https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Equity Market Volatility Tracker: Macroeconomic News and Outlook: Interest Rates (EMVMACROINTEREST) from Jan 1985 to Jul 2025 about volatility, uncertainty, equity, interest rate, interest, rate, and USA.
Over 2021 the most commonly traded interest rate derivatives on the London Stock Exchange were three month futures for British pounds, of varying expiration dates. This was followed by futures on the euro interbank offered rate (Euribor), and then futures on the Sterling Overnight Interbank Average Rate (SONIA).
Interest rate futures are essentially a contact that fixes the interest rate on a loan or deposit for a period of time in the future, which (in the case of this statistic) is then tradable on a stock exchange. The type of future relates the underlying reference interest rate (LIBOR in the case of Sterling futures, or Eurobor, or SONIA).
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Interest Rates and Price Indexes; Dow Jones U.S. Total Market Index, Level (BOGZ1FL073164013Q) from Q4 1970 to Q1 2025 about mutual funds, equity, liabilities, interest rate, interest, rate, price index, indexes, price, and USA.
In 2024, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years, and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges, where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the Financial Crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Interest Rates and Price Indexes; Dow Jones U.S. Total Market Index, Level (BOGZ1FL073164013A) from 1970 to 2024 about mutual funds, equity, liabilities, interest rate, interest, rate, price index, indexes, price, and USA.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset captures historical financial market data and macroeconomic indicators spanning over three decades, from 1990 onwards. It is designed for financial analysis, time series forecasting, and exploring relationships between market volatility, stock indices, and macroeconomic factors. This dataset is particularly relevant for researchers, data scientists, and enthusiasts interested in studying: - Volatility forecasting (VIX) - Stock market trends (S&P 500, DJIA, HSI) - Macroeconomic influences on markets (joblessness, interest rates, etc.) - The effect of geopolitical and economic uncertainty (EPU, GPRD)
The data has been aggregated from a mix of historical financial records and publicly available macroeconomic datasets: - VIX (Volatility Index): Chicago Board Options Exchange (CBOE). - Stock Indices (S&P 500, DJIA, HSI): Yahoo Finance and historical financial databases. - Volume Data: Extracted from official exchange reports. - Macroeconomic Indicators: Bureau of Economic Analysis (BEA), Federal Reserve, and other public records. - Uncertainty Metrics (EPU, GPRD): Economic Policy Uncertainty Index and Global Policy Uncertainty Database.
dt
: Date of observation in YYYY-MM-DD format.vix
: VIX (Volatility Index), a measure of expected market volatility.sp500
: S&P 500 index value, a benchmark of the U.S. stock market.sp500_volume
: Daily trading volume for the S&P 500.djia
: Dow Jones Industrial Average (DJIA), another key U.S. market index.djia_volume
: Daily trading volume for the DJIA.hsi
: Hang Seng Index, representing the Hong Kong stock market.ads
: Aruoba-Diebold-Scotti (ADS) Business Conditions Index, reflecting U.S. economic activity.us3m
: U.S. Treasury 3-month bond yield, a short-term interest rate proxy.joblessness
: U.S. unemployment rate, reported as quartiles (1 represents lowest quartile and so on).epu
: Economic Policy Uncertainty Index, quantifying policy-related economic uncertainty.GPRD
: Geopolitical Risk Index (Daily), measuring geopolitical risk levels.prev_day
: Previous day’s S&P 500 closing value, added for lag-based time series analysis.Feel free to use this dataset for academic, research, or personal projects.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global investment trust market size was valued at approximately USD 2.5 trillion in 2023 and is projected to reach around USD 4.1 trillion by 2032, growing at a compound annual growth rate (CAGR) of 5.5% during the forecast period. The growth of this market is driven by several factors including increasing investor preference for diversified portfolios and the growing availability of various types of investment trusts to meet different investment goals. These factors are expected to propel the market significantly over the coming years.
Expanding middle-class populations and increasing disposable incomes in emerging economies are also contributing significantly to the growth of the investment trust market. With more individuals seeking avenues for better returns on their investments, investment trusts offer an attractive proposition due to their diversified nature and professional management. Additionally, the growing awareness about the benefits of investing in such diversified instruments, as opposed to individual stocks or bonds, is a crucial growth factor.
Technological advancements and digitalization have made it easier for investors to access investment trusts. Online platforms have simplified the process of investing, enabling real-time tracking and management of investment portfolios. This ease of access has broadened the market's appeal, attracting a younger, tech-savvy investor base. The integration of artificial intelligence and machine learning in these platforms further enhances their capabilities, making investment decisions more data-driven and informed.
The rising trend of sustainable and responsible investing is another significant driver for the investment trust market. Many investors are now seeking to align their portfolios with their personal values, focusing on environmental, social, and governance (ESG) criteria. Investment trusts that prioritize ESG factors are seeing increased demand, as investors look to not only generate financial returns but also contribute positively to society and the environment.
Regionally, North America and Europe dominate the investment trust market, primarily due to their well-established financial sectors and higher levels of investor sophistication. However, the Asia Pacific region is expected to witness the highest growth rate during the forecast period. The increasing economic development and growing middle-class population in countries like China and India are major contributors to this growth. As more individuals in these regions become financially literate, the demand for diverse investment options like investment trusts is expected to rise steadily.
Equity investment trusts, fixed-income investment trusts, hybrid investment trusts, and other specialized types form the various segments of the investment trust market. Equity investment trusts, which primarily invest in stocks, remain the most popular due to their potential for high returns. These trusts appeal to investors looking for growth opportunities, particularly in sectors showing robust performance. The volatility of stock markets, however, poses a risk, making it essential for these trusts to maintain a well-diversified portfolio to mitigate potential losses.
Fixed-income investment trusts focus on bonds and other debt instruments, offering a more stable and predictable income stream, which is particularly attractive to conservative investors or those nearing retirement. These trusts typically have lower risk compared to equity trusts, but also potentially lower returns. With interest rates playing a critical role in their performance, the recent trends of fluctuating interest rates have made these trusts more appealing as they adapt to the changing economic landscape.
Hybrid investment trusts combine both equity and fixed-income investments, providing a balanced approach that appeals to a broader range of investors. These trusts aim to achieve a mix of income generation and capital appreciation, making them suitable for investors with moderate risk tolerance. The flexibility offered by hybrid trusts allows them to adjust their asset allocation based on market conditions, enhancing their appeal in uncertain economic climates.
Other types of investment trusts include those specializing in real estate, commodities, and niche sectors like technology or healthcare. These specialized trusts cater to investors looking to focus on specific sectors that they believe will outperform the broader market. While they offer t
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Finland BOF Forecast: Interest Rate: Average: Stock of Loans data was reported at 1.800 % pa in 2020. This records an increase from the previous number of 1.500 % pa for 2019. Finland BOF Forecast: Interest Rate: Average: Stock of Loans data is updated yearly, averaging 1.500 % pa from Dec 2015 (Median) to 2020, with 6 observations. The data reached an all-time high of 1.800 % pa in 2020 and a record low of 1.400 % pa in 2018. Finland BOF Forecast: Interest Rate: Average: Stock of Loans data remains active status in CEIC and is reported by Bank of Finland. The data is categorized under Global Database’s Finland – Table FI.M007: Lending Rates: Forecast: Bank of Finland.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The aim of this study is to investigate the effects of monetary policy on financial asset prices in Poland. Following Gürkaynak et al. (2005) I test how many factors adequately explain the variability of short-term interest rates around MPC meetings, finding that there are two such factors. The first one has a structural interpretation as a “current interest rate change” factor, and the second one as a “future interest rate changes” factor, with the latter related to MPC communication. Regression analysis shows that, controlling for foreign interest rates and global risk aversion, both MPC actions and communication matter for government bond yields, and that communication is more important for stock prices. Furthermore, the foreign exchange rate used to depreciate (appreciate) after MPC statements signalling tighter (easier) future monetary policy. However, the effect disappeared at the end of the sample. For most of the sample the exchange rate would appreciate (depreciate) or would not change in a statistically significant manner after an increase (a decrease) of the current interest rate. The results indicate that not only changes of the current interest rate but also MPC communication matters for financial asset prices in Poland. It has important implications for the conduct of monetary policy, especially in a low inflation and low interest rate environment.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Turkey External Debt Stock: Treasury Guaranteed: Interest Rate: Combined data was reported at 110.000 USD mn in 2017. This records an increase from the previous number of 64.000 USD mn for 2016. Turkey External Debt Stock: Treasury Guaranteed: Interest Rate: Combined data is updated yearly, averaging 139.000 USD mn from Dec 2002 (Median) to 2017, with 16 observations. The data reached an all-time high of 271.000 USD mn in 2008 and a record low of 64.000 USD mn in 2016. Turkey External Debt Stock: Treasury Guaranteed: Interest Rate: Combined data remains active status in CEIC and is reported by Turkish Treasury. The data is categorized under Global Database’s Turkey – Table TR.JB014: Treasury Guaranteed External Debt Stock.
The Federal National Mortgage Association, commonly known as Fannie Mae, was created by the U.S. congress in 1938, in order to maintain liquidity and stability in the domestic mortgage market. The company is a government-sponsored enterprise (GSE), meaning that while it was a publicly traded company for most of its history, it was still supported by the federal government. While there is no legally binding guarantee of shares in GSEs or their securities, it is generally acknowledged that the U.S. government is highly unlikely to let these enterprises fail. Due to these implicit guarantees, GSEs are able to access financing at a reduced cost of interest. Fannie Mae's main activity is the purchasing of mortgage loans from their originators (banks, mortgage brokers etc.) and packaging them into mortgage-backed securities (MBS) in order to ease the access of U.S. homebuyers to housing credit. The early 2000s U.S. mortgage finance boom During the early 2000s, Fannie Mae was swept up in the U.S. housing boom which eventually led to the financial crisis of 2007-2008. The association's stated goal of increasing access of lower income families to housing finance coalesced with the interests of private mortgage lenders and Wall Street investment banks, who had become heavily reliant on the housing market to drive profits. Private lenders had begun to offer riskier mortgage loans in the early 2000s due to low interest rates in the wake of the "Dot Com" crash and their need to maintain profits through increasing the volume of loans on their books. The securitized products created by these private lenders did not maintain the standards which had traditionally been upheld by GSEs. Due to their market share being eaten into by private firms, however, the GSEs involved in the mortgage markets began to also lower their standards, resulting in a 'race to the bottom'. The fall of Fannie Mae The lowering of lending standards was a key factor in creating the housing bubble, as mortgages were now being offered to borrowers with little or no ability to repay the loans. Combined with fraudulent practices from credit ratings agencies, who rated the junk securities created from these mortgage loans as being of the highest standard, this led directly to the financial panic that erupted on Wall Street beginning in 2007. As the U.S. economy slowed down in 2006, mortgage delinquency rates began to spike. Fannie Mae's losses in the mortgage security market in 2006 and 2007, along with the losses of the related GSE 'Freddie Mac', had caused its share value to plummet, stoking fears that it may collapse. On September 7th 2008, Fannie Mae was taken into government conservatorship along with Freddie Mac, with their stocks being delisted from stock exchanges in 2010. This act was seen as an unprecedented direct intervention into the economy by the U.S. government, and a symbol of how far the U.S. housing market had fallen.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Earnings Yield of All Common Stocks on the New York Stock Exchange for United States (A13049USA156NNBR) from 1871 to 1938 about stocks, earnings, NY, yield, interest rate, interest, rate, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Argentina AR: External Debt: DOD: Stocks: Variable Rate data was reported at 60.545 USD bn in 2016. This records a decrease from the previous number of 63.756 USD bn for 2015. Argentina AR: External Debt: DOD: Stocks: Variable Rate data is updated yearly, averaging 37.345 USD bn from Dec 1970 (Median) to 2016, with 47 observations. The data reached an all-time high of 63.756 USD bn in 2015 and a record low of 3.291 USD bn in 1970. Argentina AR: External Debt: DOD: Stocks: Variable Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Argentina – Table AR.World Bank.WDI: External Debt: Debt Outstanding, Debt Ratio and Debt Service. Variable interest rate is long-term external debt with interest rates that float with movements in a key market rate; for example, the London interbank offered rate (LIBOR) or the U.S. prime rate. This item conveys information about the borrower's exposure to changes in international interest rates. Long-term external debt is defined as debt that has an original or extended maturity of more than one year and that is owed to nonresidents by residents of an economy and repayable in currency, goods, or services. Data are in current U.S. dollars.; ; World Bank, International Debt Statistics.; Sum;
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Dividend Yield of Common Stocks on the New York Stock Exchange, Composite Index for United States (M1346BUSM156NNBR) from Jan 1926 to Feb 1969 about dividends, composite, stock market, NY, yield, interest rate, interest, rate, indexes, and USA.
https://data.bis.org/help/legalhttps://data.bis.org/help/legal
Sweden - Debt sec, interest rate-linked, issued by FC, in all markets at all original maturities denominated in all currencies at nominal value stocks
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
As of June 17, 2024, the most shorted stock was for, the American holographic technology services provider, MicroCloud Hologram Inc., with 66.64 percent of their total float having been shorted. This is a change from mid-January 2021, when video game retailed GameStop had an incredible 121.07 percent of their available shares in a short position. In effect this means that investors had 'borrowed' more shares (with a future promise to return them) than the total number of shares available for public trading. Owing to this behavior of professional investors, retail investors enacted a campaign to drive up the stock price of Gamestop, leading to losses of billions when investors had to repurchase the stock they had borrowed. At this time, a similar – but less effective – social media campaign was also carried out for the stock price of cinema operator AMC, and the price of silver. What is short selling? Short selling is essentially where an investor bets on a share price falling by: borrowing a number of shares selling these shares while the price is still high; purchasing the same number again once the price falls; then returning the borrowed shares at a profit. Of course, a profit will only be made if the share price does fall; should the share price rise the investor will then need to purchase the shares back at a higher price, and thus incur a loss. Short selling can lead to some very large profits in a short amount of time, with Tesla stock generating over one billion dollars in short sell profits during the first week of March 2020 alone, owing to the financial crash caused by the coronavirus (COVID-19) pandemic. However, owing to the short-term, opportunistic nature of short selling, these returns look less impressive when considered as net profits from short sell positions over the full year. The risks of short selling Short selling carries greater risks than traditional investments, and for this reason financial advisors often recommend against this strategy for ‘retail’ (i.e. non-professional) investors. The reason for this is that losses from short selling are potentially uncapped, whereas losses from traditional investments are limited to the initial cost. For example, if someone purchases 100 dollars of shares, the maximum they can lose is the 100 dollars the spent on those shares. However, say someone borrows 100 dollars of shares instead, betting on the price falling. If these shares are then sold for 100 dollars but the price subsequently rises, the losses could greatly exceed the initial investment should the price rise to, say, 500 dollars. The risks of short selling can be seen by looking again at Tesla, with the company causing the greatest losses over 2020 from short selling at over 40 billion U.S. dollars.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Equity Market Volatility Tracker: Macroeconomic News and Outlook: Interest Rates (EMVMACROINTEREST) from Jan 1985 to Jul 2025 about volatility, uncertainty, equity, interest rate, interest, rate, and USA.