100+ datasets found
  1. F

    Equity Market Volatility Tracker: Macroeconomic News and Outlook: Interest...

    • fred.stlouisfed.org
    json
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Equity Market Volatility Tracker: Macroeconomic News and Outlook: Interest Rates [Dataset]. https://fred.stlouisfed.org/series/EMVMACROINTEREST
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 4, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Equity Market Volatility Tracker: Macroeconomic News and Outlook: Interest Rates (EMVMACROINTEREST) from Jan 1985 to Jun 2025 about volatility, uncertainty, equity, interest rate, interest, rate, and USA.

  2. F

    Interest Rates and Price Indexes; Dow Jones U.S. Total Market Index, Percent...

    • fred.stlouisfed.org
    json
    Updated Mar 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Interest Rates and Price Indexes; Dow Jones U.S. Total Market Index, Percent Change in Index [Dataset]. https://fred.stlouisfed.org/series/BOGZ1PC073164013A
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 13, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Interest Rates and Price Indexes; Dow Jones U.S. Total Market Index, Percent Change in Index (BOGZ1PC073164013A) from 1971 to 2024 about mutual funds, equity, liabilities, interest rate, interest, rate, price index, indexes, price, and USA.

  3. k

    SFB Stock Forecast Data

    • kappasignal.com
    csv, json
    Updated May 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AC Investment Research (2024). SFB Stock Forecast Data [Dataset]. https://www.kappasignal.com/2024/05/financial-future-with-stifel-is-sfbs.html
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    May 14, 2024
    Dataset authored and provided by
    AC Investment Research
    License

    https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html

    Description

    Predictions and Risks for Stifel Financial Corporation 5.20% Senior Notes due 2047: Fixed income markets remain volatile amidst rising interest rates, affecting bond prices. Stifel Financial Corporation's strong financial position and consistent dividend payments indicate resilience but fluctuations in interest rates pose risks to bond value. The company's exposure to economic downturns and regulatory changes can impact cash flows and the ability to meet debt obligations. Investors should consider the potential for interest rate fluctuations, economic headwinds, and regulatory challenges when assessing the risk and potential returns of the bonds.

  4. Share of Americans investing money in the stock market 1999-2024

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of Americans investing money in the stock market 1999-2024 [Dataset]. https://www.statista.com/statistics/270034/percentage-of-us-adults-to-have-money-invested-in-the-stock-market/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1999 - 2024
    Area covered
    United States
    Description

    In 2024, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years, and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges, where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the Financial Crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.

  5. k

    [Video] S&P 500: Bull or Bear? (Forecast)

    • kappasignal.com
    Updated Apr 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). [Video] S&P 500: Bull or Bear? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/video-s-500-bull-or-bear.html
    Explore at:
    Dataset updated
    Apr 8, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    [Video] S&P 500: Bull or Bear?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  6. F

    Interest Rates and Price Indexes; Dow Jones U.S. Total Market Index, Level

    • fred.stlouisfed.org
    json
    Updated Jun 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Interest Rates and Price Indexes; Dow Jones U.S. Total Market Index, Level [Dataset]. https://fred.stlouisfed.org/series/BOGZ1FL073164013Q
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 12, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Interest Rates and Price Indexes; Dow Jones U.S. Total Market Index, Level (BOGZ1FL073164013Q) from Q4 1970 to Q1 2025 about mutual funds, equity, liabilities, interest rate, interest, rate, price index, indexes, price, and USA.

  7. Most traded interest rate derivatives on the London Stock Exchange 2021

    • statista.com
    Updated Dec 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Most traded interest rate derivatives on the London Stock Exchange 2021 [Dataset]. https://www.statista.com/statistics/1214245/most-traded-interest-rate-derivatives-lse/
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United Kingdom
    Description

    Over 2021 the most commonly traded interest rate derivatives on the London Stock Exchange were three month futures for British pounds, of varying expiration dates. This was followed by futures on the euro interbank offered rate (Euribor), and then futures on the Sterling Overnight Interbank Average Rate (SONIA).

    Interest rate futures are essentially a contact that fixes the interest rate on a loan or deposit for a period of time in the future, which (in the case of this statistic) is then tradable on a stock exchange. The type of future relates the underlying reference interest rate (LIBOR in the case of Sterling futures, or Eurobor, or SONIA).

  8. Financial Future with Stifel: Is SFB's Senior Note a Wise Investment?...

    • kappasignal.com
    Updated May 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Financial Future with Stifel: Is SFB's Senior Note a Wise Investment? (Forecast) [Dataset]. https://www.kappasignal.com/2024/05/financial-future-with-stifel-is-sfbs.html
    Explore at:
    Dataset updated
    May 14, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Financial Future with Stifel: Is SFB's Senior Note a Wise Investment?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  9. What is a regression analysis for stock prices? (Forecast)

    • kappasignal.com
    Updated May 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). What is a regression analysis for stock prices? (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/what-is-regression-analysis-for-stock.html
    Explore at:
    Dataset updated
    May 17, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What is a regression analysis for stock prices?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. f

    Data from: Monetary policy and financial asset prices in Poland

    • figshare.com
    xlsx
    Updated Jan 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mariusz Kapuściński (2016). Monetary policy and financial asset prices in Poland [Dataset]. http://doi.org/10.6084/m9.figshare.1414154.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 19, 2016
    Dataset provided by
    figshare
    Authors
    Mariusz Kapuściński
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The aim of this study is to investigate the effects of monetary policy on financial asset prices in Poland. Following Gürkaynak et al. (2005) I test how many factors adequately explain the variability of short-term interest rates around MPC meetings, finding that there are two such factors. The first one has a structural interpretation as a “current interest rate change” factor, and the second one as a “future interest rate changes” factor, with the latter related to MPC communication. Regression analysis shows that, controlling for foreign interest rates and global risk aversion, both MPC actions and communication matter for government bond yields, and that communication is more important for stock prices. Furthermore, the foreign exchange rate used to depreciate (appreciate) after MPC statements signalling tighter (easier) future monetary policy. However, the effect disappeared at the end of the sample. For most of the sample the exchange rate would appreciate (depreciate) or would not change in a statistically significant manner after an increase (a decrease) of the current interest rate. The results indicate that not only changes of the current interest rate but also MPC communication matters for financial asset prices in Poland. It has important implications for the conduct of monetary policy, especially in a low inflation and low interest rate environment.

  11. k

    S&P 500 Index Forecast Data

    • kappasignal.com
    csv, json
    Updated Apr 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AC Investment Research (2024). S&P 500 Index Forecast Data [Dataset]. https://www.kappasignal.com/2024/04/s-500-bull-or-bear.html
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Apr 8, 2024
    Dataset authored and provided by
    AC Investment Research
    License

    https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html

    Description

    S&P 500 index is predicted to continue its upward trajectory, driven by strong earnings and economic growth. However, risks to this prediction include geopolitical tensions, rising interest rates, and inflation.

  12. i

    Celsius Holdings Sees 5.7% Stock Increase as Fed Maintains Interest Rates -...

    • indexbox.io
    doc, docx, pdf, xls +1
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndexBox Inc. (2025). Celsius Holdings Sees 5.7% Stock Increase as Fed Maintains Interest Rates - News and Statistics - IndexBox [Dataset]. https://www.indexbox.io/blog/celsius-holdings-stock-rises-amid-market-recovery/
    Explore at:
    xls, pdf, doc, docx, xlsxAvailable download formats
    Dataset updated
    Jul 1, 2025
    Dataset authored and provided by
    IndexBox Inc.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2012 - Jul 1, 2025
    Area covered
    United States
    Variables measured
    Market Size, Market Share, Tariff Rates, Average Price, Export Volume, Import Volume, Demand Elasticity, Market Growth Rate, Market Segmentation, Volume of Production, and 4 more
    Description

    Celsius Holdings' stock increased by 5.7% as the Fed maintained interest rates, signaling potential rate cuts amidst economic uncertainty. The company recently expanded by acquiring Alani Nu.

  13. c

    The global stock market size is USD 3645.2 million in 2024.

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). The global stock market size is USD 3645.2 million in 2024. [Dataset]. https://www.cognitivemarketresearch.com/stock-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global stock market size will be USD 3645.2 million in 2024. It will expand at a compound annual growth rate (CAGR) of 13% from 2024 to 2031.

    North America held the major market share for more than 40% of the global revenue with a market size of USD 1458.1 million in 2024 and will grow at a compound annual growth rate (CAGR) of 11.2% from 2024 to 2031.
    Europe accounted for a market share of over 30% of the global revenue with a market size of USD 1093.6 million.
    Asia Pacific held a market share of around 23% of the global revenue with a market size of USD 838.4 million in 2024 and will grow at a compound annual growth rate (CAGR) of 15% from 2024 to 2031.
    Latin America had a market share of more than 5% of the global revenue with a market size of USD 182.3 million in 2024 and will grow at a compound annual growth rate (CAGR) of 12.4% from 2024 to 2031.
    Middle East and Africa had a market share of around 2% of the global revenue and was estimated at a market size of USD 72.9 million in 2024 and will grow at a compound annual growth rate (CAGR) of 12.7% from 2024 to 2031.
    The broker end users held the highest stock market revenue share in 2024.
    

    Market Dynamics of Stock Market

    Key Drivers for the Stock Market

    Rising Demand for Real-Time Data and Analytics to be an Emerging Market Trend
    

    The increasing need for real-time data and advanced analytics is a significant driver in the stock trading and investing market growth. Investors and traders require up-to-the-minute information on stock prices, market trends, and financial news to make informed decisions quickly. As financial markets become more dynamic and competitive, the ability to access and analyze real-time data becomes crucial for success. Trading applications that offer real-time updates, advanced charting tools, and detailed analytics provide users with a competitive edge by enabling them to react swiftly to market movements. This heightened demand for real-time insights fuels the development and adoption of sophisticated trading platforms that cater to both professional traders and retail investors seeking to maximize their investment opportunities.

    Increasing Adoption of Mobile Trading Platforms to Boost Market Growth
    

    The rapid adoption of mobile trading platforms is another key driver for the stock market expansion. With the proliferation of smartphones and mobile internet access, investors are increasingly favoring mobile platforms for their trading activities due to their convenience and accessibility. Mobile trading apps offer users the ability to trade, monitor portfolios, and access financial information on the go, which appeals to both active traders and casual investors. This shift towards mobile platforms is supported by innovations in-app functionality, user experience, and security features. As more investors seek flexibility and real-time engagement with their investments, the demand for sophisticated and user-friendly mobile trading applications continues to rise, propelling market growth.

    Restraint Factor for the Stock Market

    Stringent Rules and Regulations to Impede the Adoption of Online Trading Platforms
    

    Regulatory compliance and legal challenges are major restraints for the stock trading and investing market share. The financial industry is heavily regulated, with strict rules governing trading practices, data protection, and financial disclosures. Compliance with these regulations requires substantial investment in legal expertise, technology, and administrative processes. Changes in regulations can also introduce uncertainty and additional compliance costs for application providers. For example, regulations such as the Markets in Financial Instruments Directive II (MiFID II) in Europe and the Dodd-Frank Act in the U.S. impose stringent requirements on trading practices and transparency. Failure to adhere to these regulations can result in legal penalties and damage to a company’s reputation, which can inhibit market growth and innovation in trading applications.

    Market Volatility and Investor Uncertainty
    
    The stock market is highly sensitive to global economic conditions, geopolitical tensions, interest rate fluctuations, and unexpected events (such as pandemics or wars). This inherent volatility can lead to sharp declines in investor confidence and capital outflows, especially among retai...
    
  14. s

    Global Financial Crisis: Fannie Mae stock price and percentage change...

    • statista.com
    Updated Sep 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global Financial Crisis: Fannie Mae stock price and percentage change 2000-2010 [Dataset]. https://www.statista.com/statistics/1349749/global-financial-crisis-fannie-mae-stock-price/
    Explore at:
    Dataset updated
    Sep 2, 2024
    Dataset authored and provided by
    Statista
    Area covered
    United States
    Description

    The Federal National Mortgage Association, commonly known as Fannie Mae, was created by the U.S. congress in 1938, in order to maintain liquidity and stability in the domestic mortgage market. The company is a government-sponsored enterprise (GSE), meaning that while it was a publicly traded company for most of its history, it was still supported by the federal government. While there is no legally binding guarantee of shares in GSEs or their securities, it is generally acknowledged that the U.S. government is highly unlikely to let these enterprises fail. Due to these implicit guarantees, GSEs are able to access financing at a reduced cost of interest. Fannie Mae's main activity is the purchasing of mortgage loans from their originators (banks, mortgage brokers etc.) and packaging them into mortgage-backed securities (MBS) in order to ease the access of U.S. homebuyers to housing credit. The early 2000s U.S. mortgage finance boom During the early 2000s, Fannie Mae was swept up in the U.S. housing boom which eventually led to the financial crisis of 2007-2008. The association's stated goal of increasing access of lower income families to housing finance coalesced with the interests of private mortgage lenders and Wall Street investment banks, who had become heavily reliant on the housing market to drive profits. Private lenders had begun to offer riskier mortgage loans in the early 2000s due to low interest rates in the wake of the "Dot Com" crash and their need to maintain profits through increasing the volume of loans on their books. The securitized products created by these private lenders did not maintain the standards which had traditionally been upheld by GSEs. Due to their market share being eaten into by private firms, however, the GSEs involved in the mortgage markets began to also lower their standards, resulting in a 'race to the bottom'. The fall of Fannie Mae The lowering of lending standards was a key factor in creating the housing bubble, as mortgages were now being offered to borrowers with little or no ability to repay the loans. Combined with fraudulent practices from credit ratings agencies, who rated the junk securities created from these mortgage loans as being of the highest standard, this led directly to the financial panic that erupted on Wall Street beginning in 2007. As the U.S. economy slowed down in 2006, mortgage delinquency rates began to spike. Fannie Mae's losses in the mortgage security market in 2006 and 2007, along with the losses of the related GSE 'Freddie Mac', had caused its share value to plummet, stoking fears that it may collapse. On September 7th 2008, Fannie Mae was taken into government conservatorship along with Freddie Mac, with their stocks being delisted from stock exchanges in 2010. This act was seen as an unprecedented direct intervention into the economy by the U.S. government, and a symbol of how far the U.S. housing market had fallen.

  15. U

    Inflation Data

    • dataverse-staging.rdmc.unc.edu
    • dataverse.unc.edu
    Updated Oct 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Linda Wang; Linda Wang (2022). Inflation Data [Dataset]. http://doi.org/10.15139/S3/QA4MPU
    Explore at:
    Dataset updated
    Oct 9, 2022
    Dataset provided by
    UNC Dataverse
    Authors
    Linda Wang; Linda Wang
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This is not going to be an article or Op-Ed about Michael Jordan. Since 2009 we've been in the longest bull-market in history, that's 11 years and counting. However a few metrics like the stock market P/E, the call to put ratio and of course the Shiller P/E suggest a great crash is coming in-between the levels of 1929 and the dot.com bubble. Mean reversion historically is inevitable and the Fed's printing money experiment could end in disaster for the stock market in late 2021 or 2022. You can read Jeremy Grantham's Last Dance article here. You are likely well aware of Michael Burry's predicament as well. It's easier for you just to skim through two related videos on this topic of a stock market crash. Michael Burry's Warning see this YouTube. Jeremy Grantham's Warning See this YouTube. Typically when there is a major event in the world, there is a crash and then a bear market and a recovery that takes many many months. In March, 2020 that's not what we saw since the Fed did some astonishing things that means a liquidity sloth and the risk of a major inflation event. The pandemic represented the quickest decline of at least 30% in the history of the benchmark S&P 500, but the recovery was not correlated to anything but Fed intervention. Since the pandemic clearly isn't disappearing and many sectors such as travel, business travel, tourism and supply chain disruptions appear significantly disrupted - the so-called economic recovery isn't so great. And there's this little problem at the heart of global capitalism today, the stock market just keeps going up. Crashes and corrections typically occur frequently in a normal market. But the Fed liquidity and irresponsible printing of money is creating a scenario where normal behavior isn't occurring on the markets. According to data provided by market analytics firm Yardeni Research, the benchmark index has undergone 38 declines of at least 10% since the beginning of 1950. Since March, 2020 we've barely seen a down month. September, 2020 was flat-ish. The S&P 500 has more than doubled since those lows. Look at the angle of the curve: The S&P 500 was 735 at the low in 2009, so in this bull market alone it has gone up 6x in valuation. That's not a normal cycle and it could mean we are due for an epic correction. I have to agree with the analysts who claim that the long, long bull market since 2009 has finally matured into a fully-fledged epic bubble. There is a complacency, buy-the dip frenzy and general meme environment to what BigTech can do in such an environment. The weight of Apple, Amazon, Alphabet, Microsoft, Facebook, Nvidia and Tesla together in the S&P and Nasdaq is approach a ridiculous weighting. When these stocks are seen both as growth, value and companies with unbeatable moats the entire dynamics of the stock market begin to break down. Check out FANG during the pandemic. BigTech is Seen as Bullet-Proof me valuations and a hysterical speculative behavior leads to even higher highs, even as 2020 offered many younger people an on-ramp into investing for the first time. Some analysts at JP Morgan are even saying that until retail investors stop charging into stocks, markets probably don’t have too much to worry about. Hedge funds with payment for order flows can predict exactly how these retail investors are behaving and monetize them. PFOF might even have to be banned by the SEC. The risk-on market theoretically just keeps going up until the Fed raises interest rates, which could be in 2023! For some context, we're more than 1.4 years removed from the bear-market bottom of the coronavirus crash and haven't had even a 5% correction in nine months. This is the most over-priced the market has likely ever been. At the night of the dot-com bubble the S&P 500 was only 1,400. Today it is 4,500, not so many years after. Clearly something is not quite right if you look at history and the P/E ratios. A market pumped with liquidity produces higher earnings with historically low interest rates, it's an environment where dangerous things can occur. In late 1997, as the S&P 500 passed its previous 1929 peak of 21x earnings, that seemed like a lot, but nothing compared to today. For some context, the S&P 500 Shiller P/E closed last week at 38.58, which is nearly a two-decade high. It's also well over double the average Shiller P/E of 16.84, dating back 151 years. So the stock market is likely around 2x over-valued. Try to think rationally about what this means for valuations today and your favorite stock prices, what should they be in historical terms? The S&P 500 is up 31% in the past year. It will likely hit 5,000 before a correction given the amount of added liquidity to the system and the QE the Fed is using that's like a huge abuse of MMT, or Modern Monetary Theory. This has also lent to bubbles in the housing market, crypto and even commodities like Gold with long-term global GDP meeting many headwinds in the years ahead due to a...

  16. k

    How accurate is machine learning in stock market? (TD Stock Forecast)...

    • kappasignal.com
    Updated Oct 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How accurate is machine learning in stock market? (TD Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/how-accurate-is-machine-learning-in_22.html
    Explore at:
    Dataset updated
    Oct 22, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How accurate is machine learning in stock market? (TD Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  17. S

    Crude Oil Price and Stock Market Movement

    • indexbox.io
    doc, docx, pdf, xls +1
    Updated Jun 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndexBox Inc. (2025). Crude Oil Price and Stock Market Movement [Dataset]. https://www.indexbox.io/search/crude-oil-price-and-stock-market-movement/
    Explore at:
    docx, xls, xlsx, pdf, docAvailable download formats
    Dataset updated
    Jun 1, 2025
    Dataset authored and provided by
    IndexBox Inc.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2012 - Jun 28, 2025
    Area covered
    World
    Variables measured
    Price CIF, Price FOB, Export Value, Import Price, Import Value, Export Prices, Export Volume, Import Volume
    Description

    Learn about the interlink between crude oil price and stock market movement, and how fluctuations in oil prices can impact the energy sector, other industries, and the overall economy. Discover the factors influencing oil prices and their cascading effects on stock prices, and understand the broader implications for industries like transportation and manufacturing. Understand the correlation between oil prices and stock market movement, and the role of other factors like interest rates and investor sentimen

  18. f

    Descriptive statistics of SHIBOR and SHSML.

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yihong Sun; Xuemei Yuan (2023). Descriptive statistics of SHIBOR and SHSML. [Dataset]. http://doi.org/10.1371/journal.pone.0249852.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Yihong Sun; Xuemei Yuan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Descriptive statistics of SHIBOR and SHSML.

  19. Annual Fed funds effective rate in the U.S. 1990-2024

    • statista.com
    • ai-chatbox.pro
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual Fed funds effective rate in the U.S. 1990-2024 [Dataset]. https://www.statista.com/statistics/247941/federal-funds-rate-level-in-the-united-states/
    Explore at:
    Dataset updated
    Jan 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The U.S. federal funds rate peaked in 2023 at its highest level since the 2007-08 financial crisis, reaching 5.33 percent by December 2023. A significant shift in monetary policy occurred in the second half of 2024, with the Federal Reserve implementing regular rate cuts. By December 2024, the rate had declined to 4.48 percent. What is a central bank rate? The federal funds rate determines the cost of overnight borrowing between banks, allowing them to maintain necessary cash reserves and ensure financial system liquidity. When this rate rises, banks become more inclined to hold rather than lend money, reducing the money supply. While this decreased lending slows economic activity, it helps control inflation by limiting the circulation of money in the economy. Historic perspective The federal funds rate historically follows cyclical patterns, falling during recessions and gradually rising during economic recoveries. Some central banks, notably the European Central Bank, went beyond traditional monetary policy by implementing both aggressive asset purchases and negative interest rates.

  20. F

    Interest Rates and Price Indexes; Dow Jones U.S. Total Market Index, Percent...

    • fred.stlouisfed.org
    json
    Updated Jun 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Interest Rates and Price Indexes; Dow Jones U.S. Total Market Index, Percent Change in Index [Dataset]. https://fred.stlouisfed.org/series/BOGZ1PC073164013Q
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 12, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Interest Rates and Price Indexes; Dow Jones U.S. Total Market Index, Percent Change in Index (BOGZ1PC073164013Q) from Q1 1971 to Q1 2025 about mutual funds, equity, liabilities, interest rate, interest, rate, price index, indexes, price, and USA.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Equity Market Volatility Tracker: Macroeconomic News and Outlook: Interest Rates [Dataset]. https://fred.stlouisfed.org/series/EMVMACROINTEREST

Equity Market Volatility Tracker: Macroeconomic News and Outlook: Interest Rates

EMVMACROINTEREST

Explore at:
jsonAvailable download formats
Dataset updated
Jul 4, 2025
License

https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

Description

Graph and download economic data for Equity Market Volatility Tracker: Macroeconomic News and Outlook: Interest Rates (EMVMACROINTEREST) from Jan 1985 to Jun 2025 about volatility, uncertainty, equity, interest rate, interest, rate, and USA.

Search
Clear search
Close search
Google apps
Main menu