14 datasets found
  1. Elevations Contours and Depression

    • geodata.dep.state.fl.us
    • mapdirect-fdep.opendata.arcgis.com
    • +2more
    Updated Jan 1, 1950
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Environmental Protection (1950). Elevations Contours and Depression [Dataset]. https://geodata.dep.state.fl.us/maps/elevations-contours-and-depression
    Explore at:
    Dataset updated
    Jan 1, 1950
    Dataset authored and provided by
    Florida Department of Environmental Protectionhttp://www.floridadep.gov/
    Area covered
    Description

    This dataset was created to represent the land surface elevation at 1:24,000 scale for Florida. The elevation contour lines representing the land surface elevation were digitized from United States Geological survey 1:24,000 (7.5 minute) quadrangles and were compiled by South Florida, South West Florida, St. Johns River and Suwannee River Water Management Districts and FDEP. QA and corrections to the data were supplied by the Florida Department of Environmental Protection's Florida Geological Survey and the Division of Water Resource Management. This data, representing over 1,000 USGS topographic maps, spans a variety of contour intervals including 1 and 2 meter and 5 and 10 foot. The elevation values have been normalized to feet in the final data layer. Attributes for closed topographic depressions were also captured where closed (hautchered) features were identified and the lowest elevation determined using the closest contour line minus one-half the contour interval. This data was derived from the USGS 1:24,000 topographic map series. The data is more than 20 years old and is likely out-of-date in areas of high human activity.

  2. Topographic

    • geohub-lcgis.opendata.arcgis.com
    • data.baltimorecity.gov
    • +11more
    Updated Feb 18, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2012). Topographic [Dataset]. https://geohub-lcgis.opendata.arcgis.com/maps/6e03e8c26aad4b9c92a87c1063ddb0e3
    Explore at:
    Dataset updated
    Feb 18, 2012
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    esri_en
    Area covered
    Earth
    Description

    Important Note: This item is in mature support. There are new versions of basemaps available for your use. Esri recommends updating your maps and apps to use the appropriate new version. This topographic map is designed to be used as a basemap and a reference map. The map has been compiled by Esri and the ArcGIS user community from a variety of best available sources. The map is intended to support the ArcGIS Online basemap gallery. For more details on the map, please visit the World Topographic Map service description.

  3. U

    1 meter Digital Elevation Models (DEMs) - USGS National Map 3DEP...

    • data.usgs.gov
    • datadiscoverystudio.org
    • +4more
    Updated Feb 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). 1 meter Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection [Dataset]. https://data.usgs.gov/datacatalog/data/USGS:77ae0551-c61e-4979-aedd-d797abdcde0e
    Explore at:
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 ...

  4. NOAA Office for Coastal Management Coastal Inundation Digital Elevation...

    • fisheries.noaa.gov
    • gimi9.com
    • +1more
    Updated Feb 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for Coastal Management (2022). NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Florida, Panhandle West [Dataset]. https://www.fisheries.noaa.gov/inport/item/66606
    Explore at:
    Dataset updated
    Feb 1, 2022
    Dataset provided by
    Office for Coastal Management
    Time period covered
    2006 - 2018
    Area covered
    Description

    These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer called the Sea Level Rise and Coastal Flooding Impacts Viewer. It depicts potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientist...

  5. a

    Topographic Contours 2020 Map Tile

    • geodata-tlcgis.opendata.arcgis.com
    • hub.arcgis.com
    Updated Apr 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tallahassee-Leon County GIS (2022). Topographic Contours 2020 Map Tile [Dataset]. https://geodata-tlcgis.opendata.arcgis.com/items/a2a46a754b2c4aa9a8cadebe59b1dd9b
    Explore at:
    Dataset updated
    Apr 4, 2022
    Dataset authored and provided by
    Tallahassee-Leon County GIS
    Area covered
    Description

    This topographic contour layer was derived from LiDAR collected in spring of 2020 by Dewberry Engineers in coordination with Tallahassee - Leon County GIS. The contours were extracted at a 2 foot interval with index contours every 10 feet. This tile layer was generated as a Map Tile Package (.mtpkx) in ArcGIS Pro and published to ArcGIS online as a hosted tile layer. For web mapping compatibility, this layer has been re-projected from its original coordinate system to the web standard used by ESRI, Google, and Bing (Web Mercator Auxiliary Sphere).This feature layer can be downloaded from as a zipped file geodatabase or as a zipped CAD DWG file from this layer's Metadata LINK. Note - All downloads will be in local state plane coordinate system.Lidar Acquisition Executive SummaryThe primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (lidar) technology for the Tallahassee Leon County Project Area. The lidar data were processed and classified according to project specifications. Detailed breaklines and bare-earth Digital Elevation Models (DEMs) were produced for the project area. Data was formatted according to tiles with each tile covering an area of 5000 ft by 5000 ft. A total of 876 tiles were produced for the project encompassing an area of approximately 785.55 sq. miles.The Project TeamDewberry served as the prime contractor for the project. In addition to project management, Dewberry was responsible for LAS classification, all lidar products, breakline production, Digital Elevation Model (DEM) production, and quality assurance. Dewberry’s Frederick C. Rankin completed ground surveying for the project and delivered surveyed checkpoints. His task was to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the lidar-derived surface model. He also verified the GPS base station coordinates used during lidar data acquisition to ensure that the base station coordinates were accurate. Please see Appendix A to view the separate Survey Report that was created for this portion of the project. Digital Aerial Solutions, LLC completed lidar data acquisition and data calibration for the project area.SURVEY AREAThe project area addressed by this report falls within the Florida county of Leon.DATE OF SURVEYThe lidar aerial acquisition was conducted from TBDORIGINAL COORDINATE REFERENCE SYSTEMData produced for the project were delivered in the following reference system.Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 with the 2011 Adjustment (NAD 83 (2011))Vertical Datum: The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)Coordinate System: NAD83 (2011) State Plane Florida North (US survey feet)Units: Horizontal units are in U.S. Survey Feet, Vertical units are in U.S. Survey Feet.Geiod Model: Geoid12B (Geoid 12B) was used to convert ellipsoid heights to orthometric heights).

  6. Panama City, Florida 1/3 arc-second NAVD 88 Coastal Digital Elevation Model

    • datadiscoverystudio.org
    • datasets.ai
    • +3more
    netcdf v.3.6.2
    Updated Jul 1, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce (2010). Panama City, Florida 1/3 arc-second NAVD 88 Coastal Digital Elevation Model [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/f76d11507bec4c9f835e66197d8d2f8f/html
    Explore at:
    netcdf v.3.6.2Available download formats
    Dataset updated
    Jul 1, 2010
    Dataset provided by
    United States Department of Commercehttp://commerce.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Environmental Satellite, Data, and Information Service
    Authors
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Area covered
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico. These integrated bathymetric-topographic DEMs were developed for NOAA Coast Survey Development Laboratory (CSDL) through the American Recovery and Reinvestment Act (ARRA) of 2009 to evaluate the utility of the Vertical Datum Transformation tool (VDatum), developed jointly by NOAA's Office of Coast Survey (OCS), National Geodetic Survey (NGS), and Center for Operational Oceanographic Products and Services (CO-OPS). Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. Coastal Services Center (CSC), the U.S. Office of Coast Survey (OCS), the U.S. Army Corps of Engineers (USACE), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of North American Vertical Datum of 1988 (NAVD 88) or Mean High Water (MHW) and horizontal datum of North American Datum of 1983 (NAD 83). Grid spacings for both DEMs are 1/3 arc-second (~10 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (NAVD88). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.

  7. a

    Contours 2ft - Jacksonville

    • hub.arcgis.com
    • gis.jacksoncountyor.gov
    Updated Dec 18, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jackson County GIS (2019). Contours 2ft - Jacksonville [Dataset]. https://hub.arcgis.com/datasets/2bfe3bb271a64bc49d823a762727a510
    Explore at:
    Dataset updated
    Dec 18, 2019
    Dataset authored and provided by
    Jackson County GIS
    Description

    Use the app to find the downloadable area within Jackson County - 2 Foot Contour MapThe 2-foot Contour Map shows contours that were derived from several different LiDAR projects in the Rogue Valley over the last 10 years. The map can be used to both download and view the contour data. To use the map, search or zoom in to an address. When zoomed in to a specific scale, the map will change from the downloadable areas layer to 2-foot interval contour lines. The LiDAR Project Dates layer can be used to identify the date when the elevation was collected in an area. Please note that data is available only for the valley floor areas at this time.The 2ft contours were created from 1-meter pixel DEM and then cleaned to remove very small elevation changes and to create a smooth contour line. This information should not be used to create topographic surveys or other applications where the precise elevation of a location is required. For additional information on LiDAR in Oregon or to download the source data, please visit the DOGAMI Lidar Viewer.The downloadable data is a zipped ESRI Shapefile and is projected to Oregon State Plane South (Intl Feet) with NAD 1983 datum.

  8. n

    Multibeam Mapping of the West Florida Shelf, Gulf of Mexico, USGS OFR 02-05

    • cmr.earthdata.nasa.gov
    Updated Apr 21, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Multibeam Mapping of the West Florida Shelf, Gulf of Mexico, USGS OFR 02-05 [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C2231550230-CEOS_EXTRA.html
    Explore at:
    Dataset updated
    Apr 21, 2017
    Time period covered
    Sep 3, 2001 - Oct 12, 2001
    Area covered
    Description

    The objective was to map the region between the 50 to 150-m isobaths south from the eastern edge of De Soto Canyon as far as Steamboat Lumps using a state-of-the-art multibeam mapping system (MBES). The cruise used a Kongsberg Simrad EM1002 MBES, the latest generation of high-resolution mapping systems. The EM1002 produces both geodetically accurate georeferenced bathymetry and coregistered, calibrated, acoustic backscatter. Acoustic backscatter is the intensity of an acoustic pulse that is backscattered off the seafloor back to the transducer. The signal can give an indication of the type of material exposed on the ocean floor (i.e. rock vs. mud). These data should prove extremely useful in relating dominant species groups (which display highly specific biotope affinities) to the geomorphology (e.g., reef flattop, forereef crest, reef wall, reef base, circum-reef talus zone, circum-reef, high-reflectivity sediment apron, etc.).

    These data are intended for science researchers, students, policy makers, and the general public. The data can be used with geographic information systems (GIS) or other software to display bathymetry and backscatter data of the West Florida Shelf, Gulf of Mexico.

    This report provides multibeam bathymetry and acoustic backscatter data, along with images for parts of the sea floor. These data were obtained through a multibeam sonar survey of the West Florida Shelf, Gulf of Mexico. Data are provided in ASCII and ArcInfo GRID formats.

    Information for USGS Coastal and Marine Geology related activities are online at "http://walrus.wr.usgs.gov/infobank/m/m201gm/html/m-2-01-gm.meta.html"

  9. a

    Topographic Contours 2018 Map Tile

    • geodata-tlcgis.opendata.arcgis.com
    Updated Dec 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tallahassee-Leon County GIS (2020). Topographic Contours 2018 Map Tile [Dataset]. https://geodata-tlcgis.opendata.arcgis.com/datasets/topographic-contours-2018-map-tile
    Explore at:
    Dataset updated
    Dec 14, 2020
    Dataset authored and provided by
    Tallahassee-Leon County GIS
    Area covered
    Description

    This topographic contour layer was derived from LiDAR collected in spring of 2018 by Dewberry Engineers in coordination with Tallahassee - Leon County GIS. The contours were extracted at a 2 foot interval with index contours every 10 feet. This tile layer was generated as a Map Tile Package (.mtpkx) in ArcGIS Pro and published to ArcGIS online as a hosted tile layer. For web mapping compatibility, this layer has been re-projected from its original coordinate system to the web standard used by ESRI, Google, and Bing (Web Mercator Auxiliary Sphere).This feature layer can be downloaded from TLCGIS' Open Data Portal as a zipped file geodatabase or as a zipped CAD DWG file. Open Data Portal Download Link. Note - All downloads will be in local state plane coordinate system.Lidar Acquisition Executive SummaryThe primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (lidar) technology for the Tallahassee Leon County Project Area. The lidar data were processed and classified according to project specifications. Detailed breaklines and bare-earth Digital Elevation Models (DEMs) were produced for the project area. Data was formatted according to tiles with each tile covering an area of 5000 ft by 5000 ft. A total of 876 tiles were produced for the project encompassing an area of approximately 785.55 sq. miles.THE PROJECT TEAMDewberry served as the prime contractor for the project. In addition to project management, Dewberry was responsible for LAS classification, all lidar products, breakline production, Digital Elevation Model (DEM) production, and quality assurance. Dewberry’s Frederick C. Rankin completed ground surveying for the project and delivered surveyed checkpoints. His task was to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the lidar-derived surface model. He also verified the GPS base station coordinates used during lidar data acquisition to ensure that the base station coordinates were accurate. Please see Appendix A to view the separate Survey Report that was created for this portion of the project. Digital Aerial Solutions, LLC completed lidar data acquisition and data calibration for the project area.SURVEY AREAThe project area addressed by this report falls within the Florida county of Leon.DATE OF SURVEYThe lidar aerial acquisition was conducted from February 05, 2018 thru April 25, 2018.ORIGINAL COORDINATE REFERENCE SYSTEMData produced for the project were delivered in the following reference system. Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 with the 2011 Adjustment (NAD 83 (2011)) Vertical Datum: The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)Coordinate System: NAD83 (2011) State Plane Florida North (US survey feet)Units: Horizontal units are in U.S. Survey Feet, Vertical units are in U.S. Survey Feet.Geiod Model: Geoid12B (Geoid 12B) was used to convert ellipsoid heights to orthometric heights).

  10. a

    OGC Web Map Service (WMS): Petroleum System and Assessment of Oil and Gas,...

    • catalogue.arctic-sdi.org
    Updated May 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). OGC Web Map Service (WMS): Petroleum System and Assessment of Oil and Gas, Cotton Valley Group, East Texas Basin and Louisiana-Mississippi Salt Basins Provinces, Texas, Louisiana, Mississippi, Alabama, and Florida [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?keyword=Gulf%20Coast,%20Impacts%20of%20Energy%20Production,%20Sedimentary%20Basin,%20Oil%20and%20Natural%20Gas,%20Energy%20Resources,%20Earth%20Science,%20Natural%20Resources,%20U.S.%20Geological%20Survey,%20USGS,%20Geology,%20Natural%20Gas,%20Petroleum,%20Oil,%20Gas,%20Oil%20and%20Gas%20Exploration,%20Oil%20and%20Gas%20Production
    Explore at:
    Dataset updated
    May 23, 2022
    Description

    (See USGS Digital Data Series DDS-69-E) A geographic information system focusing on the Jurassic-Cretaceous Cotton Valley Group was developed for the U.S. Geological Survey's (USGS) 2002 assessment of undiscovered, technically recoverable oil and natural gas resources of the Gulf Coast Region. The USGS Energy Resources Science Center has developed map and metadata services to deliver the 2002 assessment results GIS data and services online. The Gulf Coast assessment is based on geologic elements of a total petroleum system (TPS) as described in Dyman and Condon (2005). The estimates of undiscovered oil and gas resources are within assessment units (AUs). The hydrocarbon assessment units include the assessment results as attributes within the AU polygon feature class (in geodatabase and shapefile format). Quarter-mile cells of the land surface that include single or multiple wells were created by the USGS to illustrate the degree of exploration and the type and distribution of production for each assessment unit. Other data that are available in the map documents and services include the TPS and USGS province boundaries. To easily distribute the Gulf Coast maps and GIS data, a web mapping application has been developed by the USGS, and customized ArcMap (by ESRI) projects are available for download at the Energy Resources Science Center Gulf Coast website. ArcGIS Publisher (by ESRI) was used to create a published map file (pmf) from each ArcMap document (.mxd). The basemap services being used in the GC map applications are from ArcGIS Online Services (by ESRI), and include the following layers: -- Satellite imagery -- Shaded relief -- Transportation -- States -- Counties -- Cities -- National Forests With the ESRI_StreetMap_World_2D service, detailed data, such as railroads and airports, appear as the user zooms in at larger scales. This map service shows the structural configuration on the top of the Cotton Valley Group in feet below sea level. The map was produced by calculating the difference between a datum at the land surface (either the kelly bushing elevation or the ground surface elevation) and the reported depth of the Cotton Valley Group. This map service also shows the thickness of the interval from the top of the Cotton Valley Group to the top of the Smackover Formation.

  11. l

    Coastal High Hazard Area

    • maps.leegov.com
    • maps-leegis.hub.arcgis.com
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lee County Florida GIS (2023). Coastal High Hazard Area [Dataset]. https://maps.leegov.com/datasets/LeeGIS::coastal-high-hazard-area/about
    Explore at:
    Dataset updated
    Dec 15, 2023
    Dataset authored and provided by
    Lee County Florida GIS
    Area covered
    Description

    The CHHA is defined in the Lee Plan as the area below the elevation of the category 1 storm surge line as established by a Sea, Lake, and Overland The CHHA is defined in the Lee Plan as the area below the elevation of the category 1 storm surge line as established by a Sea, Lake, and Overland Surges from Hurricanes (SLOSH) computerized storm surge model. Published by the Southwest Florida Regional Planning Council. Adopted November 22, 1999 by ORD 99-17, Amended by ORDs 09-17 and 16-13. Current area based on 2010 SWFRPC Report.

  12. d

    USGS Surface-Water Data for the Nation - National Water Information System...

    • search.dataone.org
    • data.usgs.gov
    • +4more
    Updated Oct 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2016). USGS Surface-Water Data for the Nation - National Water Information System (NWIS) [Dataset]. https://search.dataone.org/view/357cf736-0d23-48b2-b464-fb37248fe398
    Explore at:
    Dataset updated
    Oct 29, 2016
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey
    Area covered
    Description

    The USGS compiles online access to water-resources data collected at approximately 1.5 million sites in all 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, American Samoa and the Commonwealth of the Northern Mariana Islands.

  13. n

    ERS SAR Data held by the National Institute for Space Research (INPE),...

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Apr 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ERS SAR Data held by the National Institute for Space Research (INPE), Brazil [Dataset]. https://access.earthdata.nasa.gov/collections/C2227456064-CEOS_EXTRA
    Explore at:
    Dataset updated
    Apr 20, 2017
    Time period covered
    Aug 26, 1991 - Present
    Area covered
    Description

    INPE's only receiving station for ERS-1 and ERS-2 SAR is located in Cuiaba, MT (geographic coordinates approx. 15.5S/56.0W). The SAR tapes recorded at Cuiaba are air shipped to the processing and distribution center in Cachoeira Paulista, SP, where they are kept. A copy of all recorded tapes is sent to the ESA PAF at the DLR facilities in Germany.

     Early ERS-1 SAR data were acquired primarily for station checkout and
     Principal Investigator service. A small number of passes, 15 seconds
     to 2 minutes long, were acquired from August, 1991 to March, 1992,
     during the Commissioning and Ice phases where the repeat cycle was 3
     days but the ground coverage was sparse. More extensive and regular
     acquisitions began in April, 1992, with the satellite already in the
     so-called Multidisciplinary phase (full ground coverage and 35-day
     repeat cycle).
    
     INPE is allowed to service user requests originated in Brazil
     only. Only digital products are available. Requests for products and
     for image search listings will be handled directly by the processing
     center (listed at the Data Center entry), through contacts by mail,
     phone or fax. No online remote access is available, although plans
     exist to implement it, including the International Directory
     protocols. No firm date is speculated for that, but hopes are that it
     can be made before 1998.
    
     Requests from countries other that Brazil must be routed to the ESA
     licensed regional distributors. Information can be obtained with the
     ESA ERS-1 Order Desk, c/o ESRIN, C.P. 64, I-00044 Frascati, Italy. The
     phone numbers are +39.6.941-80600 (voice) and +39.6.941-80510 (fax).
    
  14. Gulf Coral & Hardbottom (Southeast Blueprint Indicator)

    • gis-fws.opendata.arcgis.com
    • hub.arcgis.com
    Updated Jul 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2024). Gulf Coral & Hardbottom (Southeast Blueprint Indicator) [Dataset]. https://gis-fws.opendata.arcgis.com/maps/1c978f92a3944fa39094c4fc5c372eb0
    Explore at:
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Authors
    U.S. Fish & Wildlife Service
    Area covered
    Description

    Reason for SelectionHardbottom provides an anchor for important seafloor habitats such as deep-sea corals, plants, and sponges. Hardbottom is also sometimes associated with chemosynthetic communities that form around cold seeps or hydrothermal vents. In these unique ecosystems, micro-organisms that convert chemicals into energy form the base of complex food webs (Love et al. 2013). Hardbottom and associated species provide important habitat structure for many fish and invertebrates (NOAA 2018). Hardbottom areas serve as fish nursery, spawning, and foraging grounds, supporting commercially valuable fisheries like snapper and grouper (NCDEQ 2016).According to Dunn and Halpin (2009), “hardbottom habitats support high levels of biodiversity and are frequently used as a surrogate for it in marine spatial planning.” Artificial reefs arealso known to provide additional habitat that is quickly colonized to provide a suite of ecosystem services commonly associated with naturally occurring hardbottom (Wu et al. 2019). We did not include active oil and gas structures as human-created hardbottom. Although they provide habitat, because of their temporary nature, risk of contamination, and contributions to climate change, they do not have the same level of conservation value as other artificial structures.Input DataSoutheast Blueprint 2024 extentSoutheast Blueprint 2024 subregionsCoral & hardbottomusSEABED Gulf of Mexico sediments, accessed 12-14-2023; download the data; view and read more about the data on the National Oceanic and Atmospheric Administration (NOAA) Gulf of Mexico Atlas (select Physical --> Marine geology --> 1. Dominant bottom types and habitats)Bureau of Ocean Energy Management (BOEM) Gulf of Mexico seismic water bottom anomalies, accessed 12-20-2023The Nature Conservancy’s (TNC) South Atlantic Bight Marine Assessment(SABMA); chapter 3 of the final report provides more detail on the seafloor habitats analysisNOAA deep-sea coral and sponge locations, accessed 12-20-2023 on the NOAA Deep-Sea Coral & Sponge Map PortalFlorida coral and hardbottom habitats, accessed 12-19-2023Shipwrecks & artificial reefsNOAA wrecks and obstructions layer, accessed 12-12-2023 on the Marine CadastreLouisiana Department of Wildlife and Fisheries (LDWF) Artificial Reefs: Inshore Artificial Reefs, Nearshore Artificial Reefs, Offshore and Deepwater Artificial Reefs (Google Earth/KML files), accessed 12-19-2023Texas Parks and Wildlife Department (TPWD) Artificial Reefs, accessed 12-19-2023; download the data from The Artificial Reefs Interactive Mapping Application (direct download from interactive mapping application)Mississippi Department of Marine Resources (MDMR) Artificial Reef Bureau: Inshore Reefs, Offshore Reefs, Rigs to Reef (lat/long coordinates), accessed 12-19-2023Alabama Department of Conservation and Natural Resources (ADCNR) Artificial Reefs: Master Alabama Public Reefs v2023 (.xls), accessed 12-19-2023Florida Fish and Wildlife Conservation Commission (FWC):Artificial Reefs in Florida (.xlsx), accessed 12-19-2023Defining inland extent & split with AtlanticMarine Ecoregions Level III from the Commission for Environmental Cooperation North American Environmental Atlas, accessed 12-8-20212023 NOAA coastal relief model: volumes 2 (Southeast Atlantic), 3 (Florida and East Gulf of Mexico), 4 (Central Gulf of Mexico), and 5 (Western Gulf of Mexico), accessed 3-27-2024National Oceanic and Atmospheric Administration (NOAA) Characterizing Spatial Distributions of Deep-sea Corals and Hardbottom Habitats in the U.S. Southeast Atlantic; read the final report; data shared prior to official release on 2-4-2022 by Matt Poti with the NOAA National Centers for Coastal Ocean Science (NCCOS) (matthew.poti@noaa.gov)Predictive Modeling and Mapping of Hardbottom Seafloor Habitats off the Southeast U.S: unpublished NOAA data and draft final report entitled Assessment of Benthic Habitats for Fisheries Management provided on 1-28-2021 by Matt Poti with NOAA NCCOS (matthew.poti@noaa.gov)Mapping StepsNote: Most of the mapping steps were accomplished using the graphical modeler in QGIS 3.34. Individual models were created to combine data sources and assign ranked values. These models were combined in a single model to assemble all the data sources and create a summary raster.Create a seamless vector layer to constrain the extent of the Atlantic coral and hardbottom indicator to marine and estuarine areas <1 m in elevation. This defines how far inland it extends.Merge together all coastal relief model rasters (.nc format) using the create virtual raster tool in QGIS.Save the merged raster to .tif format and import it into ArcPro.Reclassify the NOAA coastal relief model data to assign a value of 1 to areas from deep marine to 1 m elevation. Assign all other areas (land) a value of 0.Convert the raster produced above to vector using the raster to polygon tool.Clip to the 2024 Blueprint subregions using the pairwise clip tool.Hand-edit to remove terrestrial polygons (one large terrestrial polygon and the Delmarva peninsula).Dissolve the resulting data layer to produce a seamless polygon defining marine and estuarine areas <1 m in elevation.Hand-edit to select all but the main marine polygon and delete.Define the extent of the Gulf version of this indicator to separate it from the Atlantic. This split reflects the extent of the different datasets available to represent coral and hardbottom habitat in the Atlantic and Gulf, rather than a meaningful ecological transition.Use the select tool to select the Florida Keys class from the Level III marine ecoregions (“NAME_L3 = 'Florida Keys'“).Buffer the “Florida Keys” Level III marine ecoregion by 2 km to extend it far enough inland to intersect the inland edge of the <1 m elevation layer.Reclassify the two NOAA Atlantic hardbottom suitability datasets to give all non-NoData pixels a value of 0. Combine the reclassified hardbottom suitability datasets to define the total extent of these data. Convert the raster extent to vector and dissolve to create a polygon representing the extent of both NOAA hardbottom datasets.Union the buffered ecoregion with the combined NOAA extent polygon created above. Add a field and use it to dissolve the unioned polygons into one polygon. This leaves some holes inside the polygon, so use the eliminate polygon part tool to fill in those holes, then convert the polygon to a line.Hand-edit to extract the resulting line between the Gulf and Atlantic.Hand-edit to use this line to split the <1 m elevation layer created earlier in the mapping steps to create the separation between the Gulf and Atlantic extent.From the BOEM seismic water bottom anomaly data, extract the following shapefiles: anomaly_confirmed_relic_patchreefs.shp, anomaly_Cretaceous.shp, anomaly_relic_patchreefs.shp, seep_anomaly_confirmed_buried_carbonate.shp, seep_anomaly_confirmed_carbonate.shp, seep_anomaly_confirmed_organisms.shp, seep_anomaly_positives.shp, seep_anomaly_positives_confirmed_gas.shp, seep_anomaly_positives_confirmed_oil.shp, seep_anomaly_positives_possible_oil.shp, seep_anomaly_confirmed_corals.shp, seep_anomaly_confirmed_hydrate.shp.To create a class of confirmed BOEM features, merge anomaly_confirmed_relic_patchreefs.shp, seep_anomaly_confirmed_organisms.shp, seep_anomaly_confirmed_corals.shp, and seep_anomaly_confirmed_hydrate.shp and assign a value of 6.To create a class of predicted BOEM features, merge the remaining extracted shapefiles and assign a value of 3.From usSEABED sediments data, use the field “gom_domnc” to extract polygons: rock (dominant and subdominant) receives a value of 2 and gravel (dominant and subdominant) receives a value of 1.From the wrecks database, extract locations having “high” and “medium” confidence (positionQuality = “high” and positionQuality = “medium”). Buffer these locations by 150 m and assign a value of 4. The buffer distance used here, and later for coral locations, follows guidance from the Army Corps of Engineers for setbacks around artificial reefs and fish havens (Riley et al. 2021).Merge artificial reef point locations from FL, AL, MS and TX. Buffer these locations by 150 m. Merge this file with the three LA artificial reef polygons and assign a value of 5.From the NOAA deep-sea coral and sponge point locations, select all points. Buffer the point locations by 150 m and assign a value of 7.From the FWC coral and hardbottom dataset polygon locations, fix geometries, reproject to EPSG=5070, then assign coral reefs a value of 7, hardbottom a value of 6, hardbottom with seagrass a value of 6, and probable hardbottom a value of 3. Hand-edit to remove an erroneous hardbottom polygon off of Matagorda Island, TX, resulting from a mistake by Sheridan and Caldwell (2002) when they digitized a DOI sediment map. This error is documented on page 6 of the Gulf of Mexico Fishery Management Council’s 5-Year Review of the Final Generic Amendment Number 3.From the TNC SABMA data, fix geometries and reproject to EPSG=5070, then select all polygons with TEXT_DESC = '01. mapped hard bottom area' and assign a value of 6.Union all of the above vector datasets together—except the vector for class 6 that combines the SABMA and FL data—and assign final indicator values. Class 6 had to be handled separately due to some unexpected GIS processing issues. For overlapping polygons, this value will represent the maximum value at a given location.Clip the unioned polygon dataset to the buffered marine subregions.Convert both the unioned polygon dataset and the separate vector layer for class 6 using GDAL “rasterize”.Fill NoData cells in both rasters with zeroes and, using Extract by Mask, mask the resulting raster with the Gulf indicator extent. Adding zero values helps users better understand the extent of this indicator and to make this indicator layer perform better in online tools.Use the raster calculator to evaluate the maximum value

  15. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Florida Department of Environmental Protection (1950). Elevations Contours and Depression [Dataset]. https://geodata.dep.state.fl.us/maps/elevations-contours-and-depression
Organization logo

Elevations Contours and Depression

Explore at:
Dataset updated
Jan 1, 1950
Dataset authored and provided by
Florida Department of Environmental Protectionhttp://www.floridadep.gov/
Area covered
Description

This dataset was created to represent the land surface elevation at 1:24,000 scale for Florida. The elevation contour lines representing the land surface elevation were digitized from United States Geological survey 1:24,000 (7.5 minute) quadrangles and were compiled by South Florida, South West Florida, St. Johns River and Suwannee River Water Management Districts and FDEP. QA and corrections to the data were supplied by the Florida Department of Environmental Protection's Florida Geological Survey and the Division of Water Resource Management. This data, representing over 1,000 USGS topographic maps, spans a variety of contour intervals including 1 and 2 meter and 5 and 10 foot. The elevation values have been normalized to feet in the final data layer. Attributes for closed topographic depressions were also captured where closed (hautchered) features were identified and the lowest elevation determined using the closest contour line minus one-half the contour interval. This data was derived from the USGS 1:24,000 topographic map series. The data is more than 20 years old and is likely out-of-date in areas of high human activity.

Search
Clear search
Close search
Google apps
Main menu