100+ datasets found
  1. F

    Equity Market Volatility Tracker: Macroeconomic News and Outlook: Interest...

    • fred.stlouisfed.org
    json
    Updated Nov 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Equity Market Volatility Tracker: Macroeconomic News and Outlook: Interest Rates [Dataset]. https://fred.stlouisfed.org/series/EMVMACROINTEREST
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 6, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Equity Market Volatility Tracker: Macroeconomic News and Outlook: Interest Rates (EMVMACROINTEREST) from Jan 1985 to Oct 2025 about volatility, uncertainty, equity, interest rate, interest, rate, and USA.

  2. Stock Market Dataset for Financial Analysis

    • kaggle.com
    zip
    Updated Feb 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WARNER (2025). Stock Market Dataset for Financial Analysis [Dataset]. https://www.kaggle.com/datasets/s3programmer/stock-market-dataset-for-financial-analysis
    Explore at:
    zip(6816930 bytes)Available download formats
    Dataset updated
    Feb 14, 2025
    Authors
    WARNER
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This stock market dataset is designed for financial analysis and predictive modeling. It includes historical stock prices, technical indicators, macroeconomic factors, and sentiment scores to help in developing and testing machine learning models for stock trend prediction.

    Dataset Features: Column Description Stock Random stock ticker (AAPL, GOOG, etc.) Date Random business date Open Open price High High price Low Low price Close Close price Volume Trading volume SMA_10 10-day Simple Moving Average RSI Relative Strength Index (10-90 range) MACD MACD indicator (-5 to 5) Bollinger_Upper Upper Bollinger Band Bollinger_Lower Lower Bollinger Band GDP_Growth Random GDP growth rate (2.5% to 3.5%) Inflation_Rate Inflation rate (1.5% to 3.0%) Interest_Rate Interest rate (0.5% to 5.0%) Sentiment_Score Random sentiment score (-1 to 1) Next_Close Next day's closing price (for regression) Target Binary classification (1: Price Increase, 0: Price Decrease)

    Key Features: Stock Prices: Open, High, Low, Close, and Volume data. Technical Indicators: Simple Moving Average (SMA), Relative Strength Index (RSI), MACD, and Bollinger Bands. Macroeconomic Factors: Simulated GDP growth, inflation rate, and interest rates. Sentiment Scores: Randomized sentiment values between -1 and 1 to simulate market sentiment. Target Variables: Next-day close price (for regression) and price movement direction (for classification).

  3. F

    Interest Rates and Price Indexes; Dow Jones U.S. Total Market Index, Level

    • fred.stlouisfed.org
    json
    Updated Mar 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Interest Rates and Price Indexes; Dow Jones U.S. Total Market Index, Level [Dataset]. https://fred.stlouisfed.org/series/BOGZ1FL073164013A
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 13, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Interest Rates and Price Indexes; Dow Jones U.S. Total Market Index, Level (BOGZ1FL073164013A) from 1970 to 2024 about mutual funds, equity, liabilities, interest rate, interest, rate, price index, indexes, price, and USA.

  4. Most traded interest rate derivatives on the London Stock Exchange 2021

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most traded interest rate derivatives on the London Stock Exchange 2021 [Dataset]. https://www.statista.com/statistics/1214245/most-traded-interest-rate-derivatives-lse/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United Kingdom
    Description

    Over 2021 the most commonly traded interest rate derivatives on the London Stock Exchange were three month futures for British pounds, of varying expiration dates. This was followed by futures on the euro interbank offered rate (Euribor), and then futures on the Sterling Overnight Interbank Average Rate (SONIA).

    Interest rate futures are essentially a contact that fixes the interest rate on a loan or deposit for a period of time in the future, which (in the case of this statistic) is then tradable on a stock exchange. The type of future relates the underlying reference interest rate (LIBOR in the case of Sterling futures, or Eurobor, or SONIA).

  5. SMEs monthly interest rates on outstanding loans stocks UK 2020-2025

    • statista.com
    Updated Nov 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). SMEs monthly interest rates on outstanding loans stocks UK 2020-2025 [Dataset]. https://www.statista.com/statistics/1620387/sme-monthly-interest-rates-on-outstanding-loans-stocks-united-kingdom/
    Explore at:
    Dataset updated
    Nov 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020 - Sep 2025
    Area covered
    United Kingdom
    Description

    As of 30 September 2025, the average monthly interest rate for bank loans taken out by small and medium enterprises (SMEs) in the United Kingdom (UK), based on the stock of outstanding loans, was at **** percent. The monthly interest rate for such loans have been declining since peaking in July 2024 at **** percent.

  6. k

    QRTEP Stock Forecast Data

    • kappasignal.com
    csv, json
    Updated Apr 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AC Investment Research (2024). QRTEP Stock Forecast Data [Dataset]. https://www.kappasignal.com/2024/04/qurates-preferred-yielding-potential.html
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Apr 10, 2024
    Dataset authored and provided by
    AC Investment Research
    License

    https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html

    Description

    Qurate Retail Inc. 8.0% Fixed Rate Cumulative Redeemable Preferred Stock is predicted to have moderate returns with low risk. The company has a strong financial position with consistent revenue and earnings growth. The preferred stock offers a fixed dividend rate, providing investors with a steady stream of income. However, the stock is subject to interest rate risk, as changes in interest rates could affect its market value.

  7. US Financial Indicators - 1974 to 2024

    • kaggle.com
    zip
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abhishek Bhatnagar (2024). US Financial Indicators - 1974 to 2024 [Dataset]. https://www.kaggle.com/datasets/abhishekb7/us-financial-indicators-1974-to-2024
    Explore at:
    zip(15336 bytes)Available download formats
    Dataset updated
    Nov 25, 2024
    Authors
    Abhishek Bhatnagar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    U.S. Economic and Financial Dataset

    Dataset Description

    This dataset combines historical U.S. economic and financial indicators, spanning the last 50 years, to facilitate time series analysis and uncover patterns in macroeconomic trends. It is designed for exploring relationships between interest rates, inflation, economic growth, stock market performance, and industrial production.

    Key Features

    • Frequency: Monthly
    • Time Period: Last 50 years from Nov-24
    • Sources:
      • Federal Reserve Economic Data (FRED)
      • Yahoo Finance

    Dataset Feature Description

    1. Interest Rate (Interest_Rate):

      • The effective federal funds rate, representing the interest rate at which depository institutions trade federal funds overnight.
    2. Inflation (Inflation):

      • The Consumer Price Index for All Urban Consumers, an indicator of inflation trends.
    3. GDP (GDP):

      • Real GDP measures the inflation-adjusted value of goods and services produced in the U.S.
    4. Unemployment Rate (Unemployment):

      • The percentage of the labor force that is unemployed and actively seeking work.
    5. Stock Market Performance (S&P500):

      • Monthly average of the adjusted close price, representing stock market trends.
    6. Industrial Production (Ind_Prod):

      • A measure of real output in the industrial sector, including manufacturing, mining, and utilities.

    Dataset Statistics

    1. Total Entries: 599
    2. Columns: 6
    3. Memory usage: 37.54 kB
    4. Data types: float64

    Feature Overview

    • Columns:
      • Interest_Rate: Monthly Federal Funds Rate (%)
      • Inflation: CPI (All Urban Consumers, Index)
      • GDP: Real GDP (Billions of Chained 2012 Dollars)
      • Unemployment: Unemployment Rate (%)
      • Ind_Prod: Industrial Production Index (2017=100)
      • S&P500: Monthly Average of S&P 500 Adjusted Close Prices

    Executive Summary

    This project explores the interconnected dynamics of key macroeconomic indicators and financial market trends over the past 50 years, leveraging data from the Federal Reserve Economic Data (FRED) and Yahoo Finance. The dataset integrates critical variables such as the Federal Funds Rate, Inflation (CPI), Real GDP, Unemployment Rate, Industrial Production, and the S&P 500 Index, providing a holistic view of the U.S. economy and financial markets.

    The analysis focuses on uncovering relationships between these variables through time-series visualization, correlation analysis, and trend decomposition. Key findings are included in the Insights section. This project serves as a robust resource for understanding long-term economic trends, policy impacts, and market behavior. It is particularly valuable for students, researchers, policymakers, and financial analysts seeking to connect macroeconomic theory with real-world data.

    Potential Use Cases

    • Economic Analysis: Examine relationships between interest rates, inflation, GDP, and unemployment.
    • Stock Market Prediction: Study how macroeconomic indicators influence stock market trends.
    • Time Series Modeling: Perform ARIMA, VAR, or other models to forecast economic trends.
    • Cyclic Pattern Analysis: Identify how economic shocks and recoveries impact key indicators.

    Snap of Power Analysis

    imagehttps://github.com/user-attachments/assets/1b40e0ca-7d2e-4fbc-8cfd-df3f09e4fdb8">

    To ensure sufficient power, the dataset covers last 50 years of monthly data i.e., around 600 entries.

    Key Insights derived through EDA, time-series visualization, correlation analysis, and trend decomposition

    • Interest Rate and Inflation Dynamics: The interest Rate and inflation exhibit an inverse relationship, especially during periods of aggressive monetary tightening by the Federal Reserve.
    • Economic Growth and Market Performance: GDP growth and the S&P 500 Index show a positive correlation, reflecting how market performance often aligns with overall economic health.
    • Labor Market and Industrial Output: Unemployment and industrial production demonstrate a strong inverse relationship. Higher industrial output is typically associated with lower unemployment
    • Market Behavior During Economic Shocks: The S&P 500 experienced sharp declines during significant crises, such as the 2008 financial crash and the COVID-19 pandemic in 2020. These events also triggered increased unemployment and contractions in GDP, highlighting the interplay between markets and the broader economy.
    • Correlation Highlights: S&P 500 and GDP have a strong positive correlation. Interest rates negatively correlate with GDP and inflation, reflecting monetary policy impacts. Unemployment is negatively correlated with industrial production but positively correlated with interest rates.

    Link to GitHub Repo

    https:/...

  8. Global Financial Crisis: Fannie Mae stock price and percentage change...

    • statista.com
    Updated Dec 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Global Financial Crisis: Fannie Mae stock price and percentage change 2000-2010 [Dataset]. https://www.statista.com/statistics/1349749/global-financial-crisis-fannie-mae-stock-price/
    Explore at:
    Dataset updated
    Dec 1, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The Federal National Mortgage Association, commonly known as Fannie Mae, was created by the U.S. congress in 1938, in order to maintain liquidity and stability in the domestic mortgage market. The company is a government-sponsored enterprise (GSE), meaning that while it was a publicly traded company for most of its history, it was still supported by the federal government. While there is no legally binding guarantee of shares in GSEs or their securities, it is generally acknowledged that the U.S. government is highly unlikely to let these enterprises fail. Due to these implicit guarantees, GSEs are able to access financing at a reduced cost of interest. Fannie Mae's main activity is the purchasing of mortgage loans from their originators (banks, mortgage brokers etc.) and packaging them into mortgage-backed securities (MBS) in order to ease the access of U.S. homebuyers to housing credit. The early 2000s U.S. mortgage finance boom During the early 2000s, Fannie Mae was swept up in the U.S. housing boom which eventually led to the financial crisis of 2007-2008. The association's stated goal of increasing access of lower income families to housing finance coalesced with the interests of private mortgage lenders and Wall Street investment banks, who had become heavily reliant on the housing market to drive profits. Private lenders had begun to offer riskier mortgage loans in the early 2000s due to low interest rates in the wake of the "Dot Com" crash and their need to maintain profits through increasing the volume of loans on their books. The securitized products created by these private lenders did not maintain the standards which had traditionally been upheld by GSEs. Due to their market share being eaten into by private firms, however, the GSEs involved in the mortgage markets began to also lower their standards, resulting in a 'race to the bottom'. The fall of Fannie Mae The lowering of lending standards was a key factor in creating the housing bubble, as mortgages were now being offered to borrowers with little or no ability to repay the loans. Combined with fraudulent practices from credit ratings agencies, who rated the junk securities created from these mortgage loans as being of the highest standard, this led directly to the financial panic that erupted on Wall Street beginning in 2007. As the U.S. economy slowed down in 2006, mortgage delinquency rates began to spike. Fannie Mae's losses in the mortgage security market in 2006 and 2007, along with the losses of the related GSE 'Freddie Mac', had caused its share value to plummet, stoking fears that it may collapse. On September 7th 2008, Fannie Mae was taken into government conservatorship along with Freddie Mac, with their stocks being delisted from stock exchanges in 2010. This act was seen as an unprecedented direct intervention into the economy by the U.S. government, and a symbol of how far the U.S. housing market had fallen.

  9. F

    Earnings Yield of All Common Stocks on the New York Stock Exchange for...

    • fred.stlouisfed.org
    json
    Updated Aug 20, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Earnings Yield of All Common Stocks on the New York Stock Exchange for United States [Dataset]. https://fred.stlouisfed.org/series/A13049USA156NNBR
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 20, 2012
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Earnings Yield of All Common Stocks on the New York Stock Exchange for United States (A13049USA156NNBR) from 1871 to 1938 about stocks, earnings, NY, yield, interest rate, interest, rate, and USA.

  10. Share of Americans investing money in the stock market 1999-2025

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of Americans investing money in the stock market 1999-2025 [Dataset]. https://www.statista.com/statistics/270034/percentage-of-us-adults-to-have-money-invested-in-the-stock-market/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1999 - 2025
    Area covered
    United States
    Description

    In 2025, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the financial crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.

  11. Data from: Monetary Policy and Real Interest Rates: New Evidence from the...

    • clevelandfed.org
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Reserve Bank of Cleveland, Monetary Policy and Real Interest Rates: New Evidence from the Money Stock Announcements [Dataset]. https://www.clevelandfed.org/publications/working-paper/1984/wp-8406-monetary-policy-and-real-interest-rates-new-evidence-from-the-money-stock-announcements
    Explore at:
    Dataset authored and provided by
    Federal Reserve Bank of Clevelandhttps://www.clevelandfed.org/
    Description

    This paper presents new evidence on how asset prices respond to new information about the money stock. It shows that the information content of money stock announcements and the response of asset prices to new information in the announcements vary with changes in the monetary policy regime, the Federal Reserve operating procedures, and the reserve accounting rules. While previous studies have examined how asset prices respond to the money stock announcements under the interest-rate targeting procedure and the nonborrowed reserve procedure, we have included new evidence from the borrowed reserve targeting procedure under both lagged and contemporaneous reserve accounting rules. Looking at how both forward exchange rates and other asset prices respond to the announcements, we distinguish between periods when the asset-price response reflected a change in the real interest rate and those when it reflected a change in the inflation premium. Finally, we show that the new contemporaneous reserve accounting rules have greatly reduced the information content of the money stock announcements.

  12. How accurate is machine learning in stock market? (TD Stock Forecast)...

    • kappasignal.com
    Updated Oct 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How accurate is machine learning in stock market? (TD Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/how-accurate-is-machine-learning-in_22.html
    Explore at:
    Dataset updated
    Oct 22, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How accurate is machine learning in stock market? (TD Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. Tesla Stock Dataset 2025

    • kaggle.com
    zip
    Updated Jan 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sameer Ramzan (2025). Tesla Stock Dataset 2025 [Dataset]. https://www.kaggle.com/datasets/sameerramzan/tesla-stock-dataset-2025
    Explore at:
    zip(95419 bytes)Available download formats
    Dataset updated
    Jan 6, 2025
    Authors
    Sameer Ramzan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset contains historical stock price data for Tesla, Inc. (TSLA) starting from its IPO date, June 29, 2010, to January 1, 2025. The dataset includes daily records of Tesla's stock performance on the NASDAQ stock exchange. It is ideal for time-series analysis, stock price prediction, and understanding the long-term performance of Tesla in the stock market.

    The dataset consists of the following columns:

    1. Date: The trading date.
    2. Open: Opening stock price on the given date.
    3. High: The highest stock price during the trading day.
    4. Low: The lowest stock price during the trading day.
    5. Close: The closing stock price for the day.
    6. Adj Close: Adjusted closing price (corrected for dividends and stock splits).
    7. Volume: The number of shares traded during the day.

    Use Cases of Tesla Stock Historical Data

    1. Time-Series Analysis

      • Analyze trends in Tesla's stock prices over time.
      • Identify seasonality, volatility, and long-term patterns in Tesla’s performance.
    2. Stock Price Prediction

      • Develop predictive models to forecast future stock prices using techniques such as ARIMA, LSTMs, or regression.
    3. Investment Strategy Evaluation

      • Backtest trading strategies by simulating trades based on historical price movements.
      • Analyze returns of investment strategies such as moving averages, RSI, or Bollinger Bands.
    4. Market Sentiment Analysis

      • Correlate Tesla’s stock performance with news sentiment, earnings reports, and market events.
    5. Portfolio Diversification

      • Evaluate Tesla’s performance compared to other stocks or indices to assess its role in a diversified portfolio.
    6. Risk Management

      • Calculate volatility, beta, and other risk metrics to assess the risk associated with investing in Tesla stock.
    7. Economic and Market Studies

      • Study how macroeconomic indicators (like inflation, interest rates) influence Tesla’s stock price.
      • Analyze Tesla’s performance during major economic events such as the COVID-19 pandemic or policy changes.
    8. Stock Splits and Adjustments Analysis

      • Examine the impact of Tesla’s stock splits on price and trading volume.
    9. Educational Purposes

      • Serve as a dataset for academic projects, coursework, or tutorials on financial data analysis.
    10. Correlation with Sector Trends

      • Compare Tesla’s stock performance with other automotive or renewable energy companies.
    11. Data Visualization and Dashboarding

      • Create dashboards using tools like Tableau, Power BI, or Python libraries to visualize Tesla’s stock performance metrics.
    12. A/B Testing for Financial Applications

      • Use historical stock data for controlled experiments in finance-related applications to improve decision-making tools.
  14. T

    Turkey External Debt Stock: Treasury Guaranteed: Interest Rate: Combined

    • ceicdata.com
    Updated Oct 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Turkey External Debt Stock: Treasury Guaranteed: Interest Rate: Combined [Dataset]. https://www.ceicdata.com/en/turkey/treasury-guaranteed-external-debt-stock/external-debt-stock-treasury-guaranteed-interest-rate-combined
    Explore at:
    Dataset updated
    Oct 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    Turkey
    Variables measured
    External Debt
    Description

    Turkey External Debt Stock: Treasury Guaranteed: Interest Rate: Combined data was reported at 110.000 USD mn in 2017. This records an increase from the previous number of 64.000 USD mn for 2016. Turkey External Debt Stock: Treasury Guaranteed: Interest Rate: Combined data is updated yearly, averaging 139.000 USD mn from Dec 2002 (Median) to 2017, with 16 observations. The data reached an all-time high of 271.000 USD mn in 2008 and a record low of 64.000 USD mn in 2016. Turkey External Debt Stock: Treasury Guaranteed: Interest Rate: Combined data remains active status in CEIC and is reported by Turkish Treasury. The data is categorized under Global Database’s Turkey – Table TR.JB014: Treasury Guaranteed External Debt Stock.

  15. F

    Interest Rates and Price Indexes; Dow Jones U.S. Total Market Index, Level

    • fred.stlouisfed.org
    json
    Updated Sep 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Interest Rates and Price Indexes; Dow Jones U.S. Total Market Index, Level [Dataset]. https://fred.stlouisfed.org/series/BOGZ1FL073164013Q
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 11, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Interest Rates and Price Indexes; Dow Jones U.S. Total Market Index, Level (BOGZ1FL073164013Q) from Q4 1970 to Q2 2025 about mutual funds, equity, liabilities, interest rate, interest, rate, price index, indexes, price, and USA.

  16. S&P 500: A Bull or a Bear? (Forecast)

    • kappasignal.com
    Updated Apr 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). S&P 500: A Bull or a Bear? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/s-500-bull-or-bear.html
    Explore at:
    Dataset updated
    Apr 8, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    S&P 500: A Bull or a Bear?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  17. T

    Turkmenistan TM: External Debt: DOD: Stocks: Variable Rate

    • ceicdata.com
    Updated Apr 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Turkmenistan TM: External Debt: DOD: Stocks: Variable Rate [Dataset]. https://www.ceicdata.com/en/turkmenistan/external-debt-debt-outstanding-debt-ratio-and-debt-service/tm-external-debt-dod-stocks-variable-rate
    Explore at:
    Dataset updated
    Apr 15, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Turkmenistan
    Description

    Turkmenistan TM: External Debt: DOD: Stocks: Variable Rate data was reported at 143.055 USD mn in 2016. This records an increase from the previous number of 136.000 USD mn for 2015. Turkmenistan TM: External Debt: DOD: Stocks: Variable Rate data is updated yearly, averaging 110.903 USD mn from Dec 1970 (Median) to 2016, with 47 observations. The data reached an all-time high of 1.758 USD bn in 1999 and a record low of 0.000 USD mn in 1992. Turkmenistan TM: External Debt: DOD: Stocks: Variable Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Turkmenistan – Table TM.World Bank: External Debt: Debt Outstanding, Debt Ratio and Debt Service. Variable interest rate is long-term external debt with interest rates that float with movements in a key market rate; for example, the London interbank offered rate (LIBOR) or the U.S. prime rate. This item conveys information about the borrower's exposure to changes in international interest rates. Long-term external debt is defined as debt that has an original or extended maturity of more than one year and that is owed to nonresidents by residents of an economy and repayable in currency, goods, or services. Data are in current U.S. dollars.; ; World Bank, International Debt Statistics.; Sum;

  18. Sweden - Debt sec, interest rate-linked, issued by central gov, in all...

    • data.bis.org
    csv, xls
    Updated Nov 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bank for International Settlements (2025). Sweden - Debt sec, interest rate-linked, issued by central gov, in all markets at all original maturities denominated in all currencies at nominal value stocks [Dataset]. https://data.bis.org/topics/IDS/BIS,WS_NA_SEC_DSS,1.0/Q.N.SE.XW.S1311.S1.N.L.LE.F3VRB.T._Z.SEK._T.N.V.N._T
    Explore at:
    xls, csvAvailable download formats
    Dataset updated
    Nov 11, 2025
    Dataset provided by
    Bank for International Settlementshttp://www.bis.org/
    License

    https://data.bis.org/help/legalhttps://data.bis.org/help/legal

    Area covered
    Sweden
    Description

    Sweden - Debt sec, interest rate-linked, issued by central gov, in all markets at all original maturities denominated in all currencies at nominal value stocks

  19. Most heavily shorted stocks worldwide 2024

    • statista.com
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most heavily shorted stocks worldwide 2024 [Dataset]. https://www.statista.com/statistics/1201001/most-shorted-stocks-worldwide/
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    As of June 17, 2024, the most shorted stock was for, the American holographic technology services provider, MicroCloud Hologram Inc., with 66.64 percent of their total float having been shorted. This is a change from mid-January 2021, when video game retailed GameStop had an incredible 121.07 percent of their available shares in a short position. In effect this means that investors had 'borrowed' more shares (with a future promise to return them) than the total number of shares available for public trading. Owing to this behavior of professional investors, retail investors enacted a campaign to drive up the stock price of Gamestop, leading to losses of billions when investors had to repurchase the stock they had borrowed. At this time, a similar – but less effective – social media campaign was also carried out for the stock price of cinema operator AMC, and the price of silver. What is short selling? Short selling is essentially where an investor bets on a share price falling by: borrowing a number of shares selling these shares while the price is still high; purchasing the same number again once the price falls; then returning the borrowed shares at a profit. Of course, a profit will only be made if the share price does fall; should the share price rise the investor will then need to purchase the shares back at a higher price, and thus incur a loss. Short selling can lead to some very large profits in a short amount of time, with Tesla stock generating over one billion dollars in short sell profits during the first week of March 2020 alone, owing to the financial crash caused by the coronavirus (COVID-19) pandemic. However, owing to the short-term, opportunistic nature of short selling, these returns look less impressive when considered as net profits from short sell positions over the full year. The risks of short selling Short selling carries greater risks than traditional investments, and for this reason financial advisors often recommend against this strategy for ‘retail’ (i.e. non-professional) investors. The reason for this is that losses from short selling are potentially uncapped, whereas losses from traditional investments are limited to the initial cost. For example, if someone purchases 100 dollars of shares, the maximum they can lose is the 100 dollars the spent on those shares. However, say someone borrows 100 dollars of shares instead, betting on the price falling. If these shares are then sold for 100 dollars but the price subsequently rises, the losses could greatly exceed the initial investment should the price rise to, say, 500 dollars. The risks of short selling can be seen by looking again at Tesla, with the company causing the greatest losses over 2020 from short selling at over 40 billion U.S. dollars.

  20. T

    NASDAQ | NDAQ - Interest Income

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). NASDAQ | NDAQ - Interest Income [Dataset]. https://tradingeconomics.com/ndaq:us:interest-income
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Dec 2, 2025
    Area covered
    United States
    Description

    NASDAQ reported $12M in Interest Income for its fiscal quarter ending in June of 2025. Data for NASDAQ | NDAQ - Interest Income including historical, tables and charts were last updated by Trading Economics this last December in 2025.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Equity Market Volatility Tracker: Macroeconomic News and Outlook: Interest Rates [Dataset]. https://fred.stlouisfed.org/series/EMVMACROINTEREST

Equity Market Volatility Tracker: Macroeconomic News and Outlook: Interest Rates

EMVMACROINTEREST

Explore at:
jsonAvailable download formats
Dataset updated
Nov 6, 2025
License

https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

Description

Graph and download economic data for Equity Market Volatility Tracker: Macroeconomic News and Outlook: Interest Rates (EMVMACROINTEREST) from Jan 1985 to Oct 2025 about volatility, uncertainty, equity, interest rate, interest, rate, and USA.

Search
Clear search
Close search
Google apps
Main menu