100+ datasets found
  1. Introductions to Bioinformatics

    • figshare.com
    pdf
    Updated Jan 18, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aidan Budd (2016). Introductions to Bioinformatics [Dataset]. http://doi.org/10.6084/m9.figshare.830401.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Aidan Budd
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A collection of similar but different presentations I've made aimed at introducing bioinformatics to bench biologists.

  2. f

    Data from: “Bioinformatics: Introduction and Methods,” a Bilingual Massive...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Dec 11, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meng, Yuqi; Wei, Liping; Gao, Ge; Yang, Xiaoxu; He, Yao; Ding, Yang; Liu, Fenglin; Ye, Adam Yongxin; Wang, Meng (2014). “Bioinformatics: Introduction and Methods,” a Bilingual Massive Open Online Course (MOOC) as a New Example for Global Bioinformatics Education [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001209841
    Explore at:
    Dataset updated
    Dec 11, 2014
    Authors
    Meng, Yuqi; Wei, Liping; Gao, Ge; Yang, Xiaoxu; He, Yao; Ding, Yang; Liu, Fenglin; Ye, Adam Yongxin; Wang, Meng
    Description

    “Bioinformatics: Introduction and Methods,” a Bilingual Massive Open Online Course (MOOC) as a New Example for Global Bioinformatics Education

  3. q

    Bioinformatics: An Interactive Introduction to NCBI

    • qubeshub.org
    Updated Jan 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seth Bordenstein (2019). Bioinformatics: An Interactive Introduction to NCBI [Dataset]. http://doi.org/10.25334/Q4915C
    Explore at:
    Dataset updated
    Jan 3, 2019
    Dataset provided by
    QUBES
    Authors
    Seth Bordenstein
    Description

    Modules showing how the NCBI database classifies and organizes information on DNA sequences, evolutionary relationships, and scientific publications. And a module working to identify a nucleotide sequence from an insect endosymbiont by using BLAST

  4. Bioinformatics Protein Dataset - Simulated

    • kaggle.com
    zip
    Updated Dec 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rafael Gallo (2024). Bioinformatics Protein Dataset - Simulated [Dataset]. https://www.kaggle.com/datasets/gallo33henrique/bioinformatics-protein-dataset-simulated
    Explore at:
    zip(12928905 bytes)Available download formats
    Dataset updated
    Dec 27, 2024
    Authors
    Rafael Gallo
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Subtitle

    "Synthetic protein dataset with sequences, physical properties, and functional classification for machine learning tasks."

    Description

    Introduction

    This synthetic dataset was created to explore and develop machine learning models in bioinformatics. It contains 20,000 synthetic proteins, each with an amino acid sequence, calculated physicochemical properties, and a functional classification.

    Columns Included

    • ID_Protein: Unique identifier for each protein.
    • Sequence: String of amino acids.
    • Molecular_Weight: Molecular weight calculated from the sequence.
    • Isoelectric_Point: Estimated isoelectric point based on the sequence composition.
    • Hydrophobicity: Average hydrophobicity calculated from the sequence.
    • Total_Charge: Sum of the charges of the amino acids in the sequence.
    • Polar_Proportion: Percentage of polar amino acids in the sequence.
    • Nonpolar_Proportion: Percentage of nonpolar amino acids in the sequence.
    • Sequence_Length: Total number of amino acids in the sequence.
    • Class: The functional class of the protein, one of five categories: Enzyme, Transport, Structural, Receptor, Other.

    Inspiration and Sources

    While this is a simulated dataset, it was inspired by patterns observed in real protein datasets, such as: - UniProt: A comprehensive database of protein sequences and annotations. - Kyte-Doolittle Scale: Calculations of hydrophobicity. - Biopython: A tool for analyzing biological sequences.

    Proposed Uses

    This dataset is ideal for: - Training classification models for proteins. - Exploratory analysis of physicochemical properties of proteins. - Building machine learning pipelines in bioinformatics.

    How This Dataset Was Created

    1. Sequence Generation: Amino acid chains were randomly generated with lengths between 50 and 300 residues.
    2. Property Calculation: Physicochemical properties were calculated using the Biopython library.
    3. Class Assignment: Classes were randomly assigned for classification purposes.

    Limitations

    • The sequences and properties do not represent real proteins but follow patterns observed in natural proteins.
    • The functional classes are simulated and do not correspond to actual biological characteristics.

    Data Split

    The dataset is divided into two subsets: - Training: 16,000 samples (proteinas_train.csv). - Testing: 4,000 samples (proteinas_test.csv).

    Acknowledgment

    This dataset was inspired by real bioinformatics challenges and designed to help researchers and developers explore machine learning applications in protein analysis.

  5. Dataset for practice session 1 in bioinformatics

    • figshare.com
    txt
    Updated Jul 17, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elena Sugis (2016). Dataset for practice session 1 in bioinformatics [Dataset]. http://doi.org/10.6084/m9.figshare.3490211.v3
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jul 17, 2016
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Elena Sugis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset for the practice in the data preprocessing and unsupervised learning in the introduction to bioinformatics course

  6. f

    Data_Sheet_2_Resequencing of Microbial Isolates: A Lab Module to Introduce...

    • frontiersin.figshare.com
    pdf
    Updated Jun 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katherine Lynn Petrie; Rujia Xie (2023). Data_Sheet_2_Resequencing of Microbial Isolates: A Lab Module to Introduce Novices to Command-Line Bioinformatics.PDF [Dataset]. http://doi.org/10.3389/fmicb.2021.578859.s002
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    Frontiers
    Authors
    Katherine Lynn Petrie; Rujia Xie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Familiarity with genome-scale data and the bioinformatic skills to analyze it have become essential for understanding and advancing modern biology and human health, yet many undergraduate biology majors are never exposed to hands-on bioinformatics. This paper presents a module that introduces students to applied bioinformatic analysis within the context of a research-based microbiology lab course. One of the most commonly used genomic analyses in biology is resequencing: determining the sequence of DNA bases in a derived strain of some organism, and comparing it to the known ancestral genome of that organism to better understand the phenotypic differences between them. Many existing CUREs — Course Based Undergraduate Research Experiences — evolve or select new strains of bacteria and compare them phenotypically to ancestral strains. This paper covers standardized strategies and procedures, accessible to undergraduates, for preparing and analyzing microbial whole-genome resequencing data to examine the genotypic differences between such strains. Wet-lab protocols and computational tutorials are provided, along with additional guidelines for educators, providing instructors without a next-generation sequencing or bioinformatics background the necessary information to incorporate whole-genome sequencing and command-line analysis into their class. This module introduces novice students to running software at the command-line, giving them exposure and familiarity with the types of tools that make up the vast majority of open-source scientific software used in contemporary biology. Completion of the module improves student attitudes toward computing, which may make them more likely to pursue further bioinformatics study.

  7. q

    Teaching introductory bioinformatics with Jupyter notebook-based active...

    • qubeshub.org
    Updated Aug 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Colin Dewey (2019). Teaching introductory bioinformatics with Jupyter notebook-based active learning [Dataset]. http://doi.org/10.25334/YZJ7-D347
    Explore at:
    Dataset updated
    Aug 17, 2019
    Dataset provided by
    QUBES
    Authors
    Colin Dewey
    Description

    Presentation on teaching introductory bioinformatics with Jupyter notebook-based active learning at the 2019 Great Lakes Bioinformatics Conference

  8. C

    Bioinformatics for Researchers in Life Sciences: Tools and Learning...

    • data.iadb.org
    csv, pdf
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IDB Datasets (2025). Bioinformatics for Researchers in Life Sciences: Tools and Learning Resources [Dataset]. http://doi.org/10.60966/kwvb-wr19
    Explore at:
    csv(355108), pdf(2989058), csv(276253)Available download formats
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    IDB Datasets
    License

    Attribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)https://creativecommons.org/licenses/by-nc-nd/3.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2020 - Jan 1, 2021
    Description

    The COVID-19 pandemic has shown that bioinformatics--a multidisciplinary field that combines biological knowledge with computer programming concerned with the acquisition, storage, analysis, and dissemination of biological data--has a fundamental role in scientific research strategies in all disciplines involved in fighting the virus and its variants. It aids in sequencing and annotating genomes and their observed mutations; analyzing gene and protein expression; simulation and modeling of DNA, RNA, proteins and biomolecular interactions; and mining of biological literature, among many other critical areas of research. Studies suggest that bioinformatics skills in the Latin American and Caribbean region are relatively incipient, and thus its scientific systems cannot take full advantage of the increasing availability of bioinformatic tools and data. This dataset is a catalog of bioinformatics software for researchers and professionals working in life sciences. It includes more than 300 different tools for varied uses, such as data analysis, visualization, repositories and databases, data storage services, scientific communication, marketplace and collaboration, and lab resource management. Most tools are available as web-based or desktop applications, while others are programming libraries. It also includes 10 suggested entries for other third-party repositories that could be of use.

  9. f

    Comparison of the multiple-delivery-mode training model employed by...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Feb 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lennard, Katie; Aron, Shaun; Panji, Sumir; Kennedy, Dane; Mulder, Nicola; Allali, Imane; Fields, Christopher J; Ras, Verena; Mwaikono, Kilaza Samson; Rendon, Gloria; Claassen-Weitz, Shantelle; Holmes, Jessica R.; Botha, Gerrit (2021). Comparison of the multiple-delivery-mode training model employed by H3ABioNet’s Introduction to Bioinformatics (IBT) course and the 16s rRNA Microbiome Intermediate Bioinformatics Training course (16S). [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000897705
    Explore at:
    Dataset updated
    Feb 25, 2021
    Authors
    Lennard, Katie; Aron, Shaun; Panji, Sumir; Kennedy, Dane; Mulder, Nicola; Allali, Imane; Fields, Christopher J; Ras, Verena; Mwaikono, Kilaza Samson; Rendon, Gloria; Claassen-Weitz, Shantelle; Holmes, Jessica R.; Botha, Gerrit
    Description

    The table provides a short description of the major components of the model employed by each course, highlighting any differences between the two (deviations are indicated by an asterisk (*)).

  10. q

    Hemoglobin bioinformatics

    • qubeshub.org
    Updated Jun 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Keith Johnson (2021). Hemoglobin bioinformatics [Dataset]. http://doi.org/10.25334/MMEY-8321
    Explore at:
    Dataset updated
    Jun 7, 2021
    Dataset provided by
    QUBES
    Authors
    Keith Johnson
    Description

    This is an introduction to bioinformatics using hemoglobin as an example. The worksheets introduce students to resources to explore the DNA, RNA and polypeptide linear structure with a brief introduction to the quaternary structure of hemoglobin.

  11. h

    Bioinformatics

    • huggingface.co
    Updated May 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    A Benchmark for Reasoning-Driven Medical Retrieval (2025). Bioinformatics [Dataset]. https://huggingface.co/datasets/R2MED/Bioinformatics
    Explore at:
    Dataset updated
    May 21, 2025
    Dataset authored and provided by
    A Benchmark for Reasoning-Driven Medical Retrieval
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    🔭 Overview

      R2MED: First Reasoning-Driven Medical Retrieval Benchmark
    

    R2MED is a high-quality, high-resolution synthetic information retrieval (IR) dataset designed for medical scenarios. It contains 876 queries with three retrieval tasks, five medical scenarios, and twelve body systems.

    Dataset

    Q

    D

    Avg. Pos Q-Len D-Len

    Biology 103 57359 3.6 115.2 83.6

    Bioinformatics77 47473 2.9 273.8 150.5

    Medical Sciences 88 34810 2.8 107.1 122.7

    MedXpertQA-Exam 97… See the full description on the dataset page: https://huggingface.co/datasets/R2MED/Bioinformatics.

  12. w

    Dataset of book subjects that contain Statistical methods in bioinformatics...

    • workwithdata.com
    Updated Nov 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of book subjects that contain Statistical methods in bioinformatics : an introduction [Dataset]. https://www.workwithdata.com/datasets/book-subjects?f=1&fcol0=j0-book&fop0=%3D&fval0=Statistical+methods+in+bioinformatics+:+an+introduction&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about book subjects. It has 1 row and is filtered where the books is Statistical methods in bioinformatics : an introduction. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  13. u

    IBT Linux Session 2 Plasmodium file

    • zivahub.uct.ac.za
    txt
    Updated May 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sumir Panji (2025). IBT Linux Session 2 Plasmodium file [Dataset]. http://doi.org/10.25375/uct.28915670.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 2, 2025
    Dataset provided by
    University of Cape Town
    Authors
    Sumir Panji
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    File used for the Introduction to bioinformatics (IBT) Linux practical session course.

  14. Data Object 1-1 (Supplemental Data 1-S1)

    • figshare.com
    xlsx
    Updated Nov 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Colbie Reed (2023). Data Object 1-1 (Supplemental Data 1-S1) [Dataset]. http://doi.org/10.6084/m9.figshare.24548935.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 12, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Colbie Reed
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Supplemental Data 1-S1. Timeline of important events shaping contemporary bioinformatics and comparative genomics. Timeline is not intended to be absolutely comprehensive of each of the observed fields, their respective histories. See footnotes for key review publications, sources in addition to those listed in Reference column. Field of contributions are color-coded accordingly: purple= computer science/engineering, blue= legislation/government action, biology= green, economic/markets= orange, academic institution= pink

  15. z

    Introduction to Ancient Metagenomics Textbook (Edition 2024): Introduction...

    • zenodo.org
    • data.niaid.nih.gov
    application/gzip
    Updated Sep 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Clemens Schmid; Clemens Schmid (2024). Introduction to Ancient Metagenomics Textbook (Edition 2024): Introduction to R and the Tidyverse [Dataset]. http://doi.org/10.5281/zenodo.13758879
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Sep 13, 2024
    Dataset provided by
    SPAAM Community
    Authors
    Clemens Schmid; Clemens Schmid
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data and conda software environment file for the chapter 'Introduction to R and the Tidyverse' of the SPAAM Community's textbook: Introduction to Ancient Metagenomics (https://www.spaam-community.org/intro-to-ancient-metagenomics-book).

  16. q

    Data from: Bioinformatics is a BLAST: Engaging First-Year Biology Students...

    • qubeshub.org
    Updated Oct 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shem Unger*; Mark Rollins (2022). Bioinformatics is a BLAST: Engaging First-Year Biology Students on Campus Biodiversity Using DNA Barcoding [Dataset]. https://qubeshub.org/community/groups/coursesource/publications?id=3520
    Explore at:
    Dataset updated
    Oct 4, 2022
    Dataset provided by
    QUBES
    Authors
    Shem Unger*; Mark Rollins
    Description

    In order to introduce students to the concept of molecular diversity, we developed a short, engaging online lesson using basic bioinformatics techniques. Students were introduced to basic bioinformatics while learning about local on-campus species diversity by 1) identifying species based on a given sequence (performing Basic Local Alignment Search Tool [BLAST] analysis) and 2) researching and documenting the natural history of each species identified in a concise write-up. To assess the student’s perception of this lesson, we surveyed students using a Likert scale and asking them to elaborate in written reflection on this activity. When combined, student responses indicated that 94% of students agreed this lesson helped them understand DNA barcoding and how it is used to identify species. The majority of students, 89.5%, reported they enjoyed the lesson and mainly provided positive feedback, including “It really opened my eyes to different species on campus by looking at DNA sequences”, “I loved searching information and discovering all this new information from a DNA sequence”, and finally, “the database was fun to navigate and identifying species felt like a cool puzzle.” Our results indicate this lesson both engaged and informed students on the use of DNA barcoding as a tool to identify local species biodiversity.

    Primary Image: DNA Barcoded Specimens. Crane fly, dragonfly, ant, and spider identified using DNA barcoding.

  17. z

    Introduction to Ancient Metagenomics Textbook (Edition 2024): Introduction...

    • zenodo.org
    • data.niaid.nih.gov
    application/gzip
    Updated Sep 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thiseas C. Lamnidis; Thiseas C. Lamnidis; Aida Andrades Valtueña; Aida Andrades Valtueña; James A. Fellows Yates; James A. Fellows Yates (2024). Introduction to Ancient Metagenomics Textbook (Edition 2024): Introduction to the Command Line [Dataset]. http://doi.org/10.5281/zenodo.13759270
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Sep 13, 2024
    Dataset provided by
    SPAAM Community
    Authors
    Thiseas C. Lamnidis; Thiseas C. Lamnidis; Aida Andrades Valtueña; Aida Andrades Valtueña; James A. Fellows Yates; James A. Fellows Yates
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data and conda software environment file for the chapter 'Introduction to the Command Line' of the SPAAM Community's textbook: Introduction to Ancient Metagenomics (https://www.spaam-community.org/intro-to-ancient-metagenomics-book).

  18. q

    Bioinformatics / Neuroinformatics

    • qubeshub.org
    Updated Oct 2, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    William Grisham (2019). Bioinformatics / Neuroinformatics [Dataset]. http://doi.org/10.25334/Q45B1Q
    Explore at:
    Dataset updated
    Oct 2, 2019
    Dataset provided by
    QUBES
    Authors
    William Grisham
    Description

    This module is a computer-based introduction to bioinformatics resources. This easy-to-adopt module weaves together several important bioinformatic tools so students can grasp how each is used in answering research questions. Published in CBE-LSE

  19. q

    Making toast: Using analogies to explore concepts in bioinformatics

    • qubeshub.org
    Updated Aug 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kate Hertweck (2021). Making toast: Using analogies to explore concepts in bioinformatics [Dataset]. http://doi.org/10.24918/cs.2016.11
    Explore at:
    Dataset updated
    Aug 26, 2021
    Dataset provided by
    QUBES
    Authors
    Kate Hertweck
    Description

    Contemporary biology is moving towards heavy reliance on computational methods to manage, find patterns, and derive meaning from large-scale data, such as genomic sequences. Biology teachers are increasingly compelled to prepare students with skills to meet these challenges. However, introducing biology students to more abstract concepts associated with computational thinking remains a major challenge. Analogies have long been used in science classrooms to help students comprehend complex concepts by relating them to familiar processes. Here I present a multi-step procedure for introducing students to large-scale data analysis (bioinformatics workflows) by asking them to describe a common daily task: making toast. First, students describe the main steps associated with this procedure. Next, students are presented with alternative scenarios for materials and equipment and are asked to extend the analogy to accommodate them. Finally, students are led through examples of how the analogy breaks down, or fails to accurately represent, a bioinformatics analysis. This structured approach to student exploration of analogies related to computational biology capitalizes on diverse student experiences to both clarify concepts and ameliorate possible misconceptions. Similar methods can be used to introduce many abstract concepts in both biology and computer science.

  20. Nutrigenomics Bioinformatics Market Size & Share Analysis - Industry...

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Nutrigenomics Bioinformatics Market Size & Share Analysis - Industry Research Report - Growth Trends 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/nutrigenomics-bioinformatics-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jul 31, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    The Nutrigenomics Bioinformatics Market Report is Segmented by Component (Software Platforms, Reagents and Kits, and More), Application (Obesity, Cardiovascular Diseases, and More), End User (Research & Academic Institutes, Pharmaceutical & Biotech Companies, and More), Test Sample (Saliva, Buccal Swab, Blood), and Geography (North America, Europe, and More). The Market Forecasts are Provided in Terms of Value (USD).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Aidan Budd (2016). Introductions to Bioinformatics [Dataset]. http://doi.org/10.6084/m9.figshare.830401.v1
Organization logoOrganization logo

Introductions to Bioinformatics

Explore at:
11 scholarly articles cite this dataset (View in Google Scholar)
pdfAvailable download formats
Dataset updated
Jan 18, 2016
Dataset provided by
figshare
Figsharehttp://figshare.com/
Authors
Aidan Budd
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

A collection of similar but different presentations I've made aimed at introducing bioinformatics to bench biologists.

Search
Clear search
Close search
Google apps
Main menu