53 datasets found
  1. Designing a more efficient, effective and safe Medical Emergency Team (MET)...

    • plos.figshare.com
    pdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christoph Bergmeir; Irma Bilgrami; Christopher Bain; Geoffrey I. Webb; Judit Orosz; David Pilcher (2023). Designing a more efficient, effective and safe Medical Emergency Team (MET) service using data analysis [Dataset]. http://doi.org/10.1371/journal.pone.0188688
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Christoph Bergmeir; Irma Bilgrami; Christopher Bain; Geoffrey I. Webb; Judit Orosz; David Pilcher
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionHospitals have seen a rise in Medical Emergency Team (MET) reviews. We hypothesised that the commonest MET calls result in similar treatments. Our aim was to design a pre-emptive management algorithm that allowed direct institution of treatment to patients without having to wait for attendance of the MET team and to model its potential impact on MET call incidence and patient outcomes.MethodsData was extracted for all MET calls from the hospital database. Association rule data mining techniques were used to identify the most common combinations of MET call causes, outcomes and therapies.ResultsThere were 13,656 MET calls during the 34-month study period in 7936 patients. The most common MET call was for hypotension [31%, (2459/7936)]. These MET calls were strongly associated with the immediate administration of intra-venous fluid (70% [1714/2459] v 13% [739/5477] p

  2. d

    Data from: Peer-to-Peer Data Mining, Privacy Issues, and Games

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Peer-to-Peer Data Mining, Privacy Issues, and Games [Dataset]. https://catalog.data.gov/dataset/peer-to-peer-data-mining-privacy-issues-and-games
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    Peer-to-Peer (P2P) networks are gaining increasing popularity in many distributed applications such as file-sharing, network storage, web caching, sear- ching and indexing of relevant documents and P2P network-threat analysis. Many of these applications require scalable analysis of data over a P2P network. This paper starts by offering a brief overview of distributed data mining applications and algorithms for P2P environments. Next it discusses some of the privacy concerns with P2P data mining and points out the problems of existing privacy-preserving multi-party data mining techniques. It further points out that most of the nice assumptions of these existing privacy preserving techniques fall apart in real-life applications of privacy-preserving distributed data mining (PPDM). The paper offers a more realistic formulation of the PPDM problem as a multi-party game and points out some recent results.

  3. Z

    Data Analysis for the Systematic Literature Review of DL4SE

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cody Watson; Nathan Cooper; David Nader; Kevin Moran; Denys Poshyvanyk (2024). Data Analysis for the Systematic Literature Review of DL4SE [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4768586
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    College of William and Mary
    Washington and Lee University
    Authors
    Cody Watson; Nathan Cooper; David Nader; Kevin Moran; Denys Poshyvanyk
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data Analysis is the process that supports decision-making and informs arguments in empirical studies. Descriptive statistics, Exploratory Data Analysis (EDA), and Confirmatory Data Analysis (CDA) are the approaches that compose Data Analysis (Xia & Gong; 2014). An Exploratory Data Analysis (EDA) comprises a set of statistical and data mining procedures to describe data. We ran EDA to provide statistical facts and inform conclusions. The mined facts allow attaining arguments that would influence the Systematic Literature Review of DL4SE.

    The Systematic Literature Review of DL4SE requires formal statistical modeling to refine the answers for the proposed research questions and formulate new hypotheses to be addressed in the future. Hence, we introduce DL4SE-DA, a set of statistical processes and data mining pipelines that uncover hidden relationships among Deep Learning reported literature in Software Engineering. Such hidden relationships are collected and analyzed to illustrate the state-of-the-art of DL techniques employed in the software engineering context.

    Our DL4SE-DA is a simplified version of the classical Knowledge Discovery in Databases, or KDD (Fayyad, et al; 1996). The KDD process extracts knowledge from a DL4SE structured database. This structured database was the product of multiple iterations of data gathering and collection from the inspected literature. The KDD involves five stages:

    Selection. This stage was led by the taxonomy process explained in section xx of the paper. After collecting all the papers and creating the taxonomies, we organize the data into 35 features or attributes that you find in the repository. In fact, we manually engineered features from the DL4SE papers. Some of the features are venue, year published, type of paper, metrics, data-scale, type of tuning, learning algorithm, SE data, and so on.

    Preprocessing. The preprocessing applied was transforming the features into the correct type (nominal), removing outliers (papers that do not belong to the DL4SE), and re-inspecting the papers to extract missing information produced by the normalization process. For instance, we normalize the feature “metrics” into “MRR”, “ROC or AUC”, “BLEU Score”, “Accuracy”, “Precision”, “Recall”, “F1 Measure”, and “Other Metrics”. “Other Metrics” refers to unconventional metrics found during the extraction. Similarly, the same normalization was applied to other features like “SE Data” and “Reproducibility Types”. This separation into more detailed classes contributes to a better understanding and classification of the paper by the data mining tasks or methods.

    Transformation. In this stage, we omitted to use any data transformation method except for the clustering analysis. We performed a Principal Component Analysis to reduce 35 features into 2 components for visualization purposes. Furthermore, PCA also allowed us to identify the number of clusters that exhibit the maximum reduction in variance. In other words, it helped us to identify the number of clusters to be used when tuning the explainable models.

    Data Mining. In this stage, we used three distinct data mining tasks: Correlation Analysis, Association Rule Learning, and Clustering. We decided that the goal of the KDD process should be oriented to uncover hidden relationships on the extracted features (Correlations and Association Rules) and to categorize the DL4SE papers for a better segmentation of the state-of-the-art (Clustering). A clear explanation is provided in the subsection “Data Mining Tasks for the SLR od DL4SE”. 5.Interpretation/Evaluation. We used the Knowledge Discover to automatically find patterns in our papers that resemble “actionable knowledge”. This actionable knowledge was generated by conducting a reasoning process on the data mining outcomes. This reasoning process produces an argument support analysis (see this link).

    We used RapidMiner as our software tool to conduct the data analysis. The procedures and pipelines were published in our repository.

    Overview of the most meaningful Association Rules. Rectangles are both Premises and Conclusions. An arrow connecting a Premise with a Conclusion implies that given some premise, the conclusion is associated. E.g., Given that an author used Supervised Learning, we can conclude that their approach is irreproducible with a certain Support and Confidence.

    Support = Number of occurrences this statement is true divided by the amount of statements Confidence = The support of the statement divided by the number of occurrences of the premise

  4. e

    Introduction to Data Warehousing

    • paper.erudition.co.in
    html
    Updated Aug 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Einetic (2021). Introduction to Data Warehousing [Dataset]. https://paper.erudition.co.in/makaut/btech-in-information-technology/6/data-warehousing-and-data-mining
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 12, 2021
    Dataset authored and provided by
    Einetic
    License

    https://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms

    Description

    Question Paper Solutions of chapter Introduction to Data Warehousing of Data Warehousing and Data Mining, 6th Semester , Information Technology

  5. d

    Data from: PADMINI: A PEER-TO-PEER DISTRIBUTED ASTRONOMY DATA MINING SYSTEM...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). PADMINI: A PEER-TO-PEER DISTRIBUTED ASTRONOMY DATA MINING SYSTEM AND A CASE STUDY [Dataset]. https://catalog.data.gov/dataset/padmini-a-peer-to-peer-distributed-astronomy-data-mining-system-and-a-case-study
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    PADMINI: A PEER-TO-PEER DISTRIBUTED ASTRONOMY DATA MINING SYSTEM AND A CASE STUDY TUSHAR MAHULE, KIRK BORNE, SANDIPAN DEY, SUGANDHA ARORA, AND HILLOL KARGUPTA** Abstract. Peer-to-Peer (P2P) networks are appealing for astronomy data mining from virtual observatories because of the large volume of the data, compute-intensive tasks, potentially large number of users, and distributed nature of the data analysis process. This paper offers a brief overview of PADMINI—a Peer-to-Peer Astronomy Data MINIng system. It also presents a case study on PADMINI for distributed outlier detection using astronomy data. PADMINI is a webbased system powered by Google Sky and distributed data mining algorithms that run on a collection of computing nodes. This paper offers a case study of the PADMINI evaluating the architecture and the performance of the overall system. Detailed experimental results are presented in order to document the utility and scalability of the system.

  6. l

    LSC (Leicester Scientific Corpus)

    • figshare.le.ac.uk
    Updated Apr 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neslihan Suzen (2020). LSC (Leicester Scientific Corpus) [Dataset]. http://doi.org/10.25392/leicester.data.9449639.v1
    Explore at:
    Dataset updated
    Apr 15, 2020
    Dataset provided by
    University of Leicester
    Authors
    Neslihan Suzen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Leicester
    Description

    The LSC (Leicester Scientific Corpus)August 2019 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk) Supervised by Prof Alexander Gorban and Dr Evgeny MirkesThe data is extracted from the Web of Science® [1] You may not copy or distribute this data in whole or in part without the written consent of Clarivate Analytics.Getting StartedThis text provides background information on the LSC (Leicester Scientific Corpus) and pre-processing steps on abstracts, and describes the structure of files to organise the corpus. This corpus is created to be used in future work on the quantification of the sense of research texts. One of the goal of publishing the data is to make it available for further analysis and use in Natural Language Processing projects.LSC is a collection of abstracts of articles and proceeding papers published in 2014, and indexed by the Web of Science (WoS) database [1]. Each document contains title, list of authors, list of categories, list of research areas, and times cited. The corpus contains only documents in English.The corpus was collected in July 2018 online and contains the number of citations from publication date to July 2018.Each document in the corpus contains the following parts:1. Authors: The list of authors of the paper2. Title: The title of the paper3. Abstract: The abstract of the paper4. Categories: One or more category from the list of categories [2]. Full list of categories is presented in file ‘List_of _Categories.txt’.5. Research Areas: One or more research area from the list of research areas [3]. Full list of research areas is presented in file ‘List_of_Research_Areas.txt’.6. Total Times cited: The number of times the paper was cited by other items from all databases within Web of Science platform [4]7. Times cited in Core Collection: The total number of times the paper was cited by other papers within the WoS Core Collection [4]We describe a document as the collection of information (about a paper) listed above. The total number of documents in LSC is 1,673,824.All documents in LSC have nonempty abstract, title, categories, research areas and times cited in WoS databases. There are 119 documents with empty authors list, we did not exclude these documents.Data ProcessingThis section describes all steps in order for the LSC to be collected, clean and available to researchers. Processing the data consists of six main steps:Step 1: Downloading of the Data OnlineThis is the step of collecting the dataset online. This is done manually by exporting documents as Tab-delimitated files. All downloaded documents are available online.Step 2: Importing the Dataset to RThis is the process of converting the collection to RData format for processing the data. The LSC was collected as TXT files. All documents are extracted to R.Step 3: Cleaning the Data from Documents with Empty Abstract or without CategoryNot all papers have abstract and categories in the collection. As our research is based on the analysis of abstracts and categories, preliminary detecting and removing inaccurate documents were performed. All documents with empty abstracts and documents without categories are removed.Step 4: Identification and Correction of Concatenate Words in AbstractsTraditionally, abstracts are written in a format of executive summary with one paragraph of continuous writing, which is known as ‘unstructured abstract’. However, especially medicine-related publications use ‘structured abstracts’. Such type of abstracts are divided into sections with distinct headings such as introduction, aim, objective, method, result, conclusion etc.Used tool for extracting abstracts leads concatenate words of section headings with the first word of the section. As a result, some of structured abstracts in the LSC require additional process of correction to split such concatenate words. For instance, we observe words such as ConclusionHigher and ConclusionsRT etc. in the corpus. The detection and identification of concatenate words cannot be totally automated. Human intervention is needed in the identification of possible headings of sections. We note that we only consider concatenate words in headings of sections as it is not possible to detect all concatenate words without deep knowledge of research areas. Identification of such words is done by sampling of medicine-related publications. The section headings in such abstracts are listed in the List 1.List 1 Headings of sections identified in structured abstractsBackground Method(s) DesignTheoretical Measurement(s) LocationAim(s) Methodology ProcessAbstract Population ApproachObjective(s) Purpose(s) Subject(s)Introduction Implication(s) Patient(s)Procedure(s) Hypothesis Measure(s)Setting(s) Limitation(s) DiscussionConclusion(s) Result(s) Finding(s)Material (s) Rationale(s)Implications for health and nursing policyAll words including headings in the List 1 are detected in entire corpus, and then words are split into two words. For instance, the word ‘ConclusionHigher’ is split into ‘Conclusion’ and ‘Higher’.Step 5: Extracting (Sub-setting) the Data Based on Lengths of AbstractsAfter correction of concatenate words is completed, the lengths of abstracts are calculated. ‘Length’ indicates the totalnumber of words in the text, calculated by the same rule as for Microsoft Word ‘word count’ [5].According to APA style manual [6], an abstract should contain between 150 to 250 words. However, word limits vary from journal to journal. For instance, Journal of Vascular Surgery recommends that ‘Clinical and basic research studies must include a structured abstract of 400 words or less’[7].In LSC, the length of abstracts varies from 1 to 3805. We decided to limit length of abstracts from 30 to 500 words in order to study documents with abstracts of typical length ranges and to avoid the effect of the length to the analysis. Documents containing less than 30 and more than 500 words in abstracts are removed.Step 6: Saving the Dataset into CSV FormatCorrected and extracted documents are saved into 36 CSV files. The structure of files are described in the following section.The Structure of Fields in CSV FilesIn CSV files, the information is organised with one record on each line and parts of abstract, title, list of authors, list of categories, list of research areas, and times cited is recorded in separated fields.To access the LSC for research purposes, please email to ns433@le.ac.uk.References[1]Web of Science. (15 July). Available: https://apps.webofknowledge.com/[2]WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html[3]Research Areas in WoS. Available: https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html[4]Times Cited in WoS Core Collection. (15 July). Available: https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-Times-Cited-accessibility-and-variation?language=en_US[5]Word Count. Available: https://support.office.com/en-us/article/show-word-count-3c9e6a11-a04d-43b4-977c-563a0e0d5da3[6]A. P. Association, Publication manual. American Psychological Association Washington, DC, 1983.[7]P. Gloviczki and P. F. Lawrence, "Information for authors," Journal of Vascular Surgery, vol. 65, no. 1, pp. A16-A22, 2017.

  7. Real Market Data for Association Rules

    • kaggle.com
    zip
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ruken Missonnier (2023). Real Market Data for Association Rules [Dataset]. https://www.kaggle.com/datasets/rukenmissonnier/real-market-data
    Explore at:
    zip(3068 bytes)Available download formats
    Dataset updated
    Sep 15, 2023
    Authors
    Ruken Missonnier
    Description

    1. Introduction

    Within the confines of this document, we embark on a comprehensive journey delving into the intricacies of a dataset meticulously curated for the purpose of association rules mining. This sophisticated data mining technique is a linchpin in the realms of market basket analysis. The dataset in question boasts an array of items commonly found in retail transactions, each meticulously encoded as a binary variable, with "1" denoting presence and "0" indicating absence in individual transactions.

    2. Dataset Overview

    Our dataset unfolds as an opulent tapestry of distinct columns, each dedicated to the representation of a specific item:

    • Bread
    • Honey
    • Bacon
    • Toothpaste
    • Banana
    • Apple
    • Hazelnut
    • Cheese
    • Meat
    • Carrot
    • Cucumber
    • Onion
    • Milk
    • Butter
    • ShavingFoam
    • Salt
    • Flour
    • HeavyCream
    • Egg
    • Olive
    • Shampoo
    • Sugar

    3. Purpose of the Dataset

    The raison d'être of this dataset is to serve as a catalyst for the discovery of intricate associations and patterns concealed within the labyrinthine network of customer transactions. Each row in this dataset mirrors a solitary transaction, while the values within each column serve as sentinels, indicating whether a particular item was welcomed into a transaction's embrace or relegated to the periphery.

    4. Data Format

    The data within this repository is rendered in a binary symphony, where the enigmatic "1" enunciates the acquisition of an item, and the stoic "0" signifies its conspicuous absence. This binary manifestation serves to distill the essence of the dataset, centering the focus on item presence, rather than the quantum thereof.

    5. Potential Applications

    This dataset unfurls its wings to encompass an assortment of prospective applications, including but not limited to:

    • Market Basket Analysis: Discerning items that waltz together in shopping carts, thus bestowing enlightenment upon the orchestration of product placement and marketing strategies.
    • Recommender Systems: Crafting bespoke product recommendations, meticulously tailored to each customer's historical transactional symphony.
    • Inventory Management: Masterfully fine-tuning stock levels for items that find kinship in frequent co-acquisition, thereby orchestrating a harmonious reduction in carrying costs and stockouts.
    • Customer Behavior Analysis: Peering into the depths of customer proclivities and purchase patterns, paving the way for the sculpting of exquisite marketing campaigns.

    6. Analysis Techniques

    The treasure trove of this dataset beckons the deployment of quintessential techniques, among them the venerable Apriori and FP-Growth algorithms. These stalwart algorithms are proficient at ferreting out the elusive frequent itemsets and invaluable association rules, shedding light on the arcane symphony of customer behavior and item co-occurrence patterns.

    7. Conclusion

    In closing, the association rules dataset unfurled before you offers an alluring odyssey, replete with the promise of discovering priceless patterns and affiliations concealed within the tapestry of transactional data. Through the artistry of data mining algorithms, businesses and analysts stand poised to unearth hitherto latent insights capable of steering the helm of strategic decisions, elevating the pantheon of customer experiences, and orchestrating the symphony of operational optimization.

  8. f

    MET activations in the training period. Data includes only the first MET...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christoph Bergmeir; Irma Bilgrami; Christopher Bain; Geoffrey I. Webb; Judit Orosz; David Pilcher (2023). MET activations in the training period. Data includes only the first MET call per patient. [Dataset]. http://doi.org/10.1371/journal.pone.0188688.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Christoph Bergmeir; Irma Bilgrami; Christopher Bain; Geoffrey I. Webb; Judit Orosz; David Pilcher
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    MET = Medical Emergency Team, CPR = Cardiopulmonary resuscitation.

  9. Data Mining Market Size, Competitive Landscape, Growth Trends 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Data Mining Market Size, Competitive Landscape, Growth Trends 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/data-mining-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    The Data Mining Market is Segmented by Component (Tools [ETL and Data Preparation, Data-Mining Workbench, and More], Services [Professional Services, and More]), End-User Enterprise Size (Small and Medium Enterprises, Large Enterprises), Deployment (Cloud, On-Premise), End-User Industry (BFSI, IT and Telecom, Government and Defence, and More), and Geography. The Market Forecasts are Provided in Terms of Value (USD).

  10. Modelled estimated effect of algorithm for immediate administration of...

    • plos.figshare.com
    • figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christoph Bergmeir; Irma Bilgrami; Christopher Bain; Geoffrey I. Webb; Judit Orosz; David Pilcher (2023). Modelled estimated effect of algorithm for immediate administration of intravenous fluid to patients with systolic blood pressure (SBP) < 90mmHg, on medical emergency team (MET) calls in the test period. [Dataset]. http://doi.org/10.1371/journal.pone.0188688.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Christoph Bergmeir; Irma Bilgrami; Christopher Bain; Geoffrey I. Webb; Judit Orosz; David Pilcher
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Modelled estimated effect of algorithm for immediate administration of intravenous fluid to patients with systolic blood pressure (SBP) < 90mmHg, on medical emergency team (MET) calls in the test period.

  11. Market Basket Analysis

    • kaggle.com
    zip
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aslan Ahmedov (2021). Market Basket Analysis [Dataset]. https://www.kaggle.com/datasets/aslanahmedov/market-basket-analysis
    Explore at:
    zip(23875170 bytes)Available download formats
    Dataset updated
    Dec 9, 2021
    Authors
    Aslan Ahmedov
    Description

    Market Basket Analysis

    Market basket analysis with Apriori algorithm

    The retailer wants to target customers with suggestions on itemset that a customer is most likely to purchase .I was given dataset contains data of a retailer; the transaction data provides data around all the transactions that have happened over a period of time. Retailer will use result to grove in his industry and provide for customer suggestions on itemset, we be able increase customer engagement and improve customer experience and identify customer behavior. I will solve this problem with use Association Rules type of unsupervised learning technique that checks for the dependency of one data item on another data item.

    Introduction

    Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.

    An Example of Association Rules

    Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them. - bought Computer Mouth => bought Mat for Mouse - support = P(Mouth & Mat) = 8/100 = 0.08 - confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89 - lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9 This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.

    Strategy

    • Data Import
    • Data Understanding and Exploration
    • Transformation of the data – so that is ready to be consumed by the association rules algorithm
    • Running association rules
    • Exploring the rules generated
    • Filtering the generated rules
    • Visualization of Rule

    Dataset Description

    • File name: Assignment-1_Data
    • List name: retaildata
    • File format: . xlsx
    • Number of Row: 522065
    • Number of Attributes: 7

      • BillNo: 6-digit number assigned to each transaction. Nominal.
      • Itemname: Product name. Nominal.
      • Quantity: The quantities of each product per transaction. Numeric.
      • Date: The day and time when each transaction was generated. Numeric.
      • Price: Product price. Numeric.
      • CustomerID: 5-digit number assigned to each customer. Nominal.
      • Country: Name of the country where each customer resides. Nominal.

    imagehttps://user-images.githubusercontent.com/91852182/145270162-fc53e5a3-4ad1-4d06-b0e0-228aabcf6b70.png">

    Libraries in R

    First, we need to load required libraries. Shortly I describe all libraries.

    • arules - Provides the infrastructure for representing, manipulating and analyzing transaction data and patterns (frequent itemsets and association rules).
    • arulesViz - Extends package 'arules' with various visualization. techniques for association rules and item-sets. The package also includes several interactive visualizations for rule exploration.
    • tidyverse - The tidyverse is an opinionated collection of R packages designed for data science.
    • readxl - Read Excel Files in R.
    • plyr - Tools for Splitting, Applying and Combining Data.
    • ggplot2 - A system for 'declaratively' creating graphics, based on "The Grammar of Graphics". You provide the data, tell 'ggplot2' how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.
    • knitr - Dynamic Report generation in R.
    • magrittr- Provides a mechanism for chaining commands with a new forward-pipe operator, %>%. This operator will forward a value, or the result of an expression, into the next function call/expression. There is flexible support for the type of right-hand side expressions.
    • dplyr - A fast, consistent tool for working with data frame like objects, both in memory and out of memory.
    • tidyverse - This package is designed to make it easy to install and load multiple 'tidyverse' packages in a single step.

    imagehttps://user-images.githubusercontent.com/91852182/145270210-49c8e1aa-9753-431b-a8d5-99601bc76cb5.png">

    Data Pre-processing

    Next, we need to upload Assignment-1_Data. xlsx to R to read the dataset.Now we can see our data in R.

    imagehttps://user-images.githubusercontent.com/91852182/145270229-514f0983-3bbb-4cd3-be64-980e92656a02.png"> imagehttps://user-images.githubusercontent.com/91852182/145270251-6f6f6472-8817-435c-a995-9bc4bfef10d1.png">

    After we will clear our data frame, will remove missing values.

    imagehttps://user-images.githubusercontent.com/91852182/145270286-05854e1a-2b6c-490e-ab30-9e99e731eacb.png">

    To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in ...

  12. Comparison of interventions and outcomes of hypotensive patients who did...

    • plos.figshare.com
    xls
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christoph Bergmeir; Irma Bilgrami; Christopher Bain; Geoffrey I. Webb; Judit Orosz; David Pilcher (2023). Comparison of interventions and outcomes of hypotensive patients who did receive intravenous fluid and were predicted to do so by the algorithm (‘true positives’), vs. those who did not receive intravenous fluid but would have been predicted to do so (‘false positives’), in the test period. [Dataset]. http://doi.org/10.1371/journal.pone.0188688.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Christoph Bergmeir; Irma Bilgrami; Christopher Bain; Geoffrey I. Webb; Judit Orosz; David Pilcher
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ‘True positives’ represent those with MET calls for SBP

  13. Z

    Predictive Analytics Market - by Software Solutions (Data Mining &...

    • zionmarketresearch.com
    pdf
    Updated Nov 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zion Market Research (2025). Predictive Analytics Market - by Software Solutions (Data Mining & Management, Decision Support Systems, Fraud & Security Intelligence, Financial Intelligence, Customer Intelligence, and Others), By Delivery Mode (Cloud-Based Technology and On-Premise Deployment), By End-User (BFSI, Telecom & IT, Healthcare, Transport & Logistics, Government & Utilities, and Others) and by Application (Customer & Channel, Sales and Marketing, Finance & Risk, and Other Applications), and By Region - Global and Regional Industry Overview, Comprehensive Analysis, Historical Data, and Forecasts 2024-2032 [Dataset]. https://www.zionmarketresearch.com/report/predictive-analytic-market
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Nov 23, 2025
    Dataset authored and provided by
    Zion Market Research
    License

    https://www.zionmarketresearch.com/privacy-policyhttps://www.zionmarketresearch.com/privacy-policy

    Time period covered
    2022 - 2030
    Area covered
    Global
    Description

    Global Predictive Analytics Market size worth at USD 16.19 Billion in 2023 and projected to USD 113.8 Billion by 2032, with a CAGR of around 24.19% between 2024-2032.

  14. Z

    Composite AI Market By Offering (Hardware, Software, and Services), By...

    • zionmarketresearch.com
    pdf
    Updated Nov 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zion Market Research (2025). Composite AI Market By Offering (Hardware, Software, and Services), By Technique (Data Processing, Data Mining & Machine Learning, Conditioned Monitoring, Pattern Recognition, Proactive Mechanism, and Others), By Application (Product Design & Development, Quality Control, Predictive Maintenance, Security & Surveillance, and Customer Service & Others), By Vertical (BFSI, Telecommunications, Retail & eCommerce, Healthcare & Lifesciences, Media & Entertainment, Energy & Power, Transportation & Logistics, Government & Defense, Manufacturing, and Others), and By Region - Global and Regional Industry Overview, Market Intelligence, Comprehensive Analysis, Historical Data, and Forecasts 2024 - 2032- [Dataset]. https://www.zionmarketresearch.com/report/composite-ai-market
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Nov 23, 2025
    Dataset authored and provided by
    Zion Market Research
    License

    https://www.zionmarketresearch.com/privacy-policyhttps://www.zionmarketresearch.com/privacy-policy

    Time period covered
    2022 - 2030
    Area covered
    Global
    Description

    The Global Composite AI Market Size Was Worth USD 1,300 Million in 2023 and Is Expected To Reach USD 6460 Million by 2032, CAGR of 19.5%.

  15. The top 10 clusters of innovativeness research named using the dominant...

    • plos.figshare.com
    xls
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yousif Elsamani; Cristian Mejia; Yuya Kajikawa (2023). The top 10 clusters of innovativeness research named using the dominant theme with the most important quantitative data (number of articles, average publication year, top three journals, and number of articles in each journal) until 2021. [Dataset]. http://doi.org/10.1371/journal.pone.0280005.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yousif Elsamani; Cristian Mejia; Yuya Kajikawa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The top 10 clusters of innovativeness research named using the dominant theme with the most important quantitative data (number of articles, average publication year, top three journals, and number of articles in each journal) until 2021.

  16. The top 24 clusters of well-being research named using the dominant theme...

    • plos.figshare.com
    xls
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yousif Elsamani; Cristian Mejia; Yuya Kajikawa (2023). The top 24 clusters of well-being research named using the dominant theme with the most important quantitative data (number of articles, average publication year, top three journals, and number of articles in each journal) until 2021. [Dataset]. http://doi.org/10.1371/journal.pone.0280005.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yousif Elsamani; Cristian Mejia; Yuya Kajikawa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The top 24 clusters of well-being research named using the dominant theme with the most important quantitative data (number of articles, average publication year, top three journals, and number of articles in each journal) until 2021.

  17. SMMnet - Super Mario Maker

    • kaggle.com
    zip
    Updated May 13, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leonardo Moraes (2019). SMMnet - Super Mario Maker [Dataset]. https://www.kaggle.com/datasets/leomauro/smmnet/discussion
    Explore at:
    zip(106558315 bytes)Available download formats
    Dataset updated
    May 13, 2019
    Authors
    Leonardo Moraes
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Introduction

    Online games have become a popular form of entertainment, reaching millions of players. Games are dynamic environments, in which the players interact with the game and with other players all over the world. In this sense, games present rich data due to its digital nature. Thus, it is a promising environment to study and apply Artificial Intelligence and Data Mining techniques.

    Context

    In this Kaggle Dataset, we provide over 115 thousand games maps created on Super Mario Maker with over 880 thousand players which performed over 7 millions of interactions on these maps. By interactions, this means that a player can: (1) create a game map; (2) play a map created by other players; if a player completes the challenge of the game map, he/she (3) "cleared" the map; also can be the (4) first clear; beat the (5) time record of a map; (6) at any time, the player can "like" a game map. Note, this dataset present temporal changes over time for each game map by a period of three months.

    The data was extracted from supermariomakerbookmark.nintendo.net, the game website. Now it is publicly to everyone play, explore and research. This dataset serves as a good base for learning models, including, but not limited to, Player Modeling (e.g., player experience), Data Mining (e.g., prediction, and find patterns), and Social Network Analysis (e.g., community detection, link prediction, ranking).

    Dataset

    This dataset is split into seven files:
    - courses.csv: game maps data.
    - course-meta.csv: temporal changes on game maps.
    - players.csv: players' data.
    - plays.csv: plays over time.
    - clears.csv: clears over time.
    - likes.csv: likes over time.
    - records.csv: records over time.

    Data Description

    https://i.imgur.com/iY69dnT.png" alt="Schema for SMMnet">

    The figure illustrates a schema with non-normalized tables to store the SMMnet into a Relational Database Management System (RDBMS). Basically, it is composed of seven tables, each one for one CSV file, that include the maps, players, and the changes over time. Note, there are two Primary Keys (PK) on these tables, i.e., courses.id and players.id for be linked by the Foreign Keys (FK) of other tables to reference and associate with them.

    Inspiration

    1. Detecting game influencers (e.g., twitch and YouTube users). Work.
    2. Predict the popularity of a game over time.
    3. Identify popular games characteristics.
    4. Player Modeling (e.g., player activity)
    5. Social Network Analysis (e.g., community detection, link prediction)
    6. Your creativity!

    Acknowledgements

    • Nintendo Inc., Kyoto, Japan by created this amazing game.
    • Photo by Cláudio Luiz Castro on Unsplash.

    Citation

    SMMNet is available for researchers and data scientists under the Creative Commons BY license. In case of publication and/or public use, as well as any dataset derived from it, one should acknowledge its creators by citing us. Bibtex.

  18. Main constructs of well-being and their definitions from the literature.

    • plos.figshare.com
    xls
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yousif Elsamani; Cristian Mejia; Yuya Kajikawa (2023). Main constructs of well-being and their definitions from the literature. [Dataset]. http://doi.org/10.1371/journal.pone.0280005.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yousif Elsamani; Cristian Mejia; Yuya Kajikawa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Main constructs of well-being and their definitions from the literature.

  19. M

    Mining Exploration Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Mining Exploration Software Report [Dataset]. https://www.datainsightsmarket.com/reports/mining-exploration-software-1930073
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Jun 4, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global mining exploration software market, currently valued at $245 million (2025), is projected to experience steady growth, driven by increasing demand for efficient and data-driven exploration techniques within the mining industry. A compound annual growth rate (CAGR) of 3.3% from 2025 to 2033 indicates a market expansion to approximately $350 million by 2033. This growth is fueled by several key factors. Firstly, the escalating adoption of advanced technologies like AI and machine learning for geological data analysis is streamlining exploration workflows and reducing costs. Secondly, the growing pressure to enhance operational efficiency and minimize environmental impact is fostering the adoption of sophisticated software solutions for better resource management and sustainable mining practices. Finally, the increasing complexity of geological formations and the need to explore deeper and more remote locations are driving the demand for advanced visualization and modeling capabilities provided by these software solutions. The market is segmented by software type (e.g., 3D modeling, data management, geostatistics), deployment mode (cloud-based vs. on-premises), and end-user (mining companies, exploration firms, and geological survey organizations). Key players like AVEVA, AnyLogic, and Maptek Vulcan dominate the market, constantly innovating to cater to evolving industry needs. The competitive landscape is characterized by both established players and emerging technology providers. Companies are focusing on strategic partnerships and acquisitions to expand their product portfolios and geographic reach. Furthermore, the development of cloud-based solutions is gaining traction, offering enhanced scalability, accessibility, and collaboration opportunities. Despite the positive growth outlook, the market faces certain challenges, such as the high initial investment costs associated with adopting new software and the need for specialized training and expertise. However, the long-term benefits of increased efficiency and improved decision-making are expected to outweigh these challenges, fostering continued market expansion throughout the forecast period. Future growth will also be significantly influenced by government regulations related to data security and environmental protection, as well as the overall health of the global mining industry and commodity prices.

  20. Overview of the sample selection process.

    • figshare.com
    • datasetcatalog.nlm.nih.gov
    • +1more
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ming Xiao; Ying Guo; Xionghui Yang; Ge Li; Moustafa Mohamed Nazief Haggag Kotb Kholaif (2023). Overview of the sample selection process. [Dataset]. http://doi.org/10.1371/journal.pone.0266741.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Ming Xiao; Ying Guo; Xionghui Yang; Ge Li; Moustafa Mohamed Nazief Haggag Kotb Kholaif
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview of the sample selection process.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Christoph Bergmeir; Irma Bilgrami; Christopher Bain; Geoffrey I. Webb; Judit Orosz; David Pilcher (2023). Designing a more efficient, effective and safe Medical Emergency Team (MET) service using data analysis [Dataset]. http://doi.org/10.1371/journal.pone.0188688
Organization logo

Designing a more efficient, effective and safe Medical Emergency Team (MET) service using data analysis

Explore at:
6 scholarly articles cite this dataset (View in Google Scholar)
pdfAvailable download formats
Dataset updated
Jun 1, 2023
Dataset provided by
PLOShttp://plos.org/
Authors
Christoph Bergmeir; Irma Bilgrami; Christopher Bain; Geoffrey I. Webb; Judit Orosz; David Pilcher
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

IntroductionHospitals have seen a rise in Medical Emergency Team (MET) reviews. We hypothesised that the commonest MET calls result in similar treatments. Our aim was to design a pre-emptive management algorithm that allowed direct institution of treatment to patients without having to wait for attendance of the MET team and to model its potential impact on MET call incidence and patient outcomes.MethodsData was extracted for all MET calls from the hospital database. Association rule data mining techniques were used to identify the most common combinations of MET call causes, outcomes and therapies.ResultsThere were 13,656 MET calls during the 34-month study period in 7936 patients. The most common MET call was for hypotension [31%, (2459/7936)]. These MET calls were strongly associated with the immediate administration of intra-venous fluid (70% [1714/2459] v 13% [739/5477] p

Search
Clear search
Close search
Google apps
Main menu