The maritime limits and boundaries of the U.S., found in the A-16 National Geospatial Data Asset Portfolio, is recognized as the low-water line along the coast measured from the U.S. baseline. This is marked on official U.S. nautical charts in accordance with the articles of the Law of the Sea. The baseline and related maritime limits are reviewed and approved by the inter-agency U.S. Baseline Committee.The primary purpose of this data is to update the official depiction of these maritime limits and boundaries on the National Oceanic and Atmospheric Administration's nautical charts. The Office of Coast Survey depicts on its nautical charts the territorial sea (12 nautical miles), contiguous zone (24 nautical miles), and Exclusive Economic Zone (200 nautical miles, plus maritime boundaries with adjacent/opposite countries). U.S. maritime limits are ambulatory and are subject to revision based on accretion or erosion of the charted low-water line. For more information about U.S. maritime limits and boundaries and to download data, see U.S. Maritime Limits & Boundaries. For the full Federal Geographic Data Committee metadata record, see Maritime Limits and Boundaries of United States of America.Thumbnail source image courtesy of: David Restivo
The US territorial sea is a maritime zone, over which the United States exercises sovereignty. Each coastal State claims a territorial sea that extends seaward up to 12 nautical miles from its coastal baseline. As defined by maritime law, the coastal State exercises sovereignty over its territorial sea, the air space above it, and the seabed and subsoil beneath it. The U.S. territorial sea extends 12 nautical miles from the coastal baseline. The zone is usually used in concert with several other Limits and Boundary Lines for Maritime purposes.Maritime limits for the United States are measured from the US baseline, which is recognized as the low-water line along the coast as marked on NOAA's nautical charts. The baseline and related maritime limits are reviewed and approved by the interagency US Baseline Committee. The Office of Coast Survey depicts on its nautical charts the territorial sea (12nm), contiguous zone (24nm), and exclusive economic zone (200nm, plus maritime boundaries with adjacent/opposite countries. US maritime limits are ambulatory and subject to revision based on accretion or erosion of the charted low water line. Dataset SummaryThis map service contains data from NOAA and BOEM sources that address USA Regional coastal areas and are designed to be used together within an ArcGIS.com web map. These include: World Exclusive Economic Zone (EEZ) from NOAA Office of Coast SurveyContiguous Zone (CZ) from NOAA Office of Coast SurveyTerritorial Sea (TS) Boundary from NOAA Office of Coast SurveyRevenue Sharing Boundary [Section 8(g) of OCSLA Zone Boundary] from Bureau of Ocean Energy Management (BOEM)Submerged Land Act Boundaries (SLA) aka State Seaward Boundary (SSB)State Administrative Boundary from Bureau of Ocean Energy Management (BOEM)Continental Shelf Boundary (CSB) from Bureau of Ocean Energy Management (BOEM)Regional Maritime Planning Area Boundaries from NOAA Office of Coast SurveyInternational Provisional Maritime Boundary from NOAA (International Boundary Commission)The data for this layer were obtained from MarineCadastre.gov and is updated regularly.More information about U.S. Maritime Limits and BoundariesLink to source metadataWhat can you do with this layer?The features in this layer are used for areas and limits of coastal planning areas, or offshore planning areas, applied within ArcGIS Desktop and ArcGIS Online. A depiction of the territorial sea boundaries helps disputing parties reach an agreement as in the case of one state's boundary overlapping with another state's territorial sea, in which case the border is taken as the median point between the states' baselines, unless the states in question agree otherwise. A state can also choose to claim a smaller territorial sea.Conflicts still occur whenever a coastal nation claims an entire gulf as its territorial waters while other nations only recognize the more restrictive definitions of the UN convention. Two recent conflicts occurred in the Gulf of Sidra where Libya has claimed the entire gulf as its territorial waters and the US has twice enforced freedom of navigation rights, in the 1981 and 1989 Gulf of Sidra incidents.This layer is a feature service, which means it can be used for visualization and analysis throughout the ArcGIS Platform. This layer is not editable.
(Version 4.1, updated September 13, 2013) Maritime limits for the United States are measured from the U.S. baseline, recognized as the low-water line along the coast as marked on NOAA's nautical charts in accordance with the articles of the Law of the Sea. The baseline and related maritime limits are reviewed and approved by the interagency U.S. Baseline Committee. The primary purpose of this dataset is to update the official depiction of these maritime limits and boundaries on NOAA's nautical charts. The Office of Coast Survey depicts on its nautical charts the territorial sea (12 nautical miles), contiguous zone (24nm), and exclusive economic zone (200nm, plus maritime boundaries with adjacent/opposite countries). U.S. maritime limits are ambulatory and subject to revision based on accretion or erosion of the charted low water line. For more information about U.S. Maritime Limits and Boundaries and to stay up-to-date, see: http://www.nauticalcharts.noaa.gov/csdl/mbound.htm. For the full FGDC metadata record, see: http:www.ncddc.noaa.gov/approved_recs/nos_de/ocs/ocs/MB_ParentDataset.html. Coordinates for the US/Canada international boundary, on land and through the Great Lakes, are managed by the International Boundary Commission.
NOAA is responsible for depicting on its nautical charts the limits of the 12 nautical mile Territorial Sea, 24 nautical mile Contiguous Zone, and 200 nautical mile Exclusive Economic Zone (EEZ). The outer limit of each of these zones is measured from the U.S. normal baseline, which coincides with the low water line depicted on NOAA charts and includes closing lines across the entrances of legal bays and rivers, consistent with international law. The U.S. baseline and associated maritime limits are reviewed and approved through the interagency U.S. Baseline Committee, which is chaired by the U.S. Department of State. The Committee serves the function of gaining interagency consensus on the proper location of the baseline using the provisions of the 1958 Convention on the Territorial Sea and the Contiguous Zone, to ensure that the seaward extent of U.S. maritime zones do not exceed the breadth that is permitted by international law. In 2002 and in response to mounting requests for digital maritime zones, NOAA launched a project to re-evaluate the U.S. baseline in partnership with other federal agencies via the U.S. Baseline Committee. The focus of the baseline evaluation was NOAA's largest scale, most recent edition nautical charts as well as supplemental source materials for verification of certain charted features. This dataset is a result of the 2002-present initiative and reflects a multi-year iterative project whereby the baseline and associated maritime limits were re-evaluated on a state or regional basis. In addition to the U.S. maritime limits, the U.S. maritime boundaries with opposite or adjacent countries as well as the US/Canada International Boundary (on land and through the Great Lakes) are also included in this dataset.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The Territorial Sea of the United States of America By the President of the United States of America A Proclamation of 27 December 1988 states the extension of the territorial sea of the United States of America, the Commonwealth of Puerto Rico, Guam, American Samoa, the United States Virgin Islands, the Commonwealth of the Northern Mariana Islands, and any other territory or possession over which the United States exercises sovereignty.
The territorial sea of the United States henceforth extends to 12 nautical miles from the baselines of the United States determined in accordance with international law. In accordance with international law, as reflected in the applicable provisions of the 1982 Convention on the Law of the Sea, within the territorial sea of the United States, the ships of all countries enjoy the right of innocent passage and the ships and aircraft of all countries enjoy the right of transit passage through international straits. Nothing in this Proclamation: (a) extends or otherwise alters existing federal or State law or any jurisdiction, rights, legal interests, or obligations derived therefrom, or (b) impairs the determination, in accordance with international law, of any maritime boundary of the United States with a foreign jurisdiction.
https://www.un.org/depts/los/LEGISLATIONANDTREATIES/PDFFILES/USA_1988_Proclamation.pdf
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
The Sea Around Us is a research initiative at The University of British Columbia (located at the Institute for the Oceans and Fisheries, formerly Fisheries Centre) that assesses the impact of fisheries on the marine ecosystems of the world, and offers mitigating solutions to a range of stakeholders.
The Sea Around Us was initiated in collaboration with The Pew Charitable Trusts in 1999, and in 2014, the Sea Around Us also began a collaboration with The Paul G. Allen Family Foundation to provide African and Asian countries with more accurate and comprehensive fisheries data.
The Sea Around Us provides data and analyses through View Data, articles in peer-reviewed journals, and other media (News). The Sea Around Us regularly update products at the scale of countries’ Exclusive Economic Zones, Large Marine Ecosystems, the High Seas and other spatial scales, and as global maps and summaries.
The Sea Around Us emphasizes catch time series starting in 1950, and related series (e.g., landed value and catch by flag state, fishing sector and catch type), and fisheries-related information on every maritime country (e.g., government subsidies, marine biodiversity). Information is also offered on sub-projects, e.g., the historic expansion of fisheries, the performance of Regional Fisheries Management Organizations, or the likely impact of climate change on fisheries.
The information and data presented on their website is freely available to any user, granted that its source is acknowledged. The Sea Around Us is aware that this information may be incomplete. Please let them know about this via the feedback options available on this website.
If you cite or display any content from the Site, or reference the Sea Around Us, the Sea Around Us – Indian Ocean, the University of British Columbia or the University of Western Australia, in any format, written or otherwise, including print or web publications, presentations, grant applications, websites, other online applications such as blogs, or other works, you must provide appropriate acknowledgement using a citation consistent with the following standard:
When referring to various datasets downloaded from the website, and/or its concept or design, or to several datasets extracted from its underlying databases, cite its architects. Example: Pauly D., Zeller D., Palomares M.L.D. (Editors), 2020. Sea Around Us Concepts, Design and Data (seaaroundus.org).
When referring to a set of values extracted for a given country, EEZ or territory, cite the most recent catch reconstruction report or paper (available on the website) for that country, EEZ or territory. Example: For the Mexican Pacific EEZ, the citation should be “Cisneros-Montemayor AM, Cisneros-Mata MA, Harper S and Pauly D (2015) Unreported marine fisheries catch in Mexico, 1950-2010. Fisheries Centre Working Paper #2015-22, University of British Columbia, Vancouver. 9 p.”, which is accessible on the EEZ page for Mexico (Pacific) on seaaroundus.org.
To help us track the use of Sea Around Us data, we would appreciate you also citing Pauly, Zeller, and Palomares (2020) as the source of the information in an appropriate part of your text;
When using data from our website that are not part of a typical catch reconstruction (e.g., catches by LME or other spatial entity, subsidies given to fisheries, the estuaries in a given country, or the surface area of a given EEZ), cite both the website and the study that generated the underlying database. Many of these can be derived from the ’methods’ texts associated with data pages on seaaroundus.org. Example: Sumaila et al. (2010) for subsides, Alder (2003) for estuaries and Claus et al. (2014) for EEZ delineations, respectively.
The Sea Around Us data are (where not otherwise regulated) under a Creative Commons Attribution Non-Commercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/). Notices regarding copyrights (© The University of British Columbia), license and disclaimer can be found under http://www.seaaroundus.org/terms-and-conditions/. References:
Alder J (2003) Putting the coast in the Sea Around Us Project. The Sea Around Us Newsletter (15): 1-2.
Cisneros-Montemayor AM, Cisneros-Mata MA, Harper S and Pauly D (2015) Unreported marine fisheries catch in Mexico, 1950-2010. Fisheries Centre Working Paper #2015-22, University of British Columbia, Vancouver. 9 p.
Pauly D, Zeller D, and Palomares M.L.D. (Editors) (2020) Sea Around Us Concepts, Design and Data (www.seaaroundus.org)
Claus S, De Hauwere N, Vanhoorne B, Deckers P, Souza Dias F, Hernandez F and Mees J (2014) Marine Regions: Towards a global standard for georeferenced marine names and boundaries. Marine Geodesy 37(2): 99-125.
Sumaila UR, Khan A, Dyck A, Watson R, Munro R, Tydemers P and Pauly D (2010) A bottom-up re-estimation of global fisheries subsidies. Journal of Bioeconomics 12: 201-225.
This polygon shapefile includes Global Map data showing waterbodies and wetlands of the United States, Puerto Rico, and the U.S. Virgin Islands. The data are a modified version of the National Atlas of the United States 1:1,000,000-Scale Waterbodies and Wetlands of the United States; that data set was created primarily from the Medium-Resolution and High-Resolution National Hydrography Dataset (NHD) Waterbody feature classes, through feature selection and cartographic generalization based on reference to published small-scale ancillary data sets. This layer is part of the 1997-2014 edition of the National Atlas of the United States.
U.S. collision regulation boundaries are lines of demarcation delineating those waters upon which mariners shall comply with the International Regulations for Preventing Collisions at Sea, 1972 (72 COLREGS) and those waters upon which mariners shall comply with the Inland Navigation Rules. The waters inland of these lines are subject to the Inland Navigation Rules Act of 1980. The waters outside these lines are subject to the International Navigation Rules of the International Regulations for Preventing Collisions at Sea, 1972 (COLREGS). The Coast Guard has the legal authority to effect regulatory changes to COLREGS. Creation of features was interpreted from descriptions published in the Code of Federal Regulations Title 33, Part 80.
© MarineCadastre.gov This layer is a component of Navigation and Marine Transportation.
Marine Cadastre themed service for public consumption featuring layers associated with navigation and marine transportation.
This map service presents spatial information about MarineCadastre.gov services across the United States and Territories in the Web Mercator projection. The service was developed by the National Oceanic and Atmospheric Administration (NOAA), but may contain data and information from a variety of data sources, including non-NOAA data. NOAA provides the information “as-is” and shall incur no responsibility or liability as to the completeness or accuracy of this information. NOAA assumes no responsibility arising from the use of this information. The NOAA Office for Coastal Management will make every effort to provide continual access to this service but it may need to be taken down during routine IT maintenance or in case of an emergency. If you plan to ingest this service into your own application and would like to be informed about planned and unplanned service outages or changes to existing services, please register for our Data Services Newsletter (http://coast.noaa.gov/digitalcoast/publications/subscribe). For additional information, please contact the NOAA Office for Coastal Management (coastal.info@noaa.gov).
© MarineCadastre.gov
IntroductionClimate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.Back to topMethods and QualifiersThis map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).Areas using lidar-based elevation data: U.S. coastal states except AlaskaElevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)). Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago. CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.Warning for areas using other elevation data (all other areas)Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.Flood control structures (U.S.)Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition (ASCE). Also note that the map implicitly includes unmapped levees and their heights, if broad enough to be effectively captured directly by the elevation data.For more information on how Surging Seas incorporates levees and elevation data in Louisiana, view our Louisiana levees and DEMs methods PDF. For more information on how Surging Seas incorporates dams in Massachusetts, view the Surging Seas column of the web tools comparison matrix for Massachusetts.ErrorErrors or omissions in elevation or levee data may lead to areas being misclassified. Furthermore, this analysis does not account for future erosion, marsh migration, or construction. As is general best practice, local detail should be verified with a site visit. Sites located in zones below a given water level may or may not be subject to flooding at that level, and sites shown as isolated may or may not be be so. Areas may be connected to water via porous bedrock geology, and also may also be connected via channels, holes, or passages for drainage that the elevation data fails to or cannot pick up. In addition, sea level rise may cause problems even in isolated low zones during rainstorms by inhibiting drainage.ConnectivityAt any water height, there will be isolated, low-lying areas whose elevation falls below the water level, but are protected from coastal flooding by either man-made flood control structures (such as levees), or the natural topography of the surrounding land. In areas using lidar-based elevation data or CoastalDEM (see above), elevation data is accurate enough that non-connected areas can be clearly identified and treated separately in analysis (these areas are colored green on the map). In the U.S., levee data are complete enough to factor levees into determining connectivity as well.However, in other areas, elevation data is much less accurate, and noisy error often produces “speckled” artifacts in the flood maps, commonly in areas that should show complete inundation. Removing non-connected areas in these places could greatly underestimate the potential for flood exposure. For this reason, in these regions, the only areas removed from the map and excluded from analysis are separated from the ocean by a ridge of at least 20 meters (66 feet) above the local high tide line, according to the data, so coastal flooding would almost certainly be impossible (e.g., the Caspian Sea region).Back to topData LayersWater Level | Projections | Legend | Social Vulnerability | Population | Ethnicity | Income | Property | LandmarksWater LevelWater level means feet or meters above the local high tide line (“Mean Higher High Water”) instead of standard elevation. Methods described above explain how each map is generated based on a selected water level. Water can reach different levels in different time frames through combinations of sea level rise, tide and storm surge. Tide gauges shown on the map show related projections (see just below).The highest water levels on this map (10, 20 and 30 meters) provide reference points for possible flood risk from tsunamis, in regions prone to them.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the 1st Edition (1906) of the Atlas of Canada is a plate that shows five maps illustrating international and interprovincial boundary claims. Two show the Quebec - New Brunswick - Maine area, and another displays the Canada - Labrador boundary. There are two small maps showing offshore claims; one for the Bay of Fundy, and the other for the Gulf Islands (San Juan) in the Strait of Georgia. The Eastern Canada- United States boundary was commonly called the 'Marine boundary' from 1783 to 1842. There were still many disputes going on at the time, including jurisdiction of Newfoundland, the province of New Brunswick - Quebec and the United States, as well as Vancouver Island. The boundary indicating the Labrador coast was to be claimed by Canada. In addition, major railway systems displayed.
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and assessing environmental changes due to natural or human impacts. The project is focused on the inshore waters (5-30m deep) of Massachusetts between the New Hampshire border and Cape Cod Bay. Data collected for the mapping cooperative have been released in a series of USGS Open-File Reportshttp://woodshole.er.usgs.gov/project-pages/coastal_mass/html/current_map.html. This spatial dataset is from the Cape Ann and Salisbury Beach Massachusetts project area. They were collected in two separate surveys in 2004 and 2005 and cover approximately 325 square kilometers of the inner continental shelf. High resolution bathymetry and backscatter intensity were collected in 2004 and 2005. Seismic profile data, sediment samples and bottom photography were also collected in 2005.
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and assessing environmental changes due to natural or human impacts. The project is focused on the inshore waters (5-30m deep) of Massachusetts between the New Hampshire border and Cape Cod Bay. Data collected for the mapping cooperative have been released in a series of USGS Open-File Reports http://woodshole.er.usgs.gov/project-pages/coastal_mass/html/current_map.html). This spatial dataset is from the Cape Ann to Salisbury Beach Massachusetts project area. They were collected in two separate surveys in 2004 and 2005 and cover approximately 325 square kilometers of the inner continental shelf. High resolution bathymetry and backscatter intensity were collected in 2004 and 2005. Seismic profile data, sediment samples and bottom photography were collected to ground-truth the acoustic geophysical data were collected in 2005.
Static flood inundation boundary extents were created along the entire shoreline of Lake Ontario in Cayuga, Jefferson, Monroe, Niagara, Orleans, Oswego, and Wayne Counties in New York by using recently acquired (2007, 2010, 2014, and 2017) light detection and ranging (lidar) data. The flood inundation maps, accessible through the USGS Flood Inundation Mapping Program website at https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program, depict estimates of the areal extent and water depth of shoreline flooding in 8 segments corresponding to adjacent water-surface elevations (stages) at 8 USGS lake gages on Lake Ontario. This item includes data sets for segment B - Lake Ontario at Hamlin Beach State Park near North Hamlin, NY (station number 04220209). These datasets demonstrate the estimated extent and depth of lake flooding at specific water levels of 1-foot increments from 247.0 ft to 251.0 ft (International Great Lakes Datum of 1985). In this study, wind and seiche effects were not represented; therefore, the flood inundation maps reflect five stages for Lake Ontario that are static for the entire shoreline area of the lake. This item is a package of flood inundation data for segment B - Lake Ontario at Hamlin Beach State Park near North Hamlin, NY (station number 04220209) including: 1) 1 shapefile showing 5 estimated flood extents as polygons, 2) 5 raster datasets showing the depth of the water at 5 flood stages, 3) 1 shapefile showing the study limit extent of segment B, and 4) a metadata file. The polygon flood extent shapefiles were developed from digital elevation models (DEMs) derived from the lidar to represent the estimated areal extent for five flood stages for segment B. The raster files depict the depth, in feet, of the water in the inundated areas along the shoreline of Lake Ontario during the five theoretical flood stages. The depth grids were created by subtracting the digital elevation model (DEM) values (in feet) from each of five raster files representing the flood extent at each constant water level (in feet). An approximately 100-meter buffer was used as the extent into the lake. First posted June 21, 2021, ver 1.0 Revised November 2021, ver 2.0 Version 2.0: This version of the dataset has the same data as version 1.0, but some shapefile attributes were renamed to be more accurate and clearer, and the depth-grid rasters were renamed to include the associated water surface elevation within the raster file name. Detailed version history is included in Version_History_LakeOntarioFIMDataRelease.txt. Version 1.0: This version is a package of flood inundation data for Lake Ontario including: 1) 8 shapefiles showing 40 estimated flood extents as polygons, 2) 40 raster datasets showing the depth of the water at 5 flood stages, divided into 8 shoreline segments, 3) 8 shapefiles showing the study limit extent of each segment, and 4) a metadata file.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
NOAA is responsible for depicting on its nautical charts the limits of the 12 nautical mile Territorial Sea, 24 nautical mile Contiguous Zone, and 200 nautical mile Exclusive Economic Zone (EEZ). The outer limit of each of these zones is measured from the U.S. normal baseline, which coincides with the low water line depicted on NOAA charts and includes closing lines across the entrances of legal bays and rivers, consistent with international law. The U.S. baseline and associated maritime limits are reviewed and approved through the interagency U.S. Baseline Committee, which is chaired by the U.S. Department of State. The Committee serves the function of gaining interagency consensus on the proper location of the baseline using the provisions of the 1958 Convention on the Territorial Sea and the Contiguous Zone, to ensure that the seaward extent of U.S. maritime zones do not exceed the breadth that is permitted by international law. In 2002 and in response to mounting requests for digital maritime zones, NOAA launched a project to re-evaluate the U.S. baseline in partnership with other federal agencies via the U.S. Baseline Committee. The focus of the baseline evaluation was NOAA's largest scale, most recent edition nautical charts as well as supplemental source materials for verification of certain charted features. This dataset is a result of the 2002-present initiative and reflects a multi-year iterative project whereby the baseline and associated maritime limits were re-evaluated on a state or regional basis. In addition to the U.S. maritime limits, the U.S. maritime boundaries with opposite or adjacent countries as well as the US/Canada International Boundary (on land and through the Great Lakes) are also included in this dataset. Direct data download | Metadata NOAA OCS U.S. Maritime Limits & Boundaries
The oceanographic time series data collected by U.S. Geological Survey scientists and collaborators are served in an online database at http://stellwagen.er.usgs.gov/index.html. These data were collected as part of research experiments investigating circulation and sediment transport in the coastal ocean. The experiments (projects, research programs) are typically one month to several years long and have been carried out since 1975. New experiments will be conducted, and the data from them will be added to the collection. As of 2016, all but one of the experiments were conducted in waters abutting the U.S. coast; the exception was conducted in the Adriatic Sea. Measurements acquired vary by site and experiment; they usually include current velocity, wave statistics, water temperature, salinity, pressure, turbidity, and light transmission from one or more depths over a time period. The measurements are concentrated near the sea floor but may also include data from the water column. The user interface provides an interactive map, a tabular summary of the experiments, and a separate page for each experiment. Each experiment page has documentation and maps that provide details of what data were collected at each site. Links to related publications with additional information about the research are also provided. The data are stored in Network Common Data Format (netCDF) files using the Equatorial Pacific Information Collection (EPIC) conventions defined by the National Oceanic and Atmospheric Administration (NOAA) Pacific Marine Environmental Laboratory. NetCDF is a general, self-documenting, machine-independent, open source data format created and supported by the University Corporation for Atmospheric Research (UCAR). EPIC is an early set of standards designed to allow researchers from different organizations to share oceanographic data. The files may be downloaded or accessed online using the Open-source Project for a Network Data Access Protocol (OPeNDAP). The OPeNDAP framework allows users to access data from anywhere on the Internet using a variety of Web services including Thematic Realtime Environmental Distributed Data Services (THREDDS). A subset of the data compliant with the Climate and Forecast convention (CF, currently version 1.6) is also available.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This layer contains the US 200nm EEZ as well as adjacent international maritime boundaries, where the US EEZ would otherwise overlap another coastal State.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
THIS MAP IS NOT AUTHORITATIVE. SEE TERMS OF USE BELOW.This web map was developed by the National Oceanic and Atmospheric Administration’s (NOAA) Office for Coastal Management and is featured in the U.S. Great Lakes Collaborative Benthic Habitat Mapping Common Operating Dashboard in support of the Collaborative Benthic Habitat Mapping in the Nearshore Waters of the Great Lakes Basin Project. This multi-year, multi-agency project is funded through the Great Lakes Restoration Initiative (GLRI) and focuses on new bathymetric data (airborne lidar and vessel based sonar) acquisition, validation, and benthic habitat characterization mapping of the nearshore waters (0-80 meters) in the U.S. Great Lakes. This project also contributes to the regional Lakebed 2030 campaign, which aims to have high-density bathymetric data available for the entirety of the Great Lakes by 2030. This web map contains data layers reflecting the current status of bathy data coverage in the nearshore (0-80 meters) of the U.S. Great Lakes, including acquisition (lidar and multibeam sonar), ground-truthing/validation, and benthic habitat mapping and characterization. Acquisition layers include coverage areas that have been acquired and are available for public use (green) as well as those that have been acquired, but are not yet available or are still in progress (orange). The nearshore water depth layers (0-25 and 25-80 meters) were created using the National Centers for Environmental Information (NCEI) Great Lakes Bathymetry (3-second resolution) grid extracts. The 0 to 25 meter nearshore water depth layer represents areas where bathymetric lidar data acquisition could ideally be conducted, depending on water condition and turbidity. The 25 to 80 meter layer shows locations where acoustic data acquisition can occur. The acquired data values are all in sq. km and were created by merging and dissolving all publicly available bathy lidar and multibeam sonar coverage polygons into single layer and erasing from the nearshore water depth layers (0-25, 25-80, and 0-80 meters). All polygon layers were clipped using the USGS Great Lakes subbasin polygon shapefile and the U.S./Canada boundary from the International Boundary Commission (version 1.3 from 2018). All data originally projected in the following coordinate system: EPSG:3175, NAD 1983 Great Lakes and St Lawrence Albers.This map will continue to be updated as new information is made available.See below for information on additional data layers. Source Data for Bathy Coverage Layers - Acquired/Available:Topobathy and Bathy Lidar (NOAA's Data Access Viewer: https://coast.noaa.gov/dataviewer/#/; U.S. Interagency Elevation Inventory (USIEI): https://coast.noaa.gov/inventory/). Multibeam Sonar (National Centers for Environmental Information (NCEI) Bathymetric Data Viewer: https://www.ncei.noaa.gov/maps/bathymetry/; NOAA's Data Access Viewer: https://coast.noaa.gov/dataviewer/#/; U.S. Interagency Elevation Inventory (USIEI): https://coast.noaa.gov/inventory/; USGS ScienceBaseCatalog: https://www.sciencebase.gov/catalog/item/656e229bd34e7ca10833f950)Source Data for Bathy Coverage Layers - GLRI AOIs (2020-2024):Acquisition: NOAA Office for Coastal ManagementValidation/CMECS Characterizations: NOAA National Centers for Coastal Ocean Science (NCCOS)Source Data for Bathy Coverage Layers - In Progress and Planned:NOAA Office of Coast Survey Plans: https://gis.charttools.noaa.gov/arcgis/rest/services/Hydrographic_Services/Planned_Survey_Areas/MapServer/0NOAA Office for Coastal ManagementSource Data for Nearshore Water Depths:NOAA's National Centers for Environmental Information (NCEI) Great Lakes Bathymetry (3-second resolution) grid extracts: https://www.ncei.noaa.gov/maps/grid-extract/Source Data for Spatial Prioritization Layers:Great Lakes Spatial Priorities Study Results Jun 2021. https://gis.charttools.noaa.gov/arcgis/rest/services/IOCM/GreatLakes_SPS_Results_Jun_2021/MapServerMapping priorities within the proposed Wisconsin Lake Michigan National Marine Sanctuary (2018). https://gis.ngdc.noaa.gov/arcgis/rest/services/nccos/BiogeographicAssessments_WILMPrioritizationResults/MapServerThunder Bay National Marine Sanctuary Spatial Prioritization Results (2020). https://gis.ngdc.noaa.gov/arcgis/rest/services/nccos/BiogeographicAssessments_TBNMSPrioritizationResults/MapServerSource Data for Supplemental Data Layers:International Boundary Commission U.S./Canada Boundary (version 1.3 from 2018): https://www.internationalboundarycommission.org/en/maps-coordinates/coordinates.phpNational Oceanic and Atmospheric Administration (NOAA) HydroHealth 2018 Survey: https://wrecks.nauticalcharts.noaa.gov/arcgis/rest/services/Hydrographic_Services/HydroHealth_2018/ImageServerNational Oceanic and Atmospheric Administration (NOAA) Lake Ontario National Marine Sanctuary Boundary: https://sanctuaries.noaa.gov/library/imast_gis.htmlNational Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas (MPA) Inventory 2023-2024: https://www.fisheries.noaa.gov/inport/item/69506National Oceanic and Atmospheric Administration (NOAA) National Marine Sanctuary Program Boundaries (2021): https://services2.arcgis.com/C8EMgrsFcRFL6LrL/arcgis/rest/services/ONMS_2021_Boundaries/FeatureServerNational Oceanic and Atmospheric Administration (NOAA) U.S. Bathymetry Gap Analysis: https://noaa.maps.arcgis.com/home/item.html?id=4d7d925fc96d47d9ace970dd5040df0aU.S. Environment Protection Agency (EPA) Areas of Concern: https://services.arcgis.com/cJ9YHowT8TU7DUyn/arcgis/rest/services/epa_areas_of_concern_glahf_viewlayer/FeatureServerU.S. Geological Survey (USGS) Great Lakes Subbasins: https://www.sciencebase.gov/catalog/item/530f8a0ee4b0e7e46bd300dd Latest update: February 20, 2025
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
U.S. Census Block GroupsThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), displays Census block groups in the 50 states, the District of Columbia, and Puerto Rico. Per the USCB, "Block Groups (BGs) are clusters of blocks within the same census tract. Each census tract contains at least one BG, and BGs are uniquely numbered within census tracts. BGs have a valid code range of 0 through 9. BGs have the same first digit of their 4-digit census block number from the same decennial census. BGs coded 0 are intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. Block groups generally contain between 600 and 3,000 people. A BG usually covers a contiguous area but never crosses county or census tract boundaries. They may, however, cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas".Block Group 2 - Census Tract 010400 (Santa Fe, NM area)Data version: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Census Block Groups) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 70 (Series Information for Block Group State-based TIGER/Line Shapefiles, Current)OGC API Features Link: (U.S. Census Block Groups - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: What are census blocks?For feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This layer is the US/Canada international boundary, which extends on land and through the Great Lakes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a multidimensional raster layer containing the different Sea Level Rise Projections and Scenarios for the United States. The values are in centimeters and represent the amount of sea level rise in centimeters (cm).This is a raster layer that was made from the “U.S. Sea Level Rise Projections - Grid”. The one degree gridded points were converted to one degree pixels using the point to raster tool. No interpolation was applied.Time Extent: Decadal 2020-2150 (every 10 years)Units: centimeters (cm) of Sea Level RiseCell Size: 1 degreeSource Type: StretchedPixel Type:16 Bit IntegerData Projection: GCS WGS84Extent: U.S. and TerritoriesSource: 2022 Sea Level Rise Technical Report DataUsing the layer in ArcGIS Pro:When this layer is selected, a “Multidimensional Ribbon” appears at the menu bar along the top of ArcGIS Pro. This layer has specific exploration and analysis tools that can be used. Observe the “Variable” and “StdTime” dropdowns that expose the multidimensional “slices” of the data. Notice the 15 different variables (5 scenarios x 3 confidence intervals) and the 15 different time steps (2005 to 2150). This indicates that there are 225 different slices (15x15) available in this single layer.Using “Temporal Profile” allows exploration of the multidimensional aspects of the layer. Using the different chart options, you can compare different locations or look at all the different scenarios for a single location.Sea level rise driven by global climate change is a clear and present risk to the United States today and for the coming decades and centuries (USGCRP, 2018; Hall et al., 2019). Sea levels will continue to rise due to the ocean’s sustained response to the warming that has already occurred—even if climate change mitigation succeeds in limiting surface air temperatures in the coming decades (Fox-Kemper et al., 2021). Tens of millions of people in the United States already live in areas at risk of coastal flooding, with more moving to the coasts every year (NOAA NOS and U.S. Census Bureau, 2013). Rising sea levels and land subsidence are combining, and will continue to combine, with other coastal flood factors, such as storm surge, wave effects, rising coastal water tables, river flows, and rainfall (Figure 1.1), some of whose characteristics are also undergoing climate-related changes (USGCRP, 2017). The net result will be a dramatic increase in the exposure and vulnerability of this growing population, as well as the critical infrastructure related to transportation, water, energy, trade, military readiness, and coastal ecosystems and the supporting services they provide.Schematic (not to scale) showing physical factors affecting coastal flood exposure. Due to the clear and strong relative sea level rise signal (i.e., combination of sea level rise and sinking lands), the probability of flooding and impacts are increasing along most U.S. coastlines.Source: Mean Sea Level Dataset for "Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines" Citation: Sweet, W.V., B.D. Hamlington, R.E. Kopp, C.P. Weaver, P.L. Barnard, D. Bekaert, W. Brooks, M. Craghan, G. Dusek, T. Frederikse, G. Garner, A.S. Genz, J.P. Krasting, E. Larour, D. Marcy, J.J. Marra, J. Obeysekera, M. Osler, M. Pendleton, D. Roman, L. Schmied, W. Veatch, K.D. White, and C. Zuzak, 2022: Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines. NOAA Technical Report NOS 01. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 111 pp. https://oceanservice.noaa.gov/hazards/sealevelrise/noaa-nos-techrpt01-global-regional-SLR-scenarios-US.pdfScenario: For each of the 5 GMSL scenarios (identified by the rise amounts in meters by 2100 - 0.3 m , 0.5 m. 1.0 m, 1.5 m and 2.0 m), there is a low, medium (med) and high value, corresponding to the 17th, 50th, and 83rd percentiles. Scenarios (15 total): 0.3 - MED, 0.3 - LOW, 0.3 - HIGH, 0.5 - MED, 0.5 - LOW, 0.5 - HIGH, 1.0 - MED, 1.0 - LOW, 1.0 - HIGH, 1.5 - MED, 1.5 - LOW, 1.5 - HIGH, 2.0 - MED, 2.0 - LOW, and 2.0 - HIGH Years (15 total): 2005, 2020, 2030, 2040, 2050, 2060, 2070, 2080, 2090, 2100, 2110, 2120, 2130, 2140, and 2150Report Website: https://oceanservice.noaa.gov/hazards/sealevelrise/sealevelrise-tech-report.html
The maritime limits and boundaries of the U.S., found in the A-16 National Geospatial Data Asset Portfolio, is recognized as the low-water line along the coast measured from the U.S. baseline. This is marked on official U.S. nautical charts in accordance with the articles of the Law of the Sea. The baseline and related maritime limits are reviewed and approved by the inter-agency U.S. Baseline Committee.The primary purpose of this data is to update the official depiction of these maritime limits and boundaries on the National Oceanic and Atmospheric Administration's nautical charts. The Office of Coast Survey depicts on its nautical charts the territorial sea (12 nautical miles), contiguous zone (24 nautical miles), and Exclusive Economic Zone (200 nautical miles, plus maritime boundaries with adjacent/opposite countries). U.S. maritime limits are ambulatory and are subject to revision based on accretion or erosion of the charted low-water line. For more information about U.S. maritime limits and boundaries and to download data, see U.S. Maritime Limits & Boundaries. For the full Federal Geographic Data Committee metadata record, see Maritime Limits and Boundaries of United States of America.Thumbnail source image courtesy of: David Restivo