Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset provides a comprehensive overview of the demographic trends and population statistics of India. It includes various aspects of the population, such as total population figures, gender distribution, religious composition, linguistic diversity, and age group breakdowns. The dataset aims to facilitate research and analysis in the fields of sociology, economics, and public policy by offering valuable insights into the demographic dynamics of India.
Key Features: - Census Data: Detailed population statistics based on census years, including total population, male and female counts, and differences between genders. - Religious Demographics: Information on the population distribution among different religions, along with percentages. - Language Distribution: Data on the number of speakers for various languages in India and their corresponding percentages. - Vital Statistics: Key indicators such as live births, deaths, natural changes, crude birth rates, and total fertility rates. - Age Distribution: Breakdown of the population by age group, including gender-specific counts and percentages.
Purpose: This dataset serves as a valuable resource for researchers, policymakers, and educators interested in understanding the demographic landscape of India. It can be used for various analyses, including population growth trends, gender ratios, and the impact of cultural diversity on the social fabric of the nation.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of United States across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of United States was 334.91 million, a 0.49% increase year-by-year from 2022. Previously, in 2022, United States population was 333.27 million, an increase of 0.37% compared to a population of 332.05 million in 2021. Over the last 20 plus years, between 2000 and 2023, population of United States increased by 52.75 million. In this period, the peak population was 334.91 million in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Year. You can refer the same here
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Dataset Description: Worldometer Data Introduction This dataset contains detailed information on the population statistics of various countries, compiled from Worldometer. It includes demographic data such as yearly population changes, migration numbers, fertility rates, and urbanization metrics over multiple years.
Dataset Overview Total Entries: 4,104 Total Columns: 14 Columns Description country (object):
The name of the country. Example: 'India', 'China'. year (float64):
The year for which the data is recorded. Example: 2024, 2023. population (object):
The total population for the given year. Example: '1,441,719,852', '1,428,627,663'. yearly_change_pct (object):
The percentage change in population from the previous year. Example: '0.92%', '0.81%'. yearly_change (object):
The absolute change in population from the previous year. Example: '13,092,189', '11,454,490'. migrants (object):
The net number of migrants for the given year. Example: '-486,784', '-486,136'. median_age (object):
The median age of the population. Example: '28.6', '28.2'. fertility_rate (object):
The fertility rate for the given year. Example: '1.98', '2.00'. density_p_km2 (object):
The population density per square kilometer. Example: '485', '481'. urban_pop_pct (object):
The percentage of the population living in urban areas. Example: '36.8%', '36.3%'. urban_pop (object):
The total urban population for the given year. Example: '530,387,142', '518,239,122'. share_of_world_pop_pct (object):
The country's share of the world's population as a percentage. Example: '17.76%', '17.77%'. world_pop (object):
The total world population for the given year. Example: '8,118,835,999', '8,045,311,447'. global_rank (float64):
The global population rank of the country for the given year. Example: '1.0', '2.0'. Data Quality Missing Values:
Some columns have missing values which need to be handled before analysis. Columns with significant missing data: year, population, yearly_change_pct, yearly_change, migrants, median_age, fertility_rate, density_p_km2, urban_pop_pct, urban_pop, share_of_world_pop_pct, world_pop, global_rank. Data Types:
Most columns are of type object due to the presence of commas and percentage signs. Conversion to appropriate numeric types (e.g., integers, floats) is required for analysis. Potential Uses Demographic Analysis: Study population growth trends, migration patterns, and changes in fertility rates. Urbanization Studies: Analyze urban population growth and density changes over time. Global Ranking: Evaluate and compare the population statistics of different countries. Conclusion This dataset provides a comprehensive view of the world population trends over the years. Cleaning and preprocessing steps, including handling missing values and converting data types, will be necessary to prepare the data for analysis. This dataset can be valuable for researchers, demographers, and data scientists interested in population studies and demographic trends.
File Details Filename: worldometer_data.csv Size: 4104 rows x 14 columns Format: CSV Source Website: Worldometer Scraped Using: Scrapy
Facebook
TwitterThroughout most of human history, global population growth was very low; between 10,000BCE and 1700CE, the average annual increase was just 0.04 percent. Therefore, it took several thousand years for the global population to reach one billion people, doing so in 1803. However, this period marked the beginning of a global phenomenon known as the demographic transition, from which point population growth skyrocketed. With the introduction of modern medicines (especially vaccination), as well as improvements in water sanitation, food supply, and infrastructure, child mortality fell drastically and life expectancy increased, causing the population to grow. This process is linked to economic and technological development, and did not take place concurrently across the globe; it mostly began in Europe and other industrialized regions in the 19thcentury, before spreading across Asia and Latin America in the 20th century. As the most populous societies in the world are found in Asia, the demographic transition in this region coincided with the fastest period of global population growth. Today, Sub-Saharan Africa is the region at the earliest stage of this transition. As population growth slows across the other continents, with the populations of the Americas, Asia, and Europe expected to be in decline by the 2070s, Africa's population is expected to grow by three billion people by the end of the 21st century.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Zelienople population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Zelienople across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Zelienople was 3,791, a 0.63% decrease year-by-year from 2022. Previously, in 2022, Zelienople population was 3,815, a decline of 1.11% compared to a population of 3,858 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Zelienople decreased by 323. In this period, the peak population was 4,114 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Zelienople Population by Year. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the York population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of York across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of York was 44,867, a 0.04% increase year-by-year from 2022. Previously, in 2022, York population was 44,848, a decline of 0% compared to a population of 44,848 in 2021. Over the last 20 plus years, between 2000 and 2023, population of York increased by 3,450. In this period, the peak population was 44,867 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for York Population by Year. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Itasca population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Itasca across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Itasca was 9,346, a 0.27% decrease year-by-year from 2022. Previously, in 2022, Itasca population was 9,371, a decline of 0.80% compared to a population of 9,447 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Itasca increased by 1,087. In this period, the peak population was 9,890 in the year 2018. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Itasca Population by Year. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Spartanburg County population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Spartanburg County across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Spartanburg County was 356,698, a 3.11% increase year-by-year from 2022. Previously, in 2022, Spartanburg County population was 345,948, an increase of 3.15% compared to a population of 335,397 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Spartanburg County increased by 102,118. In this period, the peak population was 356,698 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Spartanburg County Population by Year. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Florida City population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Florida City across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Florida City was 12,582, a 0.49% decrease year-by-year from 2022. Previously, in 2022, Florida City population was 12,644, a decline of 1.02% compared to a population of 12,774 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Florida City increased by 4,711. In this period, the peak population was 13,016 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Florida City Population by Year. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Yuma population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Yuma across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Yuma was 100,858, a 1.27% increase year-by-year from 2022. Previously, in 2022, Yuma population was 99,589, an increase of 1.36% compared to a population of 98,256 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Yuma increased by 21,132. In this period, the peak population was 100,858 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Yuma Population by Year. You can refer the same here
Facebook
TwitterOfficial statistics are produced impartially and free from political influence.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a thorough exploration of the global demographic landscape, offering a detailed overview of population statistics, geographical area, and population density for countries worldwide. With meticulously curated data, this resource enables in-depth analyses and insights into the dynamic interplay between population distribution and geographic characteristics on a global scale. Researchers, policymakers, and analysts can leverage this dataset to examine trends, make informed decisions, and gain a nuanced understanding of the intricate patterns shaping the demographics of nations in the contemporary era.
Facebook
TwitterThe Overview of Health Disparities analysis is a component of the Healthy People 2020 (HP2020) Final Review. The analysis included 611 objectives in HP2020. See Technical Notes for the Healthy People 2020 Overview of Health Disparities (https://www.cdc.gov/nchs/healthy_people/hp2020/health-disparities.htm) for additional information and criteria for objectives, data years, and population characteristics included in the analysis and statistical formulas and definitions for the disparities measures. This file contains estimates and standard errors for the baseline and final years for individual population groups used in the Overview of Health Disparities analysis. The number and definitions of population groups varied across the HP2020 objectives and data sources used. These population groups are shown in the disparities file as originally reported by the data source, rather than the harmonized categories that were used for the HP2020 Progress by Population Group analysis (https://www.cdc.gov/nchs/healthy_people/hp2020/population-groups.htm). Additionally, for any given objective, the baseline and final years used for the disparities analysis do not necessarily correspond to the baseline and final years used to evaluate progress toward target attainment in the HP2020 Final Review Progress Table (https://www.cdc.gov/nchs/healthy_people/hp2020/progress-tables.htm) and Progress by Population Group analysis (https://www.cdc.gov/nchs/healthy_people/hp2020/population-groups.htm). These distinctions should be considered when merging the downloadable Progress Table or Progress by Population Group data files with the Overview of Health Disparities data files, or when integrative analyses that incorporate both disparities and progress data are conducted. Data for additional years during the HP2020 tracking period that are not included in the Overview of Health Disparities are available on the HP2020 website (https://www.healthypeople.gov/2020/).
Facebook
TwitterOfficial statistics are produced impartially and free from political influence.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Four British bumblebee species (Bombus terrestris, Bombus hortorum, Bombus ruderatus and Bombus subterraneus) became established in New Zealand following their introduction at the turn of the last century. Of these, two remain common in the UK (B. terrestris and B. hortorum), whilst two (B. ruderatus and B. subterraneus) have undergone marked declines, the latter being declared extinct in 2000. The presence of these bumblebees in New Zealand provides an unique system in which four related species have been isolated from their source population for over 100 years, providing a rare opportunity to examine the impacts of an initial bottleneck and introduction to a novel environment on their population genetics. We used microsatellite markers to compare modern populations of B. terrestris, B. hortorum and B. ruderatus in the UK and New Zealand and to compare museum specimens of British B. subterraneus with the current New Zealand population. We used Approximate Bayesian Computation (ABC) to estimate demographic parameters of the introduction history, notably to estimate the number of founders used in the initial introduction. Species-specific patterns derived from genetic analysis were consistent with predictions based on the presumed history of these populations; demographic events have left a marked genetic signature on all four species. Approximate Bayesian analyses suggest that the New Zealand population of B. subterraneus may have been founded by as few as two individuals, giving rise to low genetic diversity and marked genetic divergence from the (now extinct) UK population.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Population introductions and reintroductions have become a common tool for conserving threatened species, but oftentimes introduced populations have reduced the genetic diversity compared with the source population they were founded from. Population introductions played an important role in the recovery of the Oregon Chub Oregonichthys crameri, a small floodplain minnow found in western Oregon. Unlike many introduction efforts, introduced populations of Oregon Chub were founded using large numbers of individuals (hundreds in many cases) and each population had a unique introduction history (e.g., number of founders, source populations selected, duration of the introduction effort). We used microsatellite loci to examine 13 introduced populations and their respective sources to evaluate how well the introduction program captured genetic diversity present in the wild populations. Genetic variation was reduced by roughly 25% in one introduced population, and three introduced populations showed evidence of a genetic bottleneck due to heterozygote excess. Populations introduced from multiple sources had greater genetic diversity than populations from a single source. When multiple source populations were used, all source populations contributed genetic material to the introduced population, though the proportional contribution from each source population varied. Using correlation analyses and general linear models, we explored the relationship between introduction history variables and genetic diversity. Our top-ranked models included genetic diversity in the source population, and this variable had the highest variable importance weight (0.999), but the number of founders and the number of source populations were also important. Overall, the Oregon Chub introduction program was highly successful at capturing the genetic variation observed in natural populations. Results of this study will be useful for planning future population introductions for Oregon Chub and other species of conservation concern.
Facebook
TwitterOverview of the study population.
Facebook
TwitterIntroduction This report presents projections of population from 2015 to 2025 by age and sex for Illinois, Chicago and Illinois counties produced for the Certificate of Need (CON) Program. As actual future population trends are unknown, the projected numbers should not be considered a precise prediction of the future population; rather, these projections, calculated under a specific set of assumptions, indicate the levels of population that would result if our assumptions about each population component (births, deaths and net migration) hold true. The assumptions used in this report, and the details presented below, generally assume a continuation of current trends. Methodology These projections were produced using a demographic cohort-component projection model. In this model, each component of population change – birth, death and net migration – is projected separately for each five-year birth cohort and sex. The cohort – component method employs the following basic demographic balancing equation: P1 = P0 + B – D + NM Where: P1 = Population at the end of the period; P0 = Population at the beginning of the period; B = Resident births during the period; D = Resident deaths during the period; and NM = Net migration (Inmigration – Outmigration) during the period. The model roughly works as follows: for every five-year projection period, the base population, disaggregated by five-year age groups and sex, is “survived” to the next five-year period by applying the appropriate survival rates for each age and sex group; next, net migrants by age and sex are added to the survived population. The population under 5 years of age is generated by applying age specific birth rates to the survived females in childbearing age (15 to 49 years). Base Population These projections began with the July 1, 2010 population estimates by age and sex produced by the U.S. Census Bureau. The most recent census population of April 1, 2010 was the base for July 1, 2010 population estimates. Special Populations In 19 counties, the college dormitory population or adult inmates in correctional facilities accounted for 5 percent or more of the total population of the county; these counties were considered as special counties. There were six college dorm counties (Champaign, Coles, DeKalb, Jackson, McDonough and McLean) and 13 correctional facilities counties (Bond, Brown, Crawford, Fayette, Fulton, Jefferson, Johnson, Lawrence, Lee, Logan, Montgomery, Perry and Randolph) that qualified as special counties. When projecting the population, these special populations were first subtracted from the base populations for each special county; then they were added back to the projected population to produce the total population projections by age and sex. The base special population by age and sex from the 2010 population census was used for this purpose with the assumption that this population will remain the same throughout each projection period. Mortality Future deaths were projected by applying age and sex specific survival rates to each age and sex specific base population. The assumptions on survival rates were developed on the basis of trends of mortality rates in the individual life tables constructed for each level of geography for 1989-1991, 1999-2001 and 2009-2011. The application of five-year survival rates provides a projection of the number of persons from the initial population expected to be alive in five years. Resident deaths data by age and sex from 1989 to 2011 were provided by the Illinois Center for Health Statistics (ICHS), Illinois Department of Public Health. Fertility Total fertility rates (TFRs) were first computed for each county. For most counties, the projected 2015 TFRs were computed as the average of the 2000 and 2010 TFRs. 2010 or 2015 rates were retained for 2020 projections, depending on the birth trend of each county. The age-specific birth rates (ASBR) were next computed for each county by multiplying the 2010 ASBR by each projected TFR. Total births were then projected for each county by applying age-specific birth rates to the projected female population of reproductive ages (15 to 49 years). The total births were broken down by sex, using an assumed sex-ratio at birth. These births were survived five years applying assumed survival ratios to get the projected population for the age group 0-4. For the special counties, special populations by age and sex were taken out before computing age-specific birth rates. The resident birth data used to compute age-specific birth rates for 1989-1991, 1999-2001 and 2009-2011 came from ICHS. Births to females younger than 15 years of age were added to those of the 15-19 age group and births to women older than 49 years of age were added to the 45-49 age group. Net Migration Migration is the major component of population change in Illinois, Chicago and Illinois counties. The state is experiencing a significant loss of population through internal (domestic migration within the U.S.) net migration. Unlike data on births and deaths, migration data based on administrative records are not available on a regular basis. Most data on migration are collected through surveys or indirectly from administrative records (IRS individual tax returns). For this report, net migration trends have been reviewed using data from different sources and methods (such as residual method) from the University of Wisconsin, Madison, Illinois Department of Public Health, individual exemptions data from the Internal Revenue Service, and survey data from the U.S. Census Bureau. On the basis of knowledge gained through this review and of levels of net migration from different sources, assumptions have been made that Illinois will have annual net migrants of -40, 000, -35,000 and -30,000 during 2010-2015, 2015-2020 and 2020-2025, respectively. These figures have been distributed among the counties, using age and sex distribution of net migrants during 1995-2000. The 2000 population census was the last decennial census, which included the question “Where did you live five years ago?” The age and sex distribution of the net migrants was derived, using answers to this question. The net migration for Chicago has been derived independently, using census survival method for 1990-2000 and 2000-2010 under the assumption that the annual net migration for Chicago will be -40,000, -30,000 and -25,000 for 2010-2015, 2015-2020 and 2020-2025, respectively. The age and sex distribution from the 2000-2010 net migration was used to distribute the net migrants for the projection periods. Conclusion These projections were prepared for use by the Certificate of Need (CON) Program; they are produced using evidence-based techniques, reasonable assumptions and the best available input data. However, as assumptions of future demographic trends may contain errors, the resulting projections are unlikely to be free of errors. In general, projections of small areas are less reliable than those for larger areas, and the farther in the future projections are made, the less reliable they may become. When possible, these projections should be regularly reviewed and updated, using more recent birth, death and migration data.
Facebook
TwitterThis dataset contains information on the survival of sagebrush seedlings originating from seed collected from 3 'local' populations over 2+ years. Datasets presented consist of individual seedling survival, growth and reproduction data as well as population level results as they relate to the differences in modeled and calculated climate variables and the differences between the climatic conditions of the seed source sites and the common garden sites.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data and script for:
Census method to estimate population size in D.suzukii experimental populations
Estimation of both positive and density dependence in D. suzukii experimental populations
Demographic consequences of Wolbachia-induced cytoplasmic incompatibility in D. suzukii populations at carrying capacity
Prevalence of incompatible strain of Wolbachia over time
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset provides a comprehensive overview of the demographic trends and population statistics of India. It includes various aspects of the population, such as total population figures, gender distribution, religious composition, linguistic diversity, and age group breakdowns. The dataset aims to facilitate research and analysis in the fields of sociology, economics, and public policy by offering valuable insights into the demographic dynamics of India.
Key Features: - Census Data: Detailed population statistics based on census years, including total population, male and female counts, and differences between genders. - Religious Demographics: Information on the population distribution among different religions, along with percentages. - Language Distribution: Data on the number of speakers for various languages in India and their corresponding percentages. - Vital Statistics: Key indicators such as live births, deaths, natural changes, crude birth rates, and total fertility rates. - Age Distribution: Breakdown of the population by age group, including gender-specific counts and percentages.
Purpose: This dataset serves as a valuable resource for researchers, policymakers, and educators interested in understanding the demographic landscape of India. It can be used for various analyses, including population growth trends, gender ratios, and the impact of cultural diversity on the social fabric of the nation.