Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A collection of similar but different presentations I've made aimed at introducing bioinformatics to bench biologists.
Facebook
Twitter“Bioinformatics: Introduction and Methods,” a Bilingual Massive Open Online Course (MOOC) as a New Example for Global Bioinformatics Education
Facebook
TwitterModules showing how the NCBI database classifies and organizes information on DNA sequences, evolutionary relationships, and scientific publications. And a module working to identify a nucleotide sequence from an insect endosymbiont by using BLAST
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
"Synthetic protein dataset with sequences, physical properties, and functional classification for machine learning tasks."
This synthetic dataset was created to explore and develop machine learning models in bioinformatics. It contains 20,000 synthetic proteins, each with an amino acid sequence, calculated physicochemical properties, and a functional classification.
While this is a simulated dataset, it was inspired by patterns observed in real protein datasets, such as: - UniProt: A comprehensive database of protein sequences and annotations. - Kyte-Doolittle Scale: Calculations of hydrophobicity. - Biopython: A tool for analyzing biological sequences.
This dataset is ideal for: - Training classification models for proteins. - Exploratory analysis of physicochemical properties of proteins. - Building machine learning pipelines in bioinformatics.
The dataset is divided into two subsets:
- Training: 16,000 samples (proteinas_train.csv).
- Testing: 4,000 samples (proteinas_test.csv).
This dataset was inspired by real bioinformatics challenges and designed to help researchers and developers explore machine learning applications in protein analysis.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset for the practice in the data preprocessing and unsupervised learning in the introduction to bioinformatics course
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Familiarity with genome-scale data and the bioinformatic skills to analyze it have become essential for understanding and advancing modern biology and human health, yet many undergraduate biology majors are never exposed to hands-on bioinformatics. This paper presents a module that introduces students to applied bioinformatic analysis within the context of a research-based microbiology lab course. One of the most commonly used genomic analyses in biology is resequencing: determining the sequence of DNA bases in a derived strain of some organism, and comparing it to the known ancestral genome of that organism to better understand the phenotypic differences between them. Many existing CUREs — Course Based Undergraduate Research Experiences — evolve or select new strains of bacteria and compare them phenotypically to ancestral strains. This paper covers standardized strategies and procedures, accessible to undergraduates, for preparing and analyzing microbial whole-genome resequencing data to examine the genotypic differences between such strains. Wet-lab protocols and computational tutorials are provided, along with additional guidelines for educators, providing instructors without a next-generation sequencing or bioinformatics background the necessary information to incorporate whole-genome sequencing and command-line analysis into their class. This module introduces novice students to running software at the command-line, giving them exposure and familiarity with the types of tools that make up the vast majority of open-source scientific software used in contemporary biology. Completion of the module improves student attitudes toward computing, which may make them more likely to pursue further bioinformatics study.
Facebook
TwitterPresentation on teaching introductory bioinformatics with Jupyter notebook-based active learning at the 2019 Great Lakes Bioinformatics Conference
Facebook
TwitterAttribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)https://creativecommons.org/licenses/by-nc-nd/3.0/
License information was derived automatically
The COVID-19 pandemic has shown that bioinformatics--a multidisciplinary field that combines biological knowledge with computer programming concerned with the acquisition, storage, analysis, and dissemination of biological data--has a fundamental role in scientific research strategies in all disciplines involved in fighting the virus and its variants. It aids in sequencing and annotating genomes and their observed mutations; analyzing gene and protein expression; simulation and modeling of DNA, RNA, proteins and biomolecular interactions; and mining of biological literature, among many other critical areas of research. Studies suggest that bioinformatics skills in the Latin American and Caribbean region are relatively incipient, and thus its scientific systems cannot take full advantage of the increasing availability of bioinformatic tools and data. This dataset is a catalog of bioinformatics software for researchers and professionals working in life sciences. It includes more than 300 different tools for varied uses, such as data analysis, visualization, repositories and databases, data storage services, scientific communication, marketplace and collaboration, and lab resource management. Most tools are available as web-based or desktop applications, while others are programming libraries. It also includes 10 suggested entries for other third-party repositories that could be of use.
Facebook
TwitterThe table provides a short description of the major components of the model employed by each course, highlighting any differences between the two (deviations are indicated by an asterisk (*)).
Facebook
TwitterThis is an introduction to bioinformatics using hemoglobin as an example. The worksheets introduce students to resources to explore the DNA, RNA and polypeptide linear structure with a brief introduction to the quaternary structure of hemoglobin.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
🔭 Overview
R2MED: First Reasoning-Driven Medical Retrieval Benchmark
R2MED is a high-quality, high-resolution synthetic information retrieval (IR) dataset designed for medical scenarios. It contains 876 queries with three retrieval tasks, five medical scenarios, and twelve body systems.
Dataset
Avg. Pos Q-Len D-Len
Biology 103 57359 3.6 115.2 83.6
Bioinformatics77 47473 2.9 273.8 150.5
Medical Sciences 88 34810 2.8 107.1 122.7
MedXpertQA-Exam 97… See the full description on the dataset page: https://huggingface.co/datasets/R2MED/Bioinformatics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book subjects. It has 1 row and is filtered where the books is Statistical methods in bioinformatics : an introduction. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
File used for the Introduction to bioinformatics (IBT) Linux practical session course.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Supplemental Data 1-S1. Timeline of important events shaping contemporary bioinformatics and comparative genomics. Timeline is not intended to be absolutely comprehensive of each of the observed fields, their respective histories. See footnotes for key review publications, sources in addition to those listed in Reference column. Field of contributions are color-coded accordingly: purple= computer science/engineering, blue= legislation/government action, biology= green, economic/markets= orange, academic institution= pink
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data and conda software environment file for the chapter 'Introduction to R and the Tidyverse' of the SPAAM Community's textbook: Introduction to Ancient Metagenomics (https://www.spaam-community.org/intro-to-ancient-metagenomics-book).
Facebook
TwitterIn order to introduce students to the concept of molecular diversity, we developed a short, engaging online lesson using basic bioinformatics techniques. Students were introduced to basic bioinformatics while learning about local on-campus species diversity by 1) identifying species based on a given sequence (performing Basic Local Alignment Search Tool [BLAST] analysis) and 2) researching and documenting the natural history of each species identified in a concise write-up. To assess the student’s perception of this lesson, we surveyed students using a Likert scale and asking them to elaborate in written reflection on this activity. When combined, student responses indicated that 94% of students agreed this lesson helped them understand DNA barcoding and how it is used to identify species. The majority of students, 89.5%, reported they enjoyed the lesson and mainly provided positive feedback, including “It really opened my eyes to different species on campus by looking at DNA sequences”, “I loved searching information and discovering all this new information from a DNA sequence”, and finally, “the database was fun to navigate and identifying species felt like a cool puzzle.” Our results indicate this lesson both engaged and informed students on the use of DNA barcoding as a tool to identify local species biodiversity.
Primary Image: DNA Barcoded Specimens. Crane fly, dragonfly, ant, and spider identified using DNA barcoding.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data and conda software environment file for the chapter 'Introduction to the Command Line' of the SPAAM Community's textbook: Introduction to Ancient Metagenomics (https://www.spaam-community.org/intro-to-ancient-metagenomics-book).
Facebook
TwitterThis module is a computer-based introduction to bioinformatics resources. This easy-to-adopt module weaves together several important bioinformatic tools so students can grasp how each is used in answering research questions. Published in CBE-LSE
Facebook
TwitterContemporary biology is moving towards heavy reliance on computational methods to manage, find patterns, and derive meaning from large-scale data, such as genomic sequences. Biology teachers are increasingly compelled to prepare students with skills to meet these challenges. However, introducing biology students to more abstract concepts associated with computational thinking remains a major challenge. Analogies have long been used in science classrooms to help students comprehend complex concepts by relating them to familiar processes. Here I present a multi-step procedure for introducing students to large-scale data analysis (bioinformatics workflows) by asking them to describe a common daily task: making toast. First, students describe the main steps associated with this procedure. Next, students are presented with alternative scenarios for materials and equipment and are asked to extend the analogy to accommodate them. Finally, students are led through examples of how the analogy breaks down, or fails to accurately represent, a bioinformatics analysis. This structured approach to student exploration of analogies related to computational biology capitalizes on diverse student experiences to both clarify concepts and ameliorate possible misconceptions. Similar methods can be used to introduce many abstract concepts in both biology and computer science.
Facebook
Twitterhttps://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Nutrigenomics Bioinformatics Market Report is Segmented by Component (Software Platforms, Reagents and Kits, and More), Application (Obesity, Cardiovascular Diseases, and More), End User (Research & Academic Institutes, Pharmaceutical & Biotech Companies, and More), Test Sample (Saliva, Buccal Swab, Blood), and Geography (North America, Europe, and More). The Market Forecasts are Provided in Terms of Value (USD).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A collection of similar but different presentations I've made aimed at introducing bioinformatics to bench biologists.