Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Whitestown population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Whitestown across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Whitestown was 13,049, a 8.49% increase year-by-year from 2022. Previously, in 2022, Whitestown population was 12,028, an increase of 8.26% compared to a population of 11,110 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Whitestown increased by 12,093. In this period, the peak population was 13,049 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Whitestown Population by Year. You can refer the same here
This statistic shows the 20 countries with the highest population growth rate in 2024. In SouthSudan, the population grew by about 4.65 percent compared to the previous year, making it the country with the highest population growth rate in 2024. The global population Today, the global population amounts to around 7 billion people, i.e. the total number of living humans on Earth. More than half of the global population is living in Asia, while one quarter of the global population resides in Africa. High fertility rates in Africa and Asia, a decline in the mortality rates and an increase in the median age of the world population all contribute to the global population growth. Statistics show that the global population is subject to increase by almost 4 billion people by 2100. The global population growth is a direct result of people living longer because of better living conditions and a healthier nutrition. Three out of five of the most populous countries in the world are located in Asia. Ultimately the highest population growth rate is also found there, the country with the highest population growth rate is Syria. This could be due to a low infant mortality rate in Syria or the ever -expanding tourism sector.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>India population growth rate for 2022 was <strong>0.79%</strong>, a <strong>0.03% decline</strong> from 2021.</li>
<li>India population growth rate for 2021 was <strong>0.82%</strong>, a <strong>0.15% decline</strong> from 2020.</li>
<li>India population growth rate for 2020 was <strong>0.97%</strong>, a <strong>0.07% decline</strong> from 2019.</li>
</ul>Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Iowa population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Iowa across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of Iowa was 3.24 million, a 0.72% increase year-by-year from 2023. Previously, in 2023, Iowa population was 3.22 million, an increase of 0.49% compared to a population of 3.2 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of Iowa increased by 313,297. In this period, the peak population was 3.24 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Iowa Population by Year. You can refer the same here
The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Arizona population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Arizona across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of Arizona was 7.58 million, a 1.46% increase year-by-year from 2023. Previously, in 2023, Arizona population was 7.47 million, an increase of 1.29% compared to a population of 7.38 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of Arizona increased by 2.42 million. In this period, the peak population was 7.58 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Arizona Population by Year. You can refer the same here
https://www.bco-dmo.org/dataset/701751/licensehttps://www.bco-dmo.org/dataset/701751/license
Demographic data for introduced crab from multiple bays along the Central California coast, shallow subtidal (<3 m depth), in 2015. access_formats=.htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson acquisition_description=We conducted monthly trappings of invasive European green crabs to gather demographic data from several bays in northern California: Bodega Harbor, Tomales Bay, Bolinas Lagoon, San Francisco Bay, and Elkhorn Slough. All sites were accessed by foot via shore entry. At each of four sites within each bay, we placed 5 baited traps (folding Fukui fish traps) and 5 baited minnow traps in shallow intertidal areas. Traps arrays were set with fish and minnow traps alternating and with each 20 m apart. Traps were retrieved 24 hours later and traps were rebaited and collected again the following day.\u00a0Trapping was continued for three consecutive days with traps removed on the final day.\u00a0Each day, data for crab species, size, sex, reproductive condition, and injuries were collected for all crabs in the field. Following data collection, all crabs were returned to the lab, and frozen overnight prior to disposal.\u00a0
See Turner et al. (2016)\u00a0Biological Invasions\u00a018: 533-548 for
additional methodological details:
Turner, B.C., de Rivera, C.E., Grosholz, E.D., & Ruiz, G.M. 2016. Assessing
population increase as a possible outcome to management of invasive species.
Biological Invasions, 18(2), pp 533\u2013548.
doi:10.1007/s10530-015-1026-9
awards_0_award_nid=699764
awards_0_award_number=OCE-1514893
awards_0_data_url=http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1514893
awards_0_funder_name=NSF Division of Ocean Sciences
awards_0_funding_acronym=NSF OCE
awards_0_funding_source_nid=355
awards_0_program_manager=David L. Garrison
awards_0_program_manager_nid=50534
cdm_data_type=Other
comment=Demographic data for introduced crab from multiple bays in 2015
PI: Edwin Grosholz (UC Davis)
Co-PI: Catherine de Rivera & Gregory Ruiz (Portland State University)
Version: 15 June 2017
Conventions=COARDS, CF-1.6, ACDD-1.3
data_source=extract_data_as_tsv version 2.3 19 Dec 2019
defaultDataQuery=&time<now
doi=10.1575/1912/bco-dmo.701751.1
Easternmost_Easting=-121.738422
geospatial_lat_max=38.316968
geospatial_lat_min=36.823953
geospatial_lat_units=degrees_north
geospatial_lon_max=-121.738422
geospatial_lon_min=-123.058725
geospatial_lon_units=degrees_east
infoUrl=https://www.bco-dmo.org/dataset/701751
institution=BCO-DMO
instruments_0_dataset_instrument_description=At each of four sites within each bay, we placed 5 baited traps (folding Fukui fish traps) and 5 baited minnow traps in shallow intertidal areas.
instruments_0_dataset_instrument_nid=701774
instruments_0_description=Fukui produces multi-species, multi-purpose collapsible or stackable fish traps, available in different sizes.
instruments_0_instrument_name=Fukui fish trap
instruments_0_instrument_nid=701772
instruments_0_supplied_name=folding Fukui fish traps
metadata_source=https://www.bco-dmo.org/api/dataset/701751
Northernmost_Northing=38.316968
param_mapping={'701751': {'lat': 'master - latitude', 'lon': 'master - longitude'}}
parameter_source=https://www.bco-dmo.org/mapserver/dataset/701751/parameters
people_0_affiliation=University of California-Davis
people_0_affiliation_acronym=UC Davis
people_0_person_name=Edwin Grosholz
people_0_person_nid=699768
people_0_role=Principal Investigator
people_0_role_type=originator
people_1_affiliation=Portland State University
people_1_affiliation_acronym=PSU
people_1_person_name=Catherine de Rivera
people_1_person_nid=699771
people_1_role=Co-Principal Investigator
people_1_role_type=originator
people_2_affiliation=Portland State University
people_2_affiliation_acronym=PSU
people_2_person_name=Gregory Ruiz
people_2_person_nid=471603
people_2_role=Co-Principal Investigator
people_2_role_type=originator
people_3_affiliation=Woods Hole Oceanographic Institution
people_3_affiliation_acronym=WHOI BCO-DMO
people_3_person_name=Shannon Rauch
people_3_person_nid=51498
people_3_role=BCO-DMO Data Manager
people_3_role_type=related
project=Invasive_predator_harvest
projects_0_acronym=Invasive_predator_harvest
projects_0_description=The usual expectation is that when populations of plants and animals experience repeated losses to predators or human harvest, they would decline over time. If instead these populations rebound to numbers exceeding their initial levels, this would seem counter-intuitive or even paradoxical. However, for several decades mathematical models of population processes have shown that this unexpected response, formally known as overcompensation, is not only possible, but even expected under some circumstances. In what may be the first example of overcompensation in a marine system, a dramatic increase in a population of the non-native European green crab was recently observed following an intensive removal program. This RAPID project will use field surveys and laboratory experiments to verify that this population explosion results from overcompensation. Data will be fed into population models to understand to what degree populations processes such as cannibalism by adult crabs on juvenile crabs and changes in maturity rate of reproductive females are contributing to or modifying overcompensation. The work will provide important insights into the fundamental population dynamics that can produce overcompensation in both natural and managed populations. Broader Impacts include mentoring graduate trainees and undergraduate interns in the design and execution of field experiments as well as in laboratory culture and feeding experiments. The project will also involve a network of citizen scientists who are involved with restoration activities in this region and results will be posted on the European Green Crab Project website.
This project aims to establish the first example of overcompensation in marine systems. Overcompensation refers to the paradoxical process where reduction of a population due to natural or human causes results in a greater equilibrium population than before the reduction. A population explosion of green crabs has been recently documented in a coastal lagoon and there are strong indications that this may be the result of overcompensation. Accelerated maturation of females, which can accompany and modify the expression of overcompensation has been observed. This RAPID project will collect field data from this unusual recruitment class and conduct targeted mesocosm experiments. These will include population surveys and mark-recapture studies to measure demographic rates across study sites. Laboratory mesocosm studies using this recruitment class will determine size specific mortality. Outcomes will be used in population dynamics models to determine to what degree overcompensation has created this dramatic population increase. The project will seek answers to the following questions: 1) what are the rates of cannibalism by adult green crabs and large juveniles on different sizes of juvenile green crabs, 2) what are the consequences of smaller size at first reproduction for population dynamics and for overcompensation and 3) how quickly will the green crab population return to the levels observed prior to the eradication program five years earlier?
projects_0_end_date=2016-11
projects_0_geolocation=Europe
projects_0_name=RAPID: A rare opportunity to examine overcompensation resulting from intensive harvest of an introduced predator
projects_0_project_nid=699765
projects_0_start_date=2014-12
sourceUrl=(local files)
Southernmost_Northing=36.823953
standard_name_vocabulary=CF Standard Name Table v55
version=1
Westernmost_Easting=-123.058725
xml_source=osprey2erddap.update_xml() v1.3
This dataset represents the population growth rate for the Communications Security Establishment.
https://www.bco-dmo.org/dataset/701863/licensehttps://www.bco-dmo.org/dataset/701863/license
Demographic data from introduced crab in Seadrift Lagoon (Central California coast, shallow subtidal (<3 m depth)) in 2015. access_formats=.htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson acquisition_description=We conducted monthly trapping of invasive European green crabs to gather demographic data in Seadrift Lagoon, Stinson Beach, CA (lat 37.907440 long -122.666169).\u00a0All sites were accessed by either kayak or by foot via shore entry.\u00a0At each of six sites, we placed 10 baited traps (folding Fukui fish traps) in shallow (<2 m) subtidal areas. Traps were retrieved 24 hours later and were rebaited and collected again the following day.\u00a0Trapping was continued for three consecutive days with traps removed on the final day.\u00a0Each day, data for crab species, size, sex, reproductive condition, injuries, and presence of marks were collected for all crabs in the field. Following data collection, all crabs were returned to the lab, frozen overnight disposed of in commercial agricultural compost. \u00a0
For each date and site, crabs from all traps (e.g. 10 traps per site) are
pooled for counting and measuring.
Traps Used for each date (some with macroalgae "Ulva"):
02/19/2015\u00a0\u00a0 \u00a010 baited traps + 5 traps with ulva
02/20/2015\u00a0\u00a0 \u00a010 baited traps + 5 with ulva
03/05/2015\u00a0\u00a0 \u00a010 baited traps + 5 traps with ulva per site
03/06/2015\u00a0\u00a0 \u00a010 baited traps + 5 traps with ulva
03/24/2015\u00a0\u00a0 \u00a010 traps/site
04/08/2015\u00a0\u00a0 \u00a010 traps/site
04/15/2015\u00a0\u00a0 \u00a010 baited traps + 4 traps with ulva
04/24/2015\u00a0\u00a0 \u00a010 traps/site
05/27/2015\u00a0\u00a0 \u00a0site 1 & 5 had 10 traps, site 3 had 9 traps
06/23/2015\u00a0\u00a0 \u00a0site 1 & 3 had 15 traps, site 5 had 14 traps
06/24/2015\u00a0\u00a0 \u00a0site 1 & 3 had 15 traps, site 5 had 14 traps
07/21/2015\u00a0\u00a0 \u00a0traps per site: site 1=20, site 2=20, site
3=17, site 4=15, site 5=10, site 6=10, site 7=20
08/25/2017\u00a0\u00a0 \u00a010 traps/site
08/26/2015\u00a0\u00a0 \u00a010 traps/site
08/27/2015\u00a0\u00a0 \u00a010 traps/site
09/01/2015\u00a0\u00a0 \u00a010 traps/site
09/02/2015\u00a0\u00a0 \u00a010 traps/site
09/30/2015\u00a0\u00a0 \u00a010 traps/site
10/01/2015\u00a0\u00a0 \u00a010 traps/site
10/02/2015\u00a0\u00a0 \u00a010 traps/site
12/01/2015\u00a0\u00a0 \u00a010 traps/site
12/02/2015\u00a0\u00a0 \u00a010 traps/site
12/03/2015\u00a0\u00a0 \u00a010 traps/site
See Turner et al. (2016)\u00a0Biological Invasions\u00a018: 533-548 for
additional methodological details:
Turner, B.C., de Rivera, C.E., Grosholz, E.D., & Ruiz, G.M. 2016. Assessing
population increase as a possible outcome to management of invasive species.
Biological Invasions, 18(2), pp 533\u2013548.
doi:10.1007/s10530-015-1026-9
awards_0_award_nid=699764
awards_0_award_number=OCE-1514893
awards_0_data_url=http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1514893
awards_0_funder_name=NSF Division of Ocean Sciences
awards_0_funding_acronym=NSF OCE
awards_0_funding_source_nid=355
awards_0_program_manager=David L. Garrison
awards_0_program_manager_nid=50534
cdm_data_type=Other
comment=Monthly trapping in Seadrift Lagoon in 2015
PI: Edwin Grosholz (UC Davis)
Co-PI: Catherine de Rivera & Gregory Ruiz (Portland State University)
Version: 02 June 2017
Conventions=COARDS, CF-1.6, ACDD-1.3
data_source=extract_data_as_tsv version 2.3 19 Dec 2019
defaultDataQuery=&time<now
doi=10.1575/1912/bco-dmo.701863.1
Easternmost_Easting=-122.6661694
geospatial_lat_max=37.90744
geospatial_lat_min=37.90744
geospatial_lat_units=degrees_north
geospatial_lon_max=-122.6661694
geospatial_lon_min=-122.6661694
geospatial_lon_units=degrees_east
infoUrl=https://www.bco-dmo.org/dataset/701863
institution=BCO-DMO
instruments_0_dataset_instrument_description=At each of the six sites used for monthly trapping plus three additional sites, we placed 15 baited traps (folding Fukui fish traps) in shallow (
instruments_0_dataset_instrument_nid=701870
instruments_0_description=Fukui produces multi-species, multi-purpose collapsible or stackable fish traps, available in different sizes.
instruments_0_instrument_name=Fukui fish trap
instruments_0_instrument_nid=701772
instruments_0_supplied_name=Fukui fish traps
metadata_source=https://www.bco-dmo.org/api/dataset/701863
Northernmost_Northing=37.90744
param_mapping={'701863': {'lat': 'master - latitude', 'lon': 'master - longitude'}}
parameter_source=https://www.bco-dmo.org/mapserver/dataset/701863/parameters
people_0_affiliation=University of California-Davis
people_0_affiliation_acronym=UC Davis
people_0_person_name=Edwin Grosholz
people_0_person_nid=699768
people_0_role=Principal Investigator
people_0_role_type=originator
people_1_affiliation=Portland State University
people_1_affiliation_acronym=PSU
people_1_person_name=Catherine de Rivera
people_1_person_nid=699771
people_1_role=Co-Principal Investigator
people_1_role_type=originator
people_2_affiliation=Portland State University
people_2_affiliation_acronym=PSU
people_2_person_name=Gregory Ruiz
people_2_person_nid=471603
people_2_role=Co-Principal Investigator
people_2_role_type=originator
people_3_affiliation=Woods Hole Oceanographic Institution
people_3_affiliation_acronym=WHOI BCO-DMO
people_3_person_name=Shannon Rauch
people_3_person_nid=51498
people_3_role=BCO-DMO Data Manager
people_3_role_type=related
project=Invasive_predator_harvest
projects_0_acronym=Invasive_predator_harvest
projects_0_description=The usual expectation is that when populations of plants and animals experience repeated losses to predators or human harvest, they would decline over time. If instead these populations rebound to numbers exceeding their initial levels, this would seem counter-intuitive or even paradoxical. However, for several decades mathematical models of population processes have shown that this unexpected response, formally known as overcompensation, is not only possible, but even expected under some circumstances. In what may be the first example of overcompensation in a marine system, a dramatic increase in a population of the non-native European green crab was recently observed following an intensive removal program. This RAPID project will use field surveys and laboratory experiments to verify that this population explosion results from overcompensation. Data will be fed into population models to understand to what degree populations processes such as cannibalism by adult crabs on juvenile crabs and changes in maturity rate of reproductive females are contributing to or modifying overcompensation. The work will provide important insights into the fundamental population dynamics that can produce overcompensation in both natural and managed populations. Broader Impacts include mentoring graduate trainees and undergraduate interns in the design and execution of field experiments as well as in laboratory culture and feeding experiments. The project will also involve a network of citizen scientists who are involved with restoration activities in this region and results will be posted on the European Green Crab Project website.
This project aims to establish the first example of overcompensation in marine systems. Overcompensation refers to the paradoxical process where reduction of a population due to natural or human causes results in a greater equilibrium population than before the reduction. A population explosion of green crabs has been recently documented in a coastal lagoon and there are strong indications that this may be the result of overcompensation. Accelerated maturation of females, which can accompany and modify the expression of overcompensation has been observed. This RAPID project will collect field data from this unusual recruitment class and conduct targeted mesocosm experiments. These will include population surveys and mark-recapture studies to measure demographic rates across study sites. Laboratory mesocosm studies using this recruitment class will determine size specific mortality. Outcomes will be used in population dynamics models to determine to what degree overcompensation has created this dramatic population increase. The project will seek answers to the following questions: 1) what are the rates of cannibalism by adult green crabs and large juveniles on different sizes of juvenile green crabs, 2) what are the consequences of smaller size at first reproduction for population dynamics and for overcompensation and 3) how quickly will the green crab population return to the levels observed prior to the eradication program five years earlier?
projects_0_end_date=2016-11
projects_0_geolocation=Europe
projects_0_name=RAPID: A rare opportunity to examine overcompensation resulting from intensive harvest of an introduced predator
projects_0_project_nid=699765
projects_0_start_date=2014-12
sourceUrl=(local files)
Southernmost_Northing=37.90744
standard_name_vocabulary=CF Standard Name Table v55
subsetVariables=lagoon,latitude,longitude
version=1
Westernmost_Easting=-122.6661694
xml_source=osprey2erddap.update_xml() v1.3
Throughout most of human history, global population growth was very low; between 10,000BCE and 1700CE, the average annual increase was just 0.04 percent. Therefore, it took several thousand years for the global population to reach one billion people, doing so in 1803. However, this period marked the beginning of a global phenomenon known as the demographic transition, from which point population growth skyrocketed. With the introduction of modern medicines (especially vaccination), as well as improvements in water sanitation, food supply, and infrastructure, child mortality fell drastically and life expectancy increased, causing the population to grow. This process is linked to economic and technological development, and did not take place concurrently across the globe; it mostly began in Europe and other industrialized regions in the 19thcentury, before spreading across Asia and Latin America in the 20th century. As the most populous societies in the world are found in Asia, the demographic transition in this region coincided with the fastest period of global population growth. Today, Sub-Saharan Africa is the region at the earliest stage of this transition. As population growth slows across the other continents, with the populations of the Americas, Asia, and Europe expected to be in decline by the 2070s, Africa's population is expected to grow by three billion people by the end of the 21st century.
In the past four centuries, the population of the United States has grown from a recorded 350 people around the Jamestown colony of Virginia in 1610, to an estimated 331 million people in 2020. The pre-colonization populations of the indigenous peoples of the Americas have proven difficult for historians to estimate, as their numbers decreased rapidly following the introduction of European diseases (namely smallpox, plague and influenza). Native Americans were also omitted from most censuses conducted before the twentieth century, therefore the actual population of what we now know as the United States would have been much higher than the official census data from before 1800, but it is unclear by how much. Population growth in the colonies throughout the eighteenth century has primarily been attributed to migration from the British Isles and the Transatlantic slave trade; however it is also difficult to assert the ethnic-makeup of the population in these years as accurate migration records were not kept until after the 1820s, at which point the importation of slaves had also been illegalized. Nineteenth century In the year 1800, it is estimated that the population across the present-day United States was around six million people, with the population in the 16 admitted states numbering at 5.3 million. Migration to the United States began to happen on a large scale in the mid-nineteenth century, with the first major waves coming from Ireland, Britain and Germany. In some aspects, this wave of mass migration balanced out the demographic impacts of the American Civil War, which was the deadliest war in U.S. history with approximately 620 thousand fatalities between 1861 and 1865. The civil war also resulted in the emancipation of around four million slaves across the south; many of whose ancestors would take part in the Great Northern Migration in the early 1900s, which saw around six million black Americans migrate away from the south in one of the largest demographic shifts in U.S. history. By the end of the nineteenth century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. Twentieth and twenty-first century The U.S. population has grown steadily throughout the past 120 years, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. In the past century, the U.S. established itself as a global superpower, with the world's largest economy (by nominal GDP) and most powerful military. Involvement in foreign wars has resulted in over 620,000 further U.S. fatalities since the Civil War, and migration fell drastically during the World Wars and Great Depression; however the population continuously grew in these years as the total fertility rate remained above two births per woman, and life expectancy increased (except during the Spanish Flu pandemic of 1918).
Since the Second World War, Latin America has replaced Europe as the most common point of origin for migrants, with Hispanic populations growing rapidly across the south and border states. Because of this, the proportion of non-Hispanic whites, which has been the most dominant ethnicity in the U.S. since records began, has dropped more rapidly in recent decades. Ethnic minorities also have a much higher birth rate than non-Hispanic whites, further contributing to this decline, and the share of non-Hispanic whites is expected to fall below fifty percent of the U.S. population by the mid-2000s. In 2020, the United States has the third-largest population in the world (after China and India), and the population is expected to reach four hundred million in the 2050s.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Vancouver population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Vancouver across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Vancouver was 196,442, a 1% increase year-by-year from 2022. Previously, in 2022, Vancouver population was 194,500, an increase of 0.90% compared to a population of 192,770 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Vancouver increased by 51,483. In this period, the peak population was 196,442 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Vancouver Population by Year. You can refer the same here
In 2023, the population of Africa was projected to grow by 2.34 percent compared to the previous year. The population growth rate on the continent has been constantly over 2.3 percent from 2000 onwards, and it peaked at 2.59 percent between 2012 and 2013. Despite a slowdown in the growth rate, the continent's population will continue to increase significantly in the coming years. The second-largest population worldwide In 2022, the total population of Africa amounted to around 1.4 billion. The number of inhabitants had grown steadily in the previous decades, rising from approximately 810 million in 2000. Driven by a decreasing mortality rate and a higher life expectancy at birth, the African population was forecast to increase to about 2.5 billion individuals by 2050. Africa is currently the second most populous continent worldwide after Asia. However, forecasts showed that Africa could gradually close the gap and almost reach the size of the Asian population in 2100. By that year, Africa might count 3.9 billion people, compared to 4.7 billion in Asia. The world's youngest continent The median age in Africa corresponded to 18.8 years in 2023. Although the median age has increased in recent years, the continent remains the youngest worldwide. In 2023, roughly 40 percent of the African population was aged 15 years and younger, compared to a global average of 25 percent. Africa recorded not only the highest share of youth but also the smallest elderly population worldwide. As of the same year, only three percent of Africa's population was aged 65 years and older. Africa and Latin America were the only regions below the global average of 10 percent. On the continent, Niger, Uganda, and Angola were the countries with the youngest population in 2023.
According to latest figures, the Chinese population decreased by 1.39 million to around 1.408 billion people in 2024. After decades of rapid growth, China arrived at the turning point of its demographic development in 2022, which was earlier than expected. The annual population decrease is estimated to remain at moderate levels until around 2030 but to accelerate thereafter. Population development in China China had for a long time been the country with the largest population worldwide, but according to UN estimates, it has been overtaken by India in 2023. As the population in India is still growing, the country is very likely to remain being home of the largest population on earth in the near future. Due to several mechanisms put into place by the Chinese government as well as changing circumstances in the working and social environment of the Chinese people, population growth has subsided over the past decades, displaying an annual population growth rate of -0.1 percent in 2024. Nevertheless, compared to the world population in total, China held a share of about 17 percent of the overall global population in 2024. China's aging population In terms of demographic developments, the birth control efforts of the Chinese government had considerable effects on the demographic pyramid in China. Upon closer examination of the age distribution, a clear trend of an aging population becomes visible. In order to curb the negative effects of an aging population, the Chinese government abolished the one-child policy in 2015, which had been in effect since 1979, and introduced a three-child policy in May 2021. However, many Chinese parents nowadays are reluctant to have a second or third child, as is the case in most of the developed countries in the world. The number of births in China varied in the years following the abolishment of the one-child policy, but did not increase considerably. Among the reasons most prominent for parents not having more children are the rising living costs and costs for child care, growing work pressure, a growing trend towards self-realization and individualism, and changing social behaviors.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Alabama population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Alabama across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of Alabama was 5.16 million, a 0.78% increase year-by-year from 2023. Previously, in 2023, Alabama population was 5.12 million, an increase of 0.82% compared to a population of 5.08 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of Alabama increased by 706,202. In this period, the peak population was 5.16 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Alabama Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of United States across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of United States was 340.11 million, a 0.98% increase year-by-year from 2023. Previously, in 2023, United States population was 336.81 million, an increase of 0.83% compared to a population of 334.02 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of United States increased by 57.95 million. In this period, the peak population was 340.11 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Folsom population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Folsom across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Folsom was 84,782, a 1.85% increase year-by-year from 2022. Previously, in 2022, Folsom population was 83,241, an increase of 1.90% compared to a population of 81,689 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Folsom increased by 32,029. In this period, the peak population was 84,782 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Folsom Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Louisburg population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Louisburg across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Louisburg was 5,170, a 2.38% increase year-by-year from 2022. Previously, in 2022, Louisburg population was 5,050, an increase of 0.80% compared to a population of 5,010 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Louisburg increased by 2,568. In this period, the peak population was 5,170 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Louisburg Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Texas population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Texas across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of Texas was 31.29 million, a 1.83% increase year-by-year from 2023. Previously, in 2023, Texas population was 30.73 million, an increase of 2.04% compared to a population of 30.11 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of Texas increased by 10.35 million. In this period, the peak population was 31.29 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Texas Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Colorado population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Colorado across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of Colorado was 5.96 million, a 0.95% increase year-by-year from 2023. Previously, in 2023, Colorado population was 5.9 million, an increase of 0.86% compared to a population of 5.85 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of Colorado increased by 1.63 million. In this period, the peak population was 5.96 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Colorado Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Whitestown population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Whitestown across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Whitestown was 13,049, a 8.49% increase year-by-year from 2022. Previously, in 2022, Whitestown population was 12,028, an increase of 8.26% compared to a population of 11,110 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Whitestown increased by 12,093. In this period, the peak population was 13,049 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Whitestown Population by Year. You can refer the same here