation strategies for improving the species' recovery. Anthropogenic threats to the Columbia River continue to alter habitat conditions, including average water temperature, salinity, and sedimentation. Laboratory experiments have provided insight into the potential impacts of changing temperature and salinity on larval Pacific lamprey, where elevated water temperatures can affect their development and elevated salinity levels can result in larval mortality. In addition, anthropogenic disturbances such as dams, levees, and culverts have cut off the Columbia River Estuary's floodplain habitats from the mainstem Columbia River, decreased sedimentation rates, and separated adult lamprey from the floodplains and tributaries that they use to spawn. The presence of these barriers in the region can inhibit the distribution of fine sediments in the river, limiting where larval lamprey burrow and develop. The burrowing behavior of larval lamprey has yet to fully be investigated in the Columbia River Estuary. Limited research may be due to the lack of resources for studying Pacific lamprey's life cycle, habitat, and population dynamics since they are not federally designated as an endangered species, like resident salmonid species. This has further added to the challenge of understanding the species and restoring its population to sustainable numbers. To the best of our knowledge, this project is the first to explore spatial and temporal trends of suitable larval Pacific lamprey habitat conditions in the Columbia River Estuary. The Habitat Suitability Analysis provides technical information about the presence and distribution of suitable conditions to address habitat-related uncertainties. The member-tribes of the Columbia River Inter-Tribal Fish Commission and their collaborators can incorporate the information into current and future Pacific lamprey restoration, conservation, and education programs to enhance general understanding of lamprey populations throughout the Columbia River Basin. Key recommendations are provided to address additional knowledge gaps and prioritize future restoration projects in the Columbia River Basin including the refinement of the Habitat Suitability Analysis, evaluation of barrier effects on Pacific lamprey passage, and assessment of climate change scenarios on larval lamprey habitat. The Habitat Suitability Analysis uses salinity, temperature, and geomorphology data to identify suitable larval Pacific lamprey ...

  17. G

    GIS Mapping Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). GIS Mapping Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/gis-mapping-tools-533095
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 10% from 2025 to 2033, reaching approximately $39 billion by 2033. This expansion is fueled by several key factors. Firstly, the rising adoption of cloud-based GIS solutions offers enhanced accessibility, scalability, and cost-effectiveness, particularly appealing to smaller organizations. Secondly, the burgeoning need for precise spatial data analysis in various applications, including urban planning, geological exploration, and water resource management, significantly contributes to market growth. Thirdly, advancements in technologies such as AI and machine learning are integrating into GIS tools, leading to more sophisticated analytical capabilities and improved decision-making. Finally, the increasing availability of high-resolution satellite imagery and other geospatial data further fuels market expansion. However, market growth is not without challenges. High initial investment costs associated with implementing and maintaining sophisticated GIS systems can pose a barrier to entry for smaller businesses. Furthermore, the complexity of GIS software and the need for specialized skills to operate and interpret data effectively can limit widespread adoption. Despite these restraints, the market’s overall trajectory remains positive, with the cloud-based segment projected to maintain a dominant market share due to its inherent advantages. Growth will be geographically diverse, with North America and Europe continuing to be significant markets, while Asia-Pacific is expected to experience the fastest growth due to rapid urbanization and infrastructure development. The continued development of user-friendly interfaces and increased integration with other business intelligence tools will further accelerate market expansion in the coming years.

  18. v

    VT Service - E911 Composite-Geocoder - Uses ESITE Address-Points and RDS

    • geodata.vermont.gov
    • datadiscoverystudio.org
    • +1more
    Updated Sep 10, 9000
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VT Center for Geographic Information (9000). VT Service - E911 Composite-Geocoder - Uses ESITE Address-Points and RDS [Dataset]. https://geodata.vermont.gov/documents/987fa729b9fa47f8bcf1addd9ad8ae10
    Explore at:
    Dataset updated
    Sep 10, 9000
    Dataset authored and provided by
    VT Center for Geographic Information
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    VT E911 Composite geocoder - uses ESITE, RDSNAME, and RDSRANGE. REFRESHED WEEKLY. VCGI, in collaboration with the VT E911 Board, has created a suite of geocoding services that can be used to batch geocode addresses using ArcGIS Desktop 10.x. This service can also be integrated into ESRI ArcGIS web-based mapping applications.Input Address Requirements Must use valid E911 addresses (street style addressing...no P.O. box addresses!) and E911 town names. Limitations Don't attempt to geocode more than 50000 records or so. You must have an Internet connection to use the services. A DSL, cable, or other high bandwidth connection is the best option. Addresses other than E911 addresses are not supported. ArcGIS Pro - How To:Startup ArcGIS ProUnder the "Insert" ribbon select Connections --> New ArcGIS Server. Server URL = https://maps.vcgi.vermont.gov/arcgis/servicesBrowse to the ./EGC_services folder and select GEOCODE_COMPOSITE (or GEOCODE_ESITE).Add the table you want to geocode to project, then right-click and select "Geocode Table". Choose the “Go to Tool” option at the bottom of the dialogue box.Make selections and run geocoder.ArcGIS Desktop (ArcMap) - How To: Startup ArcMap 10+ Add a table containing VT addresses to geocode. ?Click the "Add Data" button.Navigate to your table, choose to add your tableRight-click on the table in the table of contentsSelect "Geocode Addresses...".Select "Add" in the dialog box.Browse to the "GIS Servers" icon in your catalog, then double click "Add ArcGIS Server".Select "Use GIS Services", then Next.ServerURL = https://maps.vcgi.vermont.gov/arcgis/services then click finish.Browse to "arcgis on maps.vcgi.org (user)". Browse to .\EGC_services folder.Select GECODE_ESITE (or GEOCODE_COMPOSITE). Click OK.Select whatever options you want in the geocode dialog box, including output, then click ok.The output will be automatically added to your ArcMap session.

  19. Z

    Distribution Map of Festuca dolichophylla (suplemental material-TS1)

    • data.niaid.nih.gov
    Updated May 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eduardo Palomino, Fiorella Paola (2024). Distribution Map of Festuca dolichophylla (suplemental material-TS1) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11118167
    Explore at:
    Dataset updated
    May 6, 2024
    Dataset authored and provided by
    Eduardo Palomino, Fiorella Paola
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The distribution map of Festuca dolichophylla relies on diverse data sources. Geographical coordinates (latitude and longitude) and country initials (countryCode) were extracted from Tropicos, the Gbif repository (up to May 2019), and the iDigBio database (up to July 2021). Additionally, data from other sources, including BMAP Peru (2023), Eduardo-Palomino (2022), Ccora et al. (2019), Arana et al. (2013), Castro (2019), Flores (2017), Gonzales (2017), and Martínez y Pérez (1999), were integrated. The Gbif data points are associated with gbifID numbers for reference. Please note that this compilation provides essential information for understanding the distribution of F. dolichophylla across various regions.

    Software

    Organized data by geographic coordinates was uploaded to ArcGIS Pro v. 3.2.0 for map production. Geospatial visualization and mapping were carried out using ArcGIS Pro, allowing us to create the distribution map of F. dolichophylla.

    Methods

    The dataset for the distribution map of Festuca dolichophylla was meticulously collected from various sources.

    Data Collection:

    Tropicos: Data were extracted from Tropicos until December 2023.

    Gbif Repository: Data was sourced from the Gbif repository until May 2019.

    iDigBio Database: Additional data points were retrieved from the iDigBio database up to July 2021.

    Other Sources: We also incorporated data from various other sources, including BMAP Peru (2023), Eduardo-Palomino (2022), Ccora et al. (2019), Arana et al. (2013), Castro (2019), Flores (2017), Gonzales (2017), and Martínez y Pérez (1999).

    Data Organization and Processing:

    All collected data points were meticulously organized by coordinates.

    We ensured consistency by cross-referencing and validating the data.

    The dataset was then uploaded to ArcGIS Pro v. 3.2.0 for map production.

    Geospatial visualization and mapping were carried out using ArcGIS Pro, allowing us to create the distribution map of F. dolichophylla.

    Funding

    Neotropical Grassland Conservancy, Award: Memorial grant 2020

  20. Joint Military Symbology MIL-STD-2525D

    • cacgeoportal.com
    • hub.arcgis.com
    Updated Mar 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Joint Military Symbology MIL-STD-2525D [Dataset]. https://www.cacgeoportal.com/content/4cb91e6466444c55a8159258d42a95a2
    Explore at:
    Dataset updated
    Mar 21, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    An ArcGIS Mobile style (stylx) file for use with ArcGIS Pro 2.9+ and ArcGIS Runtime 100.13+ to build custom applications that incorporate the MIL-STD-2525D symbol dictionary. This style supports a configuration for modeling locations as ordered anchor points or full geometries.Required Software:ArcGIS Pro 2.9 or higherArcGIS Runtime 100.13 or higherThe style can be published from ArcGIS Pro as a web style for use with the ArcGIS API for JavaScript 4.22 or higher.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
State of Delaware (2020). Integrating Data in ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/3a11f895a7dc4d28ad45cee9cc5ba6d8

Integrating Data in ArcGIS Pro

Explore at:
Dataset updated
Mar 25, 2020
Dataset authored and provided by
State of Delaware
Description

In this course, you will learn about some common types of data used for GIS mapping and analysis, and practice adding data to a file geodatabase to support a planned project.Goals Create a file geodatabase. Add data to a file geodatabase. Create an empty geodatabase feature class.

Search
Clear search
Close search
Google apps
Main menu