https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Inspired by:
Modeling and predicting U.S. recessions using machine learning techniques
As variáveis do FRED-MD como preditivas e a USREC como alvo (período de 1979-2019)
Diversos Modelos: probit, logit, LDA, árvores Naive-Bayes Algumas variáveis tiveram que ser transformadas em mensais (interpolação cúbica)
128 varibles. Grupos: Output and Income Labor Market Consumption and Orders Orders and Inventories Money and Credit Interest Rates and Exchange Rates Prices Stock Market
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We present evidence that the natural rate of interest is buffeted by both permanent and transitory shocks. We establish this result by estimating a benchmark model with Bayesian methods and loose priors on the unobserved drivers of the natural rate. When subject to transitory shocks, the median estimate for the US economy is more procyclical, displays a less marked secular decline, and is therefore higher following the Great Recession than most estimates in the literature.
FocusEconomics' economic data is provided by official state statistical reporting agencies as well as our global network of leading banks, think tanks and consultancies. Our datasets provide not only historical data, but also Consensus Forecasts and individual forecasts from the aformentioned global network of economic analysts. This includes the latest forecasts as well as historical forecasts going back to 2010. Our global network consists of over 1000 world-renowned economic analysts from which we calculate our Consensus Forecasts. In this specific dataset you will find economic data for Nicaragua.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We estimate versions of the Nelson-Siegel model of the yield curve of US government bonds using a Markov switching latent variable model that allows for discrete changes in the stochastic process followed by the interest rates. Our modeling approach is motivated by evidence suggesting the existence of breaks in the behavior of the US yield curve that depend, for example, on whether the economy is in a recession or a boom, or on the stance of monetary policy. Our model is parsimonious, relatively easy to estimate and flexible enough to match the changing shapes of the yield curve over time. We also derive the discrete time non-arbitrage restrictions for the Markov switching model. We compare the forecasting performance of these models with that of the standard dynamic Nelson and Siegel model and an extension that allows the decay rate parameter to be time varying. We show that some parametrizations of our model with regime shifts outperform the single-regime Nelson and Siegel model and other standard empirical models of the yield curve.
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Inspired by:
Modeling and predicting U.S. recessions using machine learning techniques
As variáveis do FRED-MD como preditivas e a USREC como alvo (período de 1979-2019)
Diversos Modelos: probit, logit, LDA, árvores Naive-Bayes Algumas variáveis tiveram que ser transformadas em mensais (interpolação cúbica)
128 varibles. Grupos: Output and Income Labor Market Consumption and Orders Orders and Inventories Money and Credit Interest Rates and Exchange Rates Prices Stock Market