Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterIn 2025, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the financial crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 14 series, with data starting from 1953 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Stock market statistics (14 items: Toronto Stock Exchange; value of shares traded; United States common stocks; Dow-Jones industrials; high; United States common stocks; Dow-Jones industrials; low; Toronto Stock Exchange; volume of shares traded ...).
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Indian Stock Market Dataset provides a comprehensive collection of stock market data sourced from secondary sources, primarily Google, offering insights into investment opportunities and trends within the Indian financial landscape. This dataset encompasses a wide array of information, with a primary focus on Return on Investment (ROI) metrics and the respective industry sectors in which investments are made.
With a reliability rating of 80%, this dataset offers valuable insights for investors, analysts, researchers, and enthusiasts seeking to understand and navigate the complexities of the Indian stock market. The dataset serves as a foundational resource for analyzing market performance, identifying lucrative investment opportunities, and making informed decisions in a dynamic financial environment.
Key features of the dataset include:
ROI Analysis: The dataset provides detailed ROI metrics, allowing stakeholders to assess the profitability of various investment avenues over specific timeframes. By analyzing ROI trends, investors can gauge the performance of individual stocks, portfolios, or entire industry sectors, facilitating strategic investment planning and risk management.
Industry Classification: Each investment entry in the dataset is categorized according to its respective industry sector. This classification enables users to explore investment opportunities within specific sectors such as technology, healthcare, finance, energy, consumer goods, and more. Understanding industry dynamics and market trends is essential for optimizing investment portfolios and diversifying risk exposure.
Historical Data: The dataset includes historical stock market data, offering insights into past performance trends and market behavior. By examining historical data, users can identify patterns, correlations, and anomalies that may impact future investment decisions. Historical analysis empowers investors to make informed predictions and adapt strategies in response to evolving market conditions.
Data Accuracy: While the dataset boasts an accuracy rate of 80%, users should exercise diligence and consider additional sources for validation and verification. While the majority of data points are reliable, occasional discrepancies or inaccuracies may exist, highlighting the importance of due diligence and comprehensive analysis in the investment process.
Accessibility: The Indian Stock Market Dataset is easily accessible and user-friendly, catering to a diverse audience ranging from seasoned investors to novices exploring the world of finance. The dataset can be utilized for various purposes, including academic research, financial modeling, algorithmic trading, and investment portfolio management.
In summary, the Indian Stock Market Dataset offers a valuable resource for analyzing ROI and industry trends within the Indian financial landscape. With a focus on accuracy, accessibility, and comprehensive data coverage, this dataset empowers stakeholders to make informed investment decisions, optimize portfolio performance, and navigate the complexities of the dynamic stock market environment. Whether you're a seasoned investor or a novice enthusiast, this dataset provides valuable insights for unlocking the potential of the Indian stock market.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Index of Common Stock Prices, New York Stock Exchange for United States (M11007USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.
Facebook
TwitterThe Value Line Investment Survey is one of the oldest, continuously running investment advisory publications. Since 1955, the Survey has been published in multiple formats including print, loose-leaf, microfilm and microfiche. Data from 1997 to present is now available online. The Survey tracks 1700 stocks across 92 industry groups. It provides reported and projected measures of firm performance, proprietary rankings and analysis for each stock on a quarterly basis. This dataset, a subset of the Survey covering the years 1980-1989 has been digitized from the microfiche collection available at the Dewey Library (FICHE HG 4501.V26). It is only available to MIT students and faculty for academic research. Published weekly, each edition of the Survey has the following three parts: Summary & Index: includes an alphabetical listing of all industries with their relative ranking and the page number for detailed industry analysis. It also includes an alphabetical listing of all stocks in the publication with references to their location in Part 3, Ratings & Reports. Selection & Opinion: contains the latest economic and stock market commentary and advice along with one or more pages of research on interesting stocks or industries, and a variety of pertinent economic and stock market statistics. It also includes three model stock portfolios. Ratings & Reports: This is the core of the Value Line Investment Survey. Preceded by an industry report, each one-page stock report within that industry includes Timeliness, Safety and Technical rankings, 3-to 5-year analyst forecasts for stock prices, income and balance sheet items, up to 17 years of historical data, and Value Line analysts’ commentaries. The report also contains stock price charts, quarterly sales, earnings, and dividend information. Publication Schedule: Each edition of the Survey covers around 130 stocks in seven to eight industries on a preset sequential schedule so that all 1700 stocks are analyzed once every 13 weeks or each quarter. All editions are numbered 1-13 within each quarter. For example, in 1980, reports for Chrysler appear in edition 1 of each quarter on the following dates: January 4, 1980 – page 132 April 4, 1980 – page 133 July 4, 1980 – page 133 October 1, 1980 – page 133 Reports for Coca-Cola were published in edition 10 of each quarter on: March 7, 1980 – page 1514 June 6, 1980 – page 1518 Sept. 5, 1980 – page 1517 Dec. 5, 1980 – page 1548 Any significant news affecting a stock between quarters is covered in the supplementary reports that appear at the end of part 3, Ratings & Reports. File format: Digitized files within this dataset are in PDF format and are arranged by publication date within each compressed annual folder. How to Consult the Value Line Investment Survey: To find reports on a particular stock, consult the alphabetical listing of stocks in the Summary & Index part of the relevant weekly edition. Look for the page number just to the left of the company name and then use the table below to identify the edition where that page number appears. All editions within a given quarter are numbered 1-13 and follow equally sized page ranges for stock reports. The table provides page ranges for stock reports within editions 1-13 of 1980 Q1. It can be used to identify edition and page numbers for any quarter within a given year. Ratings & Reports Edition Pub. Date Pages 1 04-Jan-80 100-242 2 11-Jan-80 250-392 3 18-Jan-80 400-542 4 25-Jan-80 550-692 5 01-Feb-80 700-842 6 08-Feb-80 850-992 7 15-Feb-80 1000-1142 8 22-Feb-80 1150-1292 9 29-Feb-80 1300-1442 10 07-Mar-80 1450-1592 11 14-Mar-80 1600-1742 12 21-Mar-80 1750-1908 13 28-Mar-80 2000-2142 Another way to navigate to the Ratings & Reports part of an edition would be to look around page 50 within the PDF document. Note that the page numbers of the PDF will not match those within the publication.
Facebook
TwitterEnd-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
Facebook
TwitterThe value of the DJIA index amounted to ****** at the end of June 2025, up from ********* at the end of March 2020. Global panic about the coronavirus epidemic caused the drop in March 2020, which was the worst drop since the collapse of Lehman Brothers in 2008. Dow Jones Industrial Average index – additional information The Dow Jones Industrial Average index is a price-weighted average of 30 of the largest American publicly traded companies on New York Stock Exchange and NASDAQ, and includes companies like Goldman Sachs, IBM and Walt Disney. This index is considered to be a barometer of the state of the American economy. DJIA index was created in 1986 by Charles Dow. Along with the NASDAQ 100 and S&P 500 indices, it is amongst the most well-known and used stock indexes in the world. The year that the 2018 financial crisis unfolded was one of the worst years of the Dow. It was also in 2008 that some of the largest ever recorded losses of the Dow Jones Index based on single-day points were registered. On September 29, 2008, for instance, the Dow had a loss of ****** points, one of the largest single-day losses of all times. The best years in the history of the index still are 1915, when the index value increased by ***** percent in one year, and 1933, year when the index registered a growth of ***** percent.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
In this dataset i have provided daily stock market data of top 500+ companies on the basis of valuation. which contains valuable feature like high price of the stock on a specific date, low price, close price, volume traded, opening price of stock on a particular date, is any stock splitting happened if yes then in which ratio and the dividend announce by the company. This data is good for analysis of the finding hidden stock pattern, finding a strategy for investing in the market.
Columns of the dataset
Date - Date of the trading day
Open - Opening price of the stock on that particular date
High - High price of the stock on that particular date
Low - Low price of the stock on that particular date
Close - Closing price of the stock on that particular date
Volume - Volume traded on that trading day
Dividends - Dividend provided by the company on particular trading day
Stock splitting - Stocks splitting done by the company on a particular trading day
What you can do with this dataset -
Facebook
TwitterThe Dow Jones Industrial Average (DJIA) index dropped around ***** points in the four weeks from February 12 to March 11, 2020, but has since recovered and peaked at ********* points as of November 24, 2024. In February 2020 - just prior to the global coronavirus (COVID-19) pandemic, the DJIA index stood at a little over ****** points. U.S. markets suffer as virus spreads The COVID-19 pandemic triggered a turbulent period for stock markets – the S&P 500 and Nasdaq Composite also recorded dramatic drops. At the start of February, some analysts remained optimistic that the outbreak would ease. However, the increased spread of the virus started to hit investor confidence, prompting a record plunge in the stock markets. The Dow dropped by more than ***** points in the week from February 21 to February 28, which was a fall of **** percent – its worst percentage loss in a week since October 2008. Stock markets offer valuable economic insights The Dow Jones Industrial Average is a stock market index that monitors the share prices of the 30 largest companies in the United States. By studying the performance of the listed companies, analysts can gauge the strength of the domestic economy. If investors are confident in a company’s future, they will buy its stocks. The uncertainty of the coronavirus sparked fears of an economic crisis, and many traders decided that investment during the pandemic was too risky.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The provided dataset is extracted from yahoo finance using pandas and yahoo finance library in python. This deals with stock market index of the world best economies. The code generated data from Jan 01, 2003 to Jun 30, 2023 that’s more than 20 years. There are 18 CSV files, dataset is generated for 16 different stock market indices comprising of 7 different countries. Below is the list of countries along with number of indices extracted through yahoo finance library, while two CSV files deals with annualized return and compound annual growth rate (CAGR) has been computed from the extracted data.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F90ce8a986761636e3edbb49464b304d8%2FNumber%20of%20Index.JPG?generation=1688490342207096&alt=media" alt="">
This dataset is useful for research purposes, particularly for conducting comparative analyses involving capital market performance and could be used along with other economic indicators.
There are 18 distinct CSV files associated with this dataset. First 16 CSV files deals with number of indices and last two CSV file deals with annualized return of each year and CAGR of each index. If data in any column is blank, it portrays that index was launch in later years, for instance: Bse500 (India), this index launch in 2007, so earlier values are blank, similarly China_Top300 index launch in year 2021 so early fields are blank too.
The extraction process involves applying different criteria, like in 16 CSV files all columns are included, Adj Close is used to calculate annualized return. The algorithm extracts data based on index name (code given by the yahoo finance) according start and end date.
Annualized return and CAGR has been calculated and illustrated in below image along with machine readable file (CSV) attached to that.
To extract the data provided in the attachment, various criteria were applied:
Content Filtering: The data was filtered based on several attributes, including the index name, start and end date. This filtering process ensured that only relevant data meeting the specified criteria.
Collaborative Filtering: Another filtering technique used was collaborative filtering using yahoo finance, which relies on index similarity. This approach involves finding indices that are similar to other index or extended dataset scope to other countries or economies. By leveraging this method, the algorithm identifies and extracts data based on similarities between indices.
In the last two CSV files, one belongs to annualized return, that was calculated based on the Adj close column and new DataFrame created to store its outcome. Below is the image of annualized returns of all index (if unreadable, machine-readable or CSV format is attached with the dataset).
As far as annualised rate of return is concerned, most of the time India stock market indices leading, followed by USA, Canada and Japan stock market indices.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F37645bd90623ea79f3708a958013c098%2FAnnualized%20Return.JPG?generation=1688525901452892&alt=media" alt="">
The best performing index based on compound growth is Sensex (India) that comprises of top 30 companies is 15.60%, followed by Nifty500 (India) that is 11.34% and Nasdaq (USA) all is 10.60%.
The worst performing index is China top300, however this is launch in 2021 (post pandemic), so would not possible to examine at that stage (due to less data availability). Furthermore, UK and Russia indices are also top 5 in the worst order.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F58ae33f60a8800749f802b46ec1e07e7%2FCAGR.JPG?generation=1688490409606631&alt=media" alt="">
Geography: Stock Market Index of the World Top Economies
Time period: Jan 01, 2003 – June 30, 2023
Variables: Stock Market Index Title, Open, High, Low, Close, Adj Close, Volume, Year, Month, Day, Yearly_Return and CAGR
File Type: CSV file
This is not a financial advice; due diligence is required in each investment decision.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Comprehensive 27+ years of daily stock market data for Indian indices (SENSEX & NIFTY 50) and all their constituent companies. This dataset includes OHLCV data along with pre-calculated technical indicators, making it perfect for time series analysis, algorithmic trading strategies, and machine learning applications.
Total Records: 400,000+
Companies: 80 stocks (30 SENSEX + 50 NIFTY 50)
Features: 21 columns per record
-Correlation analysis between stocks - Volatility clustering analysis - Market crash impact studies (2008 financial crisis, 2020 COVID) - Sectoral performance comparison
Adani Enterprises, Asian Paints, Axis Bank, Bajaj Finance, Bajaj Finserv, Bharti Airtel, HDFC Bank, HCL Technologies, Hindustan Unilever, ICICI Bank, IndusInd Bank, Infosys, ITC, Kotak Mahindra Bank, Larsen & Toubro, Mahindra & Mahindra, Maruti Suzuki, Nestle India, NTPC, ONGC, Power Grid Corporation, Reliance Industries, State Bank of India, Sun Pharmaceutical, Tata Consultancy Services, Tata Motors, Tata Steel, Tech Mahindra, Titan Company, UltraTech Cement, Wipro
All SENSEX 30 companies plus: Adani Ports, Apollo Hospitals, Bajaj Auto, Bharat Petroleum, Britannia Industries, Cipla, Coal India, Divi's Laboratories, Dr. Reddy's Laboratories, Eicher Motors, Grasim Industries, Hero MotoCorp, Hindalco Industries, Hindustan Zinc, JSW Steel, LTIMindtree, Shriram Finance, Tata Consumer Products, Trent
Ticker Conventions:
- .BO suffix = Bombay Stock Exchange (BSE)
- .NS suffix = National Stock Exchange (NSE)
If you use this dataset in your research, please cite:
Indian Stock Market Historical Data - SENSEX & NIFTY 50 (1997-2024)
Kaggle Dataset, November 2024
URL: https://www.kaggle.com/datasets/rockyt07/stock-market-sensex-nifty-all-time-dataset
Facebook
TwitterEnd-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The dataset includes:
Stock Tickers: A comprehensive list of available stock tickers in Saudi Arabia, each identified with a .SR suffix. Historical Data: Time series data for each stock, including: Date: The trading date. Open: The opening price of the stock on that date. High: The highest price reached during the trading session. Low: The lowest price reached during the trading session. Close: The closing price of the stock on that date. Volume: The number of shares traded on that date. Ticker: The stock ticker symbol. The data spans from January 1, 2020, to January 1, 2024, providing a detailed view of stock performance over this period.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Stock Market Capitalization to GDP for United States (DDDM01USA156NWDB) from 1975 to 2020 about market cap, stock market, capital, GDP, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Stocks Traded: Total Value data was reported at 39,785.881 USD bn in 2017. This records a decrease from the previous number of 42,071.330 USD bn for 2016. United States US: Stocks Traded: Total Value data is updated yearly, averaging 17,934.293 USD bn from Dec 1984 (Median) to 2017, with 34 observations. The data reached an all-time high of 47,245.496 USD bn in 2008 and a record low of 1,108.421 USD bn in 1984. United States US: Stocks Traded: Total Value data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices. Figures are single counted (only one side of the transaction is considered). Companies admitted to listing and admitted to trading are included in the data. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hong Kong's main stock market index, the HK50, rose to 26095 points on December 2, 2025, gaining 0.24% from the previous session. Over the past month, the index has declined 0.24%, though it remains 32.15% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Hong Kong. Hong Kong Stock Market Index (HK50) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
TwitterEnd-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.