This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
This map is designed to work in the new ArcGIS Online Map Viewer. Open in Map Viewer to view map. What does this map show?This map shows the population in the US by race. The map shows this pattern nationwide for states, counties, and tracts. Open the map in the new ArcGIS Online Map Viewer Beta to see the dot density pattern. What is dot density?The density is visualized by randomly placing one dot per a given value for the desired attribute. Unlike choropleth visualizations, dot density can be mapped using total counts since the size of the polygon plays a significant role in the perceived density of the attribute.Where is the data from?The data in this map comes from the most current American Community Survey (ACS) from the U.S. Census Bureau. Table B03002. The layer being used if updated with the most current data each year when the Census releases new estimates. The layer can be found in ArcGIS Living Atlas of the World: ACS Race and Hispanic Origin Variables - Boundaries.What questions does this map answer?Where do people of different races live?Do people of a similar race live close to people of their own race?Which cities have a diverse range of different races? Less diverse?
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This layer was created by Duncan Smith and based on work by the European Commission JRC and CIESIN. A description from his website follows:--------------------A brilliant new dataset produced by the European Commission JRC and CIESIN Columbia University was recently released- the Global Human Settlement Layer (GHSL). This is the first time that detailed and comprehensive population density and built-up area for the world has been available as open data. As usual, my first thought was to make an interactive map, now online at- http://luminocity3d.org/WorldPopDen/The World Population Density map is exploratory, as the dataset is very rich and new, and I am also testing out new methods for navigating statistics at both national and city scales on this site. There are clearly many applications of this data in understanding urban geographies at different scales, urban development, sustainability and change over time.
From the AfriPop website..."High resolution, contemporary data on human population distributions are a prerequisite for the accurate measurement of the impacts of population growth, for monitoring changes and for planning interventions. The AfriPop project was initiated in July 2009 with an aim of producing detailed and freely-available population distribution maps for the whole of Africa. Based on the approaches outlined in detail here and here, and summarized on the methods page, fine resolution satellite imagery-derived settlement maps are combined with land cover maps to reallocate contemporary census-based spatial population count data. Assessments have shown that the resultant maps are more accurate than existing population map products, as well as the simple gridding of census data. Moreover, the 100m spatial resolution represents a finer mapping detail than has ever before been produced at national extents. The approaches used in AfriPop dataset production are designed with operational application in mind, using simple and semi-automated methods to produce easily updatable maps. Given the speed with which population growth and urbanisation are occurring across much of Africa, and the impacts these are having on the economies, environments and health of nations, such features are a necessity for both research and operational applications."Data Source: AfriPop.org
Link to landing page referenced by identifier. Service Protocol: Link to landing page referenced by identifier. Link Function: information-- dc:identifier.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density 2023 (inhabitants per km²), Lorraine: 2021 Territorial entities: arrondissements (Lorraine, Wallonie), cantons (Luxembourg), Kreise (Saarland, Rheinland-Pfalz) Statistical data sources: Destatis, INSEE, Statbel, STATEC. Harmonization: IBA / OIE 2024 Geodata sources: GeoBasis-DE / BKG, IGN France, NGI-Belgium, ACT Luxembourg. Harmonization: SIG-GR / GIS-GR 2024 Link to interactive map: https://map.gis-gr.eu/theme/main?version=3&zoom=8&X=708580&Y=6429642&lang=fr&rotation=0&layers=2418&opacities=1&bgLayer=basemap_2015_global Link to Geocatalog: https://geocatalogue.gis-gr.eu/geonetwork/srv/eng/catalog.search#/metadata/3ed89eb1-9a37-4b86-b793-126411751345 This dataset is published in the view service (WMS) available at: https://ws.geoportail.lu/wss/service/GR_Pop_density_WMS/guest with layer name(s): -Pop_density_2023
Explore our new interactive population density maps for MSA, County, Tract, Block Group, Place, School District, and ZCTA geographies in Texas. These pop density maps are based on the latest ACS 5-Year estimates and TIGER/Line data. Inspired by a map of the same produced by the Texas Demography Center.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density 2024 (inhabitants per km²) per municipality Statistical data sources: INSEE Grand Est, IWEPS, Statistisches Landesamt Rheinland-Pfalz, Statistisches Amt Saarland Geodata sources: ACT Luxembourg 2024, IGN France 2022, GeoBasis-DE / BKG 2024, NGI-Belgium 2024. Harmonization: SIG-GR / GIS-GR 2024 Link to interactive map: https://map.gis-gr.eu/theme/main?version=3&zoom=8&X=708580&Y=6429642&lang=fr&rotation=0&layers=2434&opacities=1&bgLayer=basemap_2015_global Link to Geocatalog: https://geocatalogue.gis-gr.eu/geonetwork/srv/eng/catalog.search#/metadata/4ba433fb-6c1e-459f-89ca-a2914eedfdaa This dataset is published in the view service (WMS) available at: https://ws.geoportail.lu/wss/service/GR_Pop_density_WMS/guest with layer name(s): -Pop_density_2024
This app offers an interactive legend allowing users a more holistic experience with the 2016 Nigeria Population Density Map. In this app, unlike the web map, users can interact with the legend. By clicking on categories defined in the legend, they can focus on particular categories/ranges that are more relevant to them.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
VERSION 1.5. The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Nigeria: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
These high-resolution maps are created using machine learning techniques to identify buildings from commercially available satellite images. This is then overlayed with general population estimates based on publicly available census data and other population statistics at Columbia University. The resulting maps are the most detailed and actionable tools available for aid and research organizations. For more information about the methodology used to create our high resolution population density maps and the demographic distributions, click [here](https://dataforgood.fb.com/docs/methodology-high-resolution-population-density-maps-demographic-estimates/
For information about how to use HDX to access these datasets, please visit: https://dataforgood.fb.com/docs/high-resolution-population-density-maps-demographic-estimates-documentation/
Adjustments to match the census population with the UN estimates are applied at the national level. The UN estimate for a given country (or state/territory) is divided by the total census estimate of population for the given country. The resulting adjustment factor is multiplied by each administrative unit census value for the target year. This preserves the relative population totals across administrative units while matching the UN total. More information can be found here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Please note, we recommend using the new Map Viewer in ArcGIS Online. There is an issue in Map Viewer Classic with the display of grid cell values. The clickable area of each cell is shifted to the northwest. This can result in neighbouring pixel values being displayed. The underlying data is correct, and the values display correctly in the new Map Viewer and in ArcGIS Pro. The Australian population grid 2022 is a modelled 1 km x 1 km grid representation of the estimated resident population (ERP) of Australia from 30 June 2022. The population grid is created by reaggregating estimated resident population data from Statistical Areas Level 1 (SA1) to a 1 km x 1 km grid across Australia based on point data representing residential address points. The value of each grid cell represents the estimated population density (number of people per square kilometre) within each 1 km x 1 km grid cell.
SA1 boundaries are defined by the Australian Statistical Geography Standard (ASGS) Edition 3 (2021) and the 1 km x 1 km grid is based on the National Nested Grid.
Data considerations Caution must be taken when using the population grid as it presents modelled data only; it is not an exact measure of population across Australia. Contact the Australian Bureau of Statistics (ABS) If you have questions, feedback or would like to receive updates about this web service, please email geography@abs.gov.au. For information about how the ABS manages any personal information you provide view the ABS privacy policy.
Data and geography references Source data publication: Regional population, 2022 Additional data input: ABS Address Register Geographic boundary information: Australian Statistical Geography Standard (ASGS) Edition 3, National Nested Grid Further information: Regional population methodology Source: Australian Bureau of Statistics (ABS)
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The dataset is a zip file that contains 28 cloud optimized tiff files that cover the continent of Africa. Each of the 28 files represents a region or area - these are not divided by country. These 28 tiff files represent 2015 population estimates. However, please note that many of the country-level files include 2020 population estimates including: Angola, Benin, Botswana, Burundi, Cameroon, Cabo Verde, Cote d'Ivoire, Djibouti, Eritrea, Eswatini, The Gambia, Ghana, Lesotho, Liberia, Mozambique, Namibia, Sao Tome & Principe, Sierra Leone, South Africa, Togo, Zambia, and Zimbabwe. To create the high-resolution maps, machine learning techniques are used to identify buildings from commercially available satellite images then general population estimates are overlaid based on publicly available census data and other population statistics. The resulting maps are the most detailed and actionable tools available for aid and research organizations.
This layer shows the Hong Kong population density in 2021 Population Census. It is a subset of the census data 2021 made available by the Census and Statistics Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://DATA.GOV.HK/ (“DATA.GOV.HK”). The source data is in XLSX format and has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of DATA.GOV.HK at https://data.gov.hk.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
VERSION 1.5. The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Nigeria: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
These high-resolution maps are created using machine learning techniques to identify buildings from commercially available satellite images. This is then overlayed with general population estimates based on publicly available census data and other population statistics at Columbia University. The resulting maps are the most detailed and actionable tools available for aid and research organizations. For more information about the methodology used to create our high resolution population density maps and the demographic distributions, click [here](https://dataforgood.fb.com/docs/methodology-high-resolution-population-density-maps-demographic-estimates/
For information about how to use HDX to access these datasets, please visit: https://dataforgood.fb.com/docs/high-resolution-population-density-maps-demographic-estimates-documentation/
Adjustments to match the census population with the UN estimates are applied at the national level. The UN estimate for a given country (or state/territory) is divided by the total census estimate of population for the given country. The resulting adjustment factor is multiplied by each administrative unit census value for the target year. This preserves the relative population totals across administrative units while matching the UN total. More information can be found here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density 2013 (inhabitants per km²) Territorial entities: arrondissements (Wallonie), zones d'emploi (Lorraine), cantons (Luxembourg), Kreise (Saarland, Rheinland-Pfalz) Statistical data sources: INSEE Lorraine; SPF Economie; STATEC; Statistisches Landesamt Rheinland-Pfalz; Statistisches Amt Saarland. Harmonization: IBA / OIE 2014 Geodata sources: EuroGeographics EuroRegionalMap v3.0 - 2010. Harmonization: SIG-GR / GIS-GR 2014 Link to interactive map: https://map.gis-gr.eu/theme/main?version=3&zoom=8&X=708580&Y=6429642&lang=fr&rotation=0&layers=1713&opacities=1&bgLayer=basemap_2015_global Link to Geocatalog: https://geocatalogue.gis-gr.eu/geonetwork/srv/eng/catalog.search#/metadata/747df575-4704-4016-b04f-d19d16d41298 This dataset is published in the view service (WMS) available at: https://ws.geoportail.lu/wss/service/GR_Pop_density_WMS/guest with layer name(s): -Pop_density_2013
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density 2015 (inhabitants per km²), Lorraine: 2013 Territorial entities: arrondissements (Wallonie), zones d'emploi (Lorraine), cantons (Luxembourg), Kreise (Saarland, Rheinland-Pfalz) Statistical data sources: INSEE Grand Est; SPF Economie; STATEC; Statistisches Landesamt Rheinland-Pfalz; Statistisches Amt Saarland. Harmonization: IBA / OIE 2016 Geodata sources: EuroGeographics EuroRegionalMap v3.0 - 2010. Harmonization: SIG-GR / GIS-GR 2016 Link to interactive map: https://map.gis-gr.eu/theme/main?version=3&zoom=8&X=708580&Y=6429642&lang=fr&rotation=0&layers=1732&opacities=1&bgLayer=basemap_2015_global Link to Geocatalog: https://geocatalogue.gis-gr.eu/geonetwork/srv/eng/catalog.search#/metadata/4f71026c-4ab0-4153-a00d-2a5d34aae307 This dataset is published in the view service (WMS) available at: https://ws.geoportail.lu/wss/service/GR_Pop_density_WMS/guest with layer name(s): -Pop_density_2015
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The FGGD high resolution rural population density map is a global raster datalayer with a resolution of 30 arc-seconds. Each pixel classified as rural by the urban area boundaries map contains the number of persons per square kilometre. All remaining pixels contain no data. The method used by FAO to generate this datalayer is described in FAO, 2006, Mapping global urban and rural population distributions, by M. Salvatore, et. al.
Data publication: 2006-09-30
Supplemental Information:
This dataset is contained in Module 2 "Population" of Food Insecurity, Poverty and Environment Global GIS Database (FGGD) (FAO, 2006).
Contact points:
Metadata Contact: FAO-Data
Resource Contact: Mirella Salvatore
Resource constraints:
copyright
Online resources:
FAO, 2006. "Mapping global urban and rural population distributions"
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The FGGD high-resolution urban population density map is a global raster datalayer with a resolution of 30 arc-seconds. Each pixel classified as urban by the urban area boundaries map contains the number of persons per square kilometre. All remaining pixels contain no data. The method used by FAO to generate this datalayer is described in FAO, 2006, Mapping global urban and rural population distributions, by M. Salvatore, et. al.
Data publication: 2006-09-30
Supplemental Information:
This dataset is contained in Module 2 "Population" of Food Insecurity, Poverty and Environment Global GIS Database (FGGD) (FAO, 2006).
Contact points:
Metadata Contact: FAO-Data
Resource Contact: Mirella Salvatore
Resource constraints:
copyright
Online resources:
FAO, 2006. "Mapping global urban and rural population distributions"
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset features three gridded population dadasets of Germany on a 10m grid. The units are people per grid cell.
Datasets
DE_POP_VOLADJ16: This dataset was produced by disaggregating national census counts to 10m grid cells based on a weighted dasymetric mapping approach. A building density, building height and building type dataset were used as underlying covariates, with an adjusted volume for multi-family residential buildings.
DE_POP_TDBP: This dataset is considered a best product, based on a dasymetric mapping approach that disaggregated municipal census counts to 10m grid cells using the same three underyling covariate layers.
DE_POP_BU: This dataset is based on a bottom-up gridded population estimate. A building density, building height and building type layer were used to compute a living floor area dataset in a 10m grid. Using federal statistics on the average living floor are per capita, this bottom-up estimate was created.
Please refer to the related publication for details.
Temporal extent
The building density layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: http://doi.org/10.1594/PANGAEA.920894)
The building height layer is representative for ca. 2015 (doi: 10.5281/zenodo.4066295)
The building types layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: 10.5281/zenodo.4601219)
The underlying census data is from 2018.
Data format
The data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems.
Further information
For further information, please see the publication or contact Franz Schug (franz.schug@geo.hu-berlin.de).
A web-visualization of this dataset is available here.
Publication
Schug, F., Frantz, D., van der Linden, S., & Hostert, P. (2021). Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates. PLOS ONE. DOI: 10.1371/journal.pone.0249044
Acknowledgements
Census data were provided by the German Federal Statistical Offices.
Funding
This dataset was produced with funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950).
https://www.nconemap.gov/pages/termshttps://www.nconemap.gov/pages/terms
The North Carolina State Demographer data platform houses the latest data produced by the Office of the State Demographer. The platform allows users to create visualizations, download full (or partial) datasets, and create maps. Registered users can save their visualizations and be notified of dataset updates. This new platform is a subdomain of OSBM’s Log In to North Carolina (LINC) – a service containing over 900 data items including items pertaining to population, labor force, education, transportation, etc. LINC includes topline statistics from the State Demographer’s population estimates and projections while the North Carolina State Demographer data platform includes more detailed datasets for users requiring more detailed demographic information.
This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.