40 datasets found
  1. T

    United States House Price Index YoY

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States House Price Index YoY [Dataset]. https://tradingeconomics.com/united-states/house-price-index-yoy
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1992 - May 31, 2025
    Area covered
    United States
    Description

    House Price Index YoY in the United States decreased to 2.80 percent in May from 3.20 percent in April of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.

  2. U.S. Housing Prices: Regional Trends (2000 - 2023)

    • kaggle.com
    Updated Dec 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Praveen Chandran (2024). U.S. Housing Prices: Regional Trends (2000 - 2023) [Dataset]. https://www.kaggle.com/datasets/praveenchandran2006/u-s-housing-prices-regional-trends-2000-2023
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 6, 2024
    Dataset provided by
    Kaggle
    Authors
    Praveen Chandran
    Area covered
    United States
    Description

    Dataset Overview

    This dataset provides historical housing price indices for the United States, covering a span of 20 years from January 2000 onwards. The data includes housing price trends at the national level, as well as for major metropolitan areas such as San Francisco, Los Angeles, New York, and more. It is ideal for understanding how housing prices have evolved over time and exploring regional differences in the housing market.

    Why This Dataset?

    The U.S. housing market has experienced significant shifts over the last two decades, influenced by economic booms, recessions, and post-pandemic recovery. This dataset allows data enthusiasts, economists, and real estate professionals to analyze long-term trends, make forecasts, and derive insights into regional housing markets.

    What’s Included?

    Time Period: January 2000 to the latest available data (specific end date depends on the dataset). Frequency: Monthly data. Regions Covered: 20+ U.S. cities, states, and aggregates.

    Columns Description

    Each column represents the housing price index for a specific region or aggregate, starting with a date column:

    Date: Represents the date of the housing price index measurement, recorded with a monthly frequency. U.S. National: The national-level housing price index for the United States. 20-City Composite: The aggregate housing price index for the top 20 metropolitan areas in the U.S. CA-San Francisco: The housing price index for San Francisco, California. CA-Los Angeles: The housing price index for Los Angeles, California. WA-Seattle: The housing price index for Seattle, Washington. NY-New York: The housing price index for New York City, New York. Additional Columns: The dataset includes more columns with housing price indices for various U.S. cities, which can be viewed in the full dataset preview.

    Potential Use Cases

    Time-Series Analysis: Investigate long-term trends and patterns in housing prices. Forecasting: Build predictive models to forecast future housing prices using historical data. Regional Comparisons: Analyze how housing prices have grown in different cities over time. Economic Insights: Correlate housing prices with economic factors like interest rates, GDP, and inflation.

    Who Can Use This Dataset?

    This dataset is perfect for:

    Data scientists and machine learning practitioners looking to build forecasting models. Economists and policymakers analyzing housing market dynamics. Real estate investors and analysts studying regional trends in housing prices.

    Example Questions to Explore

    Which cities have experienced the highest housing price growth over the last 20 years? How do housing price trends in coastal cities (e.g., Los Angeles, Miami) compare to midwestern cities (e.g., Chicago, Detroit)? Can we predict future housing prices using time-series models like ARIMA or Prophet?

  3. Mortgage Interest Rate Survey Transition Index

    • catalog.data.gov
    Updated Mar 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Housing Finance Agency (2025). Mortgage Interest Rate Survey Transition Index [Dataset]. https://catalog.data.gov/dataset/mortgage-interest-rate-survey-transition-index
    Explore at:
    Dataset updated
    Mar 7, 2025
    Dataset provided by
    Federal Housing Finance Agencyhttps://www.fhfa.gov/
    Description

    In May 29, 2019, FHFA published its final Monthly Interest Rate Survey (MIRS), due to dwindling participation by financial institutions. MIRS had provided information on a monthly basis on interest rates, loan terms, and house prices by property type (all, new, previously occupied); by loan type (fixed- or adjustable-rate), and by lender type (savings associations, mortgage companies, commercial banks and savings banks); as well as information on 15-year and 30-year, fixed-rate loans. Additionally, MIRS provided quarterly information on conventional loans by major metropolitan area and by Federal Home Loan Bank district, and was used to compile FHFA’s monthly adjustable-rate mortgage index entitled the “National Average Contract Mortgage Rate for the Purchase of Previously Occupied Homes by Combined Lenders,” also known as the ARM Index.

  4. Housing price index using Crime Rate Data

    • kaggle.com
    Updated Jun 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SandeepRamesh (2017). Housing price index using Crime Rate Data [Dataset]. https://www.kaggle.com/sandeep04201988/housing-price-index-using-crime-rate-data/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 22, 2017
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    SandeepRamesh
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Context

    This dataset was actually made to check the correlations between a housing price index and its crime rate. Rise and fall of housing prices can be due to various factors with obvious reasons being the facilities of the house and its neighborhood. Think of a place like Detroit where there are hoodlums and you don't want to end up buying a house in the wrong place. This data set will serve as historical data for crime rate data and this in turn can be used to predict whether the housing price will rise or fall. Rise in housing price will suggest decrease in crime rate over the years and vice versa.

    Content

    The headers are self explanatory. index_nsa is the housing price non seasonal index.

    Acknowledgements

    Thank you to my team who helped in achieving this.

    Inspiration

    https://www.kaggle.com/marshallproject/crime-rates https://catalog.data.gov/dataset/fhfa-house-price-indexes-hpis Data was collected from these 2 sources and merged to get the resulting dataset.

  5. d

    All-Transactions House Price Index for Connecticut

    • catalog.data.gov
    • fred.stlouisfed.org
    • +1more
    Updated Aug 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2025). All-Transactions House Price Index for Connecticut [Dataset]. https://catalog.data.gov/dataset/all-transactions-house-price-index-for-connecticut
    Explore at:
    Dataset updated
    Aug 11, 2025
    Dataset provided by
    data.ct.gov
    Area covered
    Connecticut
    Description

    The FHFA House Price Index (FHFA HPI®) is the nation’s only collection of public, freely available house price indexes that measure changes in single-family home values based on data from all 50 states and over 400 American cities that extend back to the mid-1970s. The FHFA HPI incorporates tens of millions of home sales and offers insights about house price fluctuations at the national, census division, state, metro area, county, ZIP code, and census tract levels. FHFA uses a fully transparent methodology based upon a weighted, repeat-sales statistical technique to analyze house price transaction data. ​ What does the FHFA HPI represent? The FHFA HPI is a broad measure of the movement of single-family house prices. The FHFA HPI is a weighted, repeat-sales index, meaning that it measures average price changes in repeat sales or refinancings on the same properties. This information is obtained by reviewing repeat mortgage transactions on single-family properties whose mortgages have been purchased or securitized by Fannie Mae or Freddie Mac since January 1975. The FHFA HPI serves as a timely, accurate indicator of house price trends at various geographic levels. Because of the breadth of the sample, it provides more information than is available in other house price indexes. It also provides housing economists with an improved analytical tool that is useful for estimating changes in the rates of mortgage defaults, prepayments and housing affordability in specific geographic areas. U.S. Federal Housing Finance Agency, All-Transactions House Price Index for Connecticut [CTSTHPI], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/CTSTHPI, August 2, 2023.

  6. U

    United States House Prices Growth

    • ceicdata.com
    Updated Feb 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). United States House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/united-states/house-prices-growth
    Explore at:
    Dataset updated
    Feb 15, 2020
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2022 - Dec 1, 2024
    Area covered
    United States
    Description

    Key information about House Prices Growth

    • US house prices grew 5.2% YoY in Dec 2024, following an increase of 5.4% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Mar 1992 to Dec 2024, with an average growth rate of 5.4%.
    • House price data reached an all-time high of 17.7% in Sep 2021 and a record low of -12.4% in Dec 2008.

    CEIC calculates House Prices Growth from quarterly House Price Index. Federal Housing Finance Agency provides House Price Index with base January 1991=100.

  7. W

    Annual Market Information Indices

    • cloud.csiss.gmu.edu
    • find.data.gov.scot
    • +4more
    csv
    Updated Feb 26, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://usmart.io/#/org/dhplg (2018). Annual Market Information Indices [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/annual-market-information-indices
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 26, 2018
    Dataset provided by
    https://usmart.io/#/org/dhplg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    House price index is based on average new house price value at loan approval stage and therefore has not been adjusted for changes in the mix of houses and apartments sold. Interest rates is based on building societies mortgage loans, published by Central Statistics Office up to 2007.
    From 2008 interest rates is average rate of all 'mortgage lenders' reporting to the Central Bank.
    From 2014 it is based on the floating rate for new customers as published by the Central Bank (Retail interest rates - Table B2.1). The reason for the drop between 2013 and 2014 is due to the difference in methodology - the 2014 data is the weighted average rate on new loan agreements. Further information can be found here:
    http://www.centralbank.ie/polstats/stats/cmab/Documents/Retail_Interest_Rate_Statistics_Explanatory_Notes.pdf
    Earnings is based on the average weekly earnings of adult workers in manufacturing industries, published by the Central Statistics Office. This series has been updated since 1996 using a new methodology and therefore it is not directly comparable with those for earlier years. House Construction Cost Index is based on the 1st day of the third month of each quarter.
    Consumer Price index is based on the Consumer Price Index, published by the Central Statistics Office.
    The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change.

  8. T

    Hong Kong House Price Index

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Hong Kong House Price Index [Dataset]. https://tradingeconomics.com/hong-kong/housing-index
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 2, 1994 - Aug 10, 2025
    Area covered
    Hong Kong
    Description

    Housing Index in Hong Kong increased to 138.63 points in August 10 from 137.19 points in the previous week. This dataset provides - Hong Kong House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  9. F

    Residential Property Prices for Japan

    • fred.stlouisfed.org
    json
    Updated Jul 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Residential Property Prices for Japan [Dataset]. https://fred.stlouisfed.org/series/QJPN628BIS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 31, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for Residential Property Prices for Japan (QJPN628BIS) from Q1 1955 to Q1 2025 about Japan, residential, HPI, housing, price index, indexes, and price.

  10. A

    ‘ Zillow Housing Aspirations Report’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘ Zillow Housing Aspirations Report’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-zillow-housing-aspirations-report-28aa/30d4e5d5/?iid=000-068&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘ Zillow Housing Aspirations Report’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/zillow-housing-aspirations-reporte on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    Additional Data Products

    Product: Zillow Housing Aspirations Report

    Date: April 2017

    Definitions

    Home Types and Housing Stock

    • All Homes: Zillow defines all homes as single-family, condominium and co-operative homes with a county record. Unless specified, all series cover this segment of the housing stock.
    • Condo/Co-op: Condominium and co-operative homes.
    • Multifamily 5+ units: Units in buildings with 5 or more housing units, that are not a condominiums or co-ops.
    • Duplex/Triplex: Housing units in buildings with 2 or 3 housing units.

    Additional Data Products

    • Zillow Home Value Forecast (ZHVF): The ZHVF is the one-year forecast of the ZHVI. Our forecast methodology is methodology post.
    • Zillow creates our negative equity data using our own data in conjunction with data received through our partnership with TransUnion, a leading credit bureau. We match estimated home values against actual outstanding home-related debt amounts provided by TransUnion. To read more about how we calculate our negative equity metrics, please see our here.
    • Cash Buyers: The share of homes in a given area purchased without financing/in cash. To read about how we calculate our cash buyer data, please see our research brief.
    • Mortgage Affordability, Rental Affordability, Price-to-Income Ratio, Historical ZHVI, Historical ZHVI and Houshold Income are calculated as a part of Zillow’s quarterly Affordability Indices. To calculate mortgage affordability, we first calculate the mortgage payment for the median-valued home in a metropolitan area by using the metro-level Zillow Home Value Index for a given quarter and the 30-year fixed mortgage interest rate during that time period, provided by the Freddie Mac Primary Mortgage Market Survey (based on a 20 percent down payment). Then, we consider what portion of the monthly median household income (U.S. Census) goes toward this monthly mortgage payment. Median household income is available with a lag. For quarters where median income is not available from the U.S. Census Bureau, we calculate future quarters of median household income by estimating it using the Bureau of Labor Statistics’ Employment Cost Index. The affordability forecast is calculated similarly to the current affordability index but uses the one year Zillow Home Value Forecast instead of the current Zillow Home Value Index and a specified interest rate in lieu of PMMS. It also assumes a 20 percent down payment. We calculate rent affordability similarly to mortgage affordability; however we use the Zillow Rent Index, which tracks the monthly median rent in particular geographical regions, to capture rental prices. Rents are chained back in time by using U.S. Census Bureau American Community Survey data from 2006 to the start of the Zillow Rent Index, and Decennial Census for all other years.
    • The mortgage rate series is the average mortgage rate quoted on Zillow Mortgages for a 30-year, fixed-rate mortgage in 15-minute increments during business hours, 6:00 AM to 5:00 PM Pacific. It does not include quotes for jumbo loans, FHA loans, VA loans, loans with mortgage insurance or quotes to consumers with credit scores below 720. Federal holidays are excluded. The jumbo mortgage rate series is the average jumbo mortgage rate quoted on Zillow Mortgages for a 30-year, fixed-rate, jumbo mortgage in one-hour increments during business hours, 6:00 AM to 5:00 PM Pacific Time. It does not include quotes to consumers with credit scores below 720. Traditional federal holidays and hours with insufficient sample sizes are excluded.

    About Zillow Data (and Terms of Use Information)

    • Zillow is in the process of transitioning some data sources with the goal of producing published data that is more comprehensive, reliable, accurate and timely. As this new data is incorporated, the publication of select metrics may be delayed or temporarily suspended. We look forward to resuming our usual publication schedule for all of our established datasets as soon as possible, and we apologize for any inconvenience. Thank you for your patience and understanding.
    • All data accessed and downloaded from this page is free for public use by consumers, media, analysts, academics etc., consistent with our published Terms of Use. Proper and clear attribution of all data to Zillow is required.
    • For other data requests or inquiries for Zillow Real Estate Research, contact us here.
    • All files are time series unless noted otherwise.
    • To download all Zillow metrics for specific levels of geography, click here.
    • To download a crosswalk between Zillow regions and federally defined regions for counties and metro areas, click here.
    • Unless otherwise noted, all series cover single-family residences, condominiums and co-op homes only.

    Source: https://www.zillow.com/research/data/

    This dataset was created by Zillow Data and contains around 200 samples along with Unnamed: 1, Unnamed: 0, technical information and other features such as: - Unnamed: 1 - Unnamed: 0 - and more.

    How to use this dataset

    • Analyze Unnamed: 1 in relation to Unnamed: 0
    • Study the influence of Unnamed: 1 on Unnamed: 0
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Zillow Data

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  11. e

    Monthly Mix-Adjusted Average House Prices, London

    • data.europa.eu
    • data.wu.ac.at
    unknown
    Updated Jun 11, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2015). Monthly Mix-Adjusted Average House Prices, London [Dataset]. https://data.europa.eu/data/datasets/monthly-mix-adjusted-average-house-prices-london
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Jun 11, 2015
    Dataset authored and provided by
    Office for National Statistics
    Area covered
    London
    Description

    This page is no longer being updated. Please use the UK House Price Index instead.

    Mix-adjusted house prices, by new/pre-owned dwellings, type of buyer (first time buyer) and region, from February 2002 for London and UK, and average mix-adjusted prices by UK region, and long term Annual House Price Index data since 1969 for London.

    The ONS House Price Index is mix-adjusted to allow for differences between houses sold (for example type, number of rooms, location) in different months within a year. House prices are modelled using a combination of characteristics to produce a model containing around 100,000 cells (one such cell could be first-time buyer, old dwelling, one bedroom flat purchased in London). Each month estimated prices for all cells are produced by the model and then combined with their appropriate weight to produce mix-adjusted average prices. The index values are based on growth rates in the mix-adjusted average house prices and are annually chain linked.

    The weights used for mix-adjustment change at the start of each calendar year (i.e. in January). The mix-adjusted prices are therefore not comparable between calendar years, although they are comparable within each calendar year. If you wish to calculate change between years, you should use the mix-adjusted house price index, available in Table 33.

    The data published in these tables are based on a sub-sample of RMS data. These results will therefore differ from results produced using full sample data. For further information please contact the ONS using the contact details below.
    House prices, mortgage advances and incomes have been rounded to the nearest £1,000.
    Data taken from Table 2 and Table 9 of the monthly ONS release.

    Download from ONS website

  12. d

    Quarterly Market Information Indices

    • datasalsa.com
    • find.data.gov.scot
    • +3more
    csv
    Updated Apr 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing, Local Government, and Heritage (2024). Quarterly Market Information Indices [Dataset]. https://datasalsa.com/dataset/?catalogue=data.gov.ie&name=quarterly-market-information-indices
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 4, 2024
    Dataset authored and provided by
    Department of Housing, Local Government, and Heritage
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Time period covered
    Apr 4, 2024
    Description

    Quarterly Market Information Indices. Published by Department of Housing, Local Government, and Heritage. Available under the license Creative Commons Attribution Share-Alike 4.0 (CC-BY-SA-4.0).House price index is based on average new house price value at loan approval stage and therefore has not been adjusted for changes in the mix of houses and apartments sold.
    Interest rates is based on building societies mortgage loans, published by Central Statistics Office up to 2007.
    From 2008 interest rates is average rate of all 'mortgage lenders' reporting to the Central Bank.
    From 2014 it is based on the floating rate for new customers as published by the Central Bank (Retail interest rates - Table B2.1). The reason for the drop between 2013 and
    2014 is due to the difference in methodology - the 2014 data is the weighted average rate on new loan agreements. Further information can be found here:
    http://www.centralbank.ie/polstats/stats/cmab/Documents/Retail_Interest_Rate_Statistics_Explanatory_Notes.pdf
    Earnings is based on the average weekly earnings of adult workers in manufacturing industries, published by the Central Statistics Office. This series has been updated since 1996 using a new methodology and therefore it is not directly comparable with those for earlier years. House Construction Cost Index is based on the 1st day of the third month of each quarter.
    Consumer Price index is based on the Consumer Price Index, published by the Central Statistics Office.
    The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change. ...

  13. T

    United States 30-Year Mortgage Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States 30-Year Mortgage Rate [Dataset]. https://tradingeconomics.com/united-states/30-year-mortgage-rate
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jul 31, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 1, 1971 - Aug 14, 2025
    Area covered
    United States
    Description

    30 Year Mortgage Rate in the United States decreased to 6.58 percent in August 14 from 6.63 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.

  14. f

    Data from: Mitigating housing market shocks: an agent-based reinforcement...

    • tandf.figshare.com
    bin
    Updated Jul 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sedar Olmez; Alison Heppenstall; Jiaqi Ge; Corinna Elsenbroich; Dan Birks (2024). Mitigating housing market shocks: an agent-based reinforcement learning approach with implications for real-time decision support [Dataset]. http://doi.org/10.6084/m9.figshare.26232214.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Jul 10, 2024
    Dataset provided by
    Taylor & Francis
    Authors
    Sedar Olmez; Alison Heppenstall; Jiaqi Ge; Corinna Elsenbroich; Dan Birks
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Research in modelling housing market dynamics using agent-based models (ABMs) has grown due to the rise of accessible individual-level data. This research involves forecasting house prices, analysing urban regeneration, and the impact of economic shocks. There is a trend towards using machine learning (ML) algorithms to enhance ABM decision-making frameworks. This study investigates exogenous shocks to the UK housing market and integrates reinforcement learning (RL) to adapt housing market dynamics in an ABM. Results show agents can learn real-time trends and make decisions to manage shocks, achieving goals like adjusting the median house price without pre-determined rules. This model is transferable to other housing markets with similar complexities. The RL agent adjusts mortgage interest rates based on market conditions. Importantly, our model shows how a central bank agent learned conservative behaviours in sensitive scenarios, aligning with a 2009 study, demonstrating emergent behavioural patterns.

  15. d

    Residential property price statistics from different countries - Dataset -...

    • demo.dev.datopian.com
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Residential property price statistics from different countries - Dataset - Datopian CKAN instance [Dataset]. https://demo.dev.datopian.com/dataset/residential-property-price-statistics-from-different-countries
    Explore at:
    Dataset updated
    Mar 18, 2025
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Residential property price statistics from different countries. Contains property price indicators (real series are the nominal price series deflated by the consumer price index), both in levels and in growth rates. Can be used for property market analysis. The dataset contains four different files with different metrics, including nominal index, nominal year-on-year changes, real index, and real year-on-year changes. Each file includes data in the format of date, country, and price.

  16. A

    ‘Annual Market Information Indices’ analyzed by Analyst-2

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘Annual Market Information Indices’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-europa-eu-annual-market-information-indices-5425/e671e4e1/?iid=001-622&v=presentation
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Annual Market Information Indices’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from http://data.europa.eu/88u/dataset/https-data-usmart-io-org-ae1d5c14-c392-4c3f-9705-537427eeb413-dataset-viewdiscovery-datasetguid-c410c7a0-14c3-442b-b75f-4c230ec59406 on 13 January 2022.

    --- Dataset description provided by original source is as follows ---

    House price index is based on average new house price value at loan approval stage and therefore has not been adjusted for changes in the mix of houses and apartments sold. Interest rates is based on building societies mortgage loans, published by Central Statistics Office up to 2007.
    From 2008 interest rates is average rate of all 'mortgage lenders' reporting to the Central Bank.
    From 2014 it is based on the floating rate for new customers as published by the Central Bank (Retail interest rates - Table B2.1). The reason for the drop between 2013 and 2014 is due to the difference in methodology - the 2014 data is the weighted average rate on new loan agreements. Further information can be found here:
    http://www.centralbank.ie/polstats/stats/cmab/Documents/Retail_Interest_Rate_Statistics_Explanatory_Notes.pdf
    Earnings is based on the average weekly earnings of adult workers in manufacturing industries, published by the Central Statistics Office. This series has been updated since 1996 using a new methodology and therefore it is not directly comparable with those for earlier years. House Construction Cost Index is based on the 1st day of the third month of each quarter.
    Consumer Price index is based on the Consumer Price Index, published by the Central Statistics Office.
    The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change.

    --- Original source retains full ownership of the source dataset ---

  17. h

    National House Construction Cost Index

    • opendata.housing.gov.ie
    • find.data.gov.scot
    • +3more
    Updated Dec 9, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). National House Construction Cost Index [Dataset]. https://opendata.housing.gov.ie/dataset/national-house-construction-cost-index
    Explore at:
    Dataset updated
    Dec 9, 2016
    Description

    The index relates to costs ruling on the first day of each month. NATIONAL HOUSE CONSTRUCTION COST INDEX; Up until October 2006 it was known as the National House Building Index Oct 2000 data; The index since October, 2000, includes the first phase of an agreement following a review of rates of pay and grading structures for the Construction Industry and the first phase increase under the PPF. April, May and June 2001; Figures revised in July 2001due to 2% PPF Revised Terms. March 2002; The drop in the March 2002 figure is due to a decrease in the rate of PRSI from 12% to 10¾% with effect from 1 March 2002. The index from April 2002 excludes the one-off lump sum payment equal to 1% of basic pay on 1 April 2002 under the PPF. April, May, June 2003; Figures revised in August'03 due to the backdated increase of 3% from 1April 2003 under the National Partnership Agreement 'Sustaining Progress'. The increases in April and October 2006 index are due to Social Partnership Agreement "Towards 2016". March 2011; The drop in the March 2011 figure is due to a 7.5% decrease in labour costs. Methodology in producing the Index Prior to October 2006: The index relates solely to labour and material costs which should normally not exceed 65% of the total price of a house. It does not include items such as overheads, profit, interest charges, land development etc. The House Building Cost Index monitors labour costs in the construction industry and the cost of building materials. It does not include items such as overheads, profit, interest charges or land development. The labour costs include insurance cover and the building material costs include V.A.T. Coverage: The type of construction covered is a typical 3 bed-roomed, 2 level local authority house and the index is applied on a national basis. Data Collection: The labour costs are based on agreed labour rates, allowances etc. The building material prices are collected at the beginning of each month from the same suppliers for the same representative basket. Calculation: Labour and material costs for the construction of a typical 3 bed-roomed house are weighted together to produce the index. Post October 2006: The name change from the House Building Cost Index to the House Construction Cost Index was introduced in October 2006 when the method of assessing the materials sub-index was changed from pricing a basket of materials (representative of a typical 2 storey 3 bedroomed local authority house) to the CSO Table 3 Wholesale Price Index. The new Index does maintains continuity with the old HBCI. The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change. Oct 2008 data; Decrease due to a fall in the Oct Wholesale Price Index.

  18. Portugal Housing Affordability and Market Factors

    • kaggle.com
    Updated Jul 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Igor Marques (2025). Portugal Housing Affordability and Market Factors [Dataset]. https://www.kaggle.com/datasets/marquesigor/portugal-housing-affordability-and-market-factors
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 22, 2025
    Dataset provided by
    Kaggle
    Authors
    Igor Marques
    Area covered
    Portugal
    Description

    This dataset provides a comprehensive view of the Portuguese housing market, integrating both listing and official transaction data. Initially compiled from historical reports by Idealista, it includes €/m² prices for sales and rentals across various Portuguese regions.

    Now, this dataset has been significantly enhanced with official transaction data from the Instituto Nacional de Estatística (INE) of Portugal. This addition includes quarterly values and counts of housing transactions at a national level, providing a crucial perspective on actual market activity beyond listing prices.

    This consolidated dataset is a core component of a broader case study exploring housing affordability, investment potential, and regional development across Portugal. It enables a more robust analysis by allowing comparison between asking prices and actual transaction values, as well as insights into market volume.

    Additional socioeconomic data will be gradually integrated to further enrich the analysis, such as:

    • Minimum and average wages (INE)
    • New construction volume (INE)
    • Migration and population trends
    • Interest rates (Banco de Portugal)

    🔗 Full pipeline and source files, including data cleaning scripts and analysis notebooks, are available on GitHub: https://github.com/igor-marques/portugal-housing-market-capstone

    Data Sources Included: * Idealista: Historical listing prices (€/m²) for sales and rentals across Portuguese regions. * Instituto Nacional de Estatística (INE): Official quarterly data on housing transaction values and counts for Portugal (from Q1 2009 to Q1 2025).

  19. T

    United States MBA 30-Yr Mortgage Rate

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Aug 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States MBA 30-Yr Mortgage Rate [Dataset]. https://tradingeconomics.com/united-states/mortgage-rate
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    Aug 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 5, 1990 - Aug 15, 2025
    Area covered
    United States
    Description

    Fixed 30-year mortgage rates in the United States averaged 6.68 percent in the week ending August 15 of 2025. This dataset provides the latest reported value for - United States MBA 30-Yr Mortgage Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  20. d

    Mortgage Data, Property Data, Title Data, Ownership Data | Over 150 MM...

    • datarade.ai
    Updated Nov 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    McGRAW (2024). Mortgage Data, Property Data, Title Data, Ownership Data | Over 150 MM Records and 200 Attributes [Dataset]. https://datarade.ai/data-products/mcgraw-mortgage-data-property-data-title-data-ownership-da-mcgraw
    Explore at:
    .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Nov 7, 2024
    Dataset authored and provided by
    McGRAW
    Area covered
    United States of America
    Description

    Discover the power of McGRAW’s comprehensive data solutions, the industry's largest and most complete property and ownership database in the nation. Additionally, the mortgage industry's most sought-after analytics solutions for loan quality, risk management, compliance, and collateral valuation. These data sets are built to empower businesses with reliable, accurate, and actionable insights across the mortgage, real estate, and title sectors. With access to over 150 million records and 200 attributes, our expansive data repository enables you to streamline decision-making, optimize marketing, and enhance customer targeting across industries. Take a look at the comprehensive data sets below:

    Mortgage Data Our mortgage data encompasses loan origination, borrower profiles, mortgage terms, and payment statuses, providing a complete view of borrowers and mortgage landscapes. We deliver details on active and historical mortgages, including lender information, loan types, interest rates, and mortgage maturity. This empowers financial institutions and analysts to predict market trends, assess creditworthiness, and personalize customer outreach with accuracy.

    Property Data McGRAW’s property data includes detailed attributes on residential and commercial properties, spanning property characteristics, square footage, zoning information, construction dates, and much more. Our data empowers real estate professionals, property appraisers, and investors to make well-informed decisions based on current and historical property details.

    Title Data Our title data service provides a clear view of ownership history and title status, ensuring comprehensive information on property chain-of-title, lien positions, encumbrances, and transaction history. This invaluable data assists title companies, legal professionals, and financial institutions in validating title claims, mitigating risks, and reducing time-to-close.

    Ownership Data McGRAW ownership data supplies in-depth insights into individual and corporate property ownership, offering information on property owners, purchase prices, and ownership duration. This dataset is crucial for due diligence, investment planning, and market analysis, giving businesses the competitive edge to identify opportunities and assess ownership patterns in the marketplace.

    Unmatched Data Quality & Coverage Our data covers the full spectrum of residential and commercial properties in the United States, with attributes verified for accuracy and updated regularly. From state-of-the-art technology to rigorous data validation practices, McGRAW’s data quality stands out, providing the confidence that businesses need to make strategic decisions.

    Why Choose McGRAW Data?

    Extensive Reach: Over 150 million records provide unparalleled depth and breadth of data coverage across all 50 states.

    Diverse Attributes: With 200 attributes across mortgage, property, title, and ownership data, businesses can customize data views for specific needs.

    Actionable Insights: Our data analytics tools and customizable reports translate raw data into valuable insights, helping you stay ahead in the competitive landscape.

    Leverage McGRAW’s data solutions to unlock a holistic view of the mortgage, property, title, and ownership landscapes. For real estate professionals, lenders, and investors seeking data-driven growth, McGRAW provides the tools to elevate decision-making, enhance operational efficiency, and drive business success in today’s data-centric market.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United States House Price Index YoY [Dataset]. https://tradingeconomics.com/united-states/house-price-index-yoy

United States House Price Index YoY

United States House Price Index YoY - Historical Dataset (1992-01-31/2025-05-31)

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
json, excel, xml, csvAvailable download formats
Dataset updated
May 27, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 31, 1992 - May 31, 2025
Area covered
United States
Description

House Price Index YoY in the United States decreased to 2.80 percent in May from 3.20 percent in April of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.

Search
Clear search
Close search
Google apps
Main menu