86 datasets found
  1. Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN

    • ckan.americaview.org
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2022). Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/open-source-spatial-analytics-r
    Explore at:
    Dataset updated
    Sep 10, 2022
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.

  2. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +1more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  3. Open-Source GIScience Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

  4. Geographic Information Systems, spatial analysis, and HIV in Africa: A...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Danielle C. Boyda; Samuel B. Holzman; Amanda Berman; M. Kathyrn Grabowski; Larry W. Chang (2023). Geographic Information Systems, spatial analysis, and HIV in Africa: A scoping review [Dataset]. http://doi.org/10.1371/journal.pone.0216388
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Danielle C. Boyda; Samuel B. Holzman; Amanda Berman; M. Kathyrn Grabowski; Larry W. Chang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionGeographic Information Systems (GIS) and spatial analysis are emerging tools for global health, but it is unclear to what extent they have been applied to HIV research in Africa. To help inform researchers and program implementers, this scoping review documents the range and depth of published HIV-related GIS and spatial analysis research studies conducted in Africa.MethodsA systematic literature search for articles related to GIS and spatial analysis was conducted through PubMed, EMBASE, and Web of Science databases. Using pre-specified inclusion criteria, articles were screened and key data were abstracted. Grounded, inductive analysis was conducted to organize studies into meaningful thematic areas.Results and discussionThe search returned 773 unique articles, of which 65 were included in the final review. 15 different countries were represented. Over half of the included studies were published after 2014. Articles were categorized into the following non-mutually exclusive themes: (a) HIV geography, (b) HIV risk factors, and (c) HIV service implementation. Studies demonstrated a broad range of GIS and spatial analysis applications including characterizing geographic distribution of HIV, evaluating risk factors for HIV, and assessing and improving access to HIV care services.ConclusionsGIS and spatial analysis have been widely applied to HIV-related research in Africa. The current literature reveals a diversity of themes and methodologies and a relatively young, but rapidly growing, evidence base.

  5. q

    Data management and introduction to QGIS and RStudio for spatial analysis

    • qubeshub.org
    Updated May 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meghan MacLean (2020). Data management and introduction to QGIS and RStudio for spatial analysis [Dataset]. http://doi.org/10.25334/48G8-6Y44
    Explore at:
    Dataset updated
    May 22, 2020
    Dataset provided by
    QUBES
    Authors
    Meghan MacLean
    Description

    Students learn about the importance of good data management and begin to explore QGIS and RStudio for spatial analysis purposes. Students will explore National Land Cover Database raster data and made-up vector point data on both platforms.

  6. C

    Introduction to spatial statistics

    • dataverse.csuc.cat
    txt, zip
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pere Joan Gelabert Vadillo; Pere Joan Gelabert Vadillo; Marcos Rodrigues Mimbrero; Marcos Rodrigues Mimbrero (2024). Introduction to spatial statistics [Dataset]. http://doi.org/10.34810/data1784
    Explore at:
    zip(3340716343), txt(13737)Available download formats
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    CORA.Repositori de Dades de Recerca
    Authors
    Pere Joan Gelabert Vadillo; Pere Joan Gelabert Vadillo; Marcos Rodrigues Mimbrero; Marcos Rodrigues Mimbrero
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Catalunya, Spain, La Rioja, Spain, Aragón, Spain
    Dataset funded by
    Agencia Estatal de Investigación
    Description

    This dataset constitutes an introduction to plotting and mapping and the essential concepts of spatial data management and modeling. And data ready for several examples of regression and classification algorithms (Multiple Linear Regression, Generalized Linear Models, CART and Random Forest), also exploring classic interpolation methods (Inverse Distance Weighting and Kriging).

  7. C

    China Geospatial Analytics Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated May 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). China Geospatial Analytics Market Report [Dataset]. https://www.marketreportanalytics.com/reports/china-geospatial-analytics-market-90627
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    May 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    China
    Variables measured
    Market Size
    Description

    The China geospatial analytics market is experiencing robust growth, projected to reach $2.52 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 10.69% from 2025 to 2033. This expansion is driven by increasing government investment in infrastructure development, the rising adoption of advanced technologies like AI and machine learning in geospatial analysis, and the growing need for precise location-based services across diverse sectors. The market's segmentation reveals significant opportunities across various application verticals. Agriculture benefits from improved precision farming and resource management, while utility and communication companies leverage geospatial analytics for network optimization and asset management. The defense and intelligence sectors utilize the technology for strategic planning and surveillance, alongside growing applications in government administration, mining, transportation, healthcare, and real estate. The competitive landscape includes both established players and emerging innovative companies, indicating a dynamic market with potential for consolidation and further technological advancements. The market's growth is further fueled by the increasing availability of high-resolution satellite imagery, advancements in data processing capabilities, and the growing adoption of cloud-based geospatial analytics platforms. However, data privacy concerns, the high cost of implementation, and the need for skilled professionals pose challenges to market expansion. Despite these restraints, the long-term outlook for the China geospatial analytics market remains positive, driven by consistent technological innovation and increasing demand across a wide spectrum of industries. The continued integration of geospatial analytics into existing business operations and strategic decision-making processes promises significant market growth in the coming years. This makes China a strategically important market for both domestic and international players in the geospatial analytics sector. Recent developments include: March 2023: China launched a remote sensing satellite recently. At the Xichang Satellite Launching Center of Sichuan Province in southwest China, a Yaogan 34-04 satellite lifted off on Long March 2C. The Long March 2C rocket is a two-stage launch vehicle that has been used on various missions, such as remote sensing and navigation satellites., August 2023: China successfully launched the high-orbit synthetic aperture radar (SAR) satellite, L-SAR4 01. The satellite was placed into orbit from the Xichang Satellite Centre in southwest China, Sichuan Province. The LSAR4 01 Remote Sensing Satellite will allow the delivery of all-weather, day-to-day imaging of Chinese territory and areas surrounding it. It is suitable for disaster monitoring and other applications, as it provides the advantages of a short recalibration period and wide image coverage.. Key drivers for this market are: Increase in Adoption of Smart City Development, Introduction of 5G to Boost Market Growth. Potential restraints include: Increase in Adoption of Smart City Development, Introduction of 5G to Boost Market Growth. Notable trends are: 5G to boost the market growth during the forecast period.

  8. a

    Spatial Analysis Interpreted Results

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jun 23, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2020). Spatial Analysis Interpreted Results [Dataset]. https://hub.arcgis.com/maps/90385f8b2368420fb93a5f6923c3461a
    Explore at:
    Dataset updated
    Jun 23, 2020
    Dataset authored and provided by
    U.S. Fish & Wildlife Service
    Area covered
    Description

    ◦Overview: A key principle of Landscape Conservation Design is that “Stakeholders design landscape configurations that promote resilient and sustainable social-ecological systems” (Campellone et al, 2018). From Campellone et al: (2018): “A beneficial aspect of stakeholder engagement in spatial design is the development of a deeper trust that the models used to identify priorities integrate their interests with other information and knowledge, which furthers social learning and collective agreement on resource allocation and landscape objectives” (Melillo et al., 2014). Overall, the co-development of a spatial design helps organize landscape elements while maintaining and improving stakeholder buy-in” (De Groot, Alkemade, Braat, Hein, & Willemen, 2009; Melillo et al., 2014).”◦Analytical Question: Create a prototype landscape design (blueprint) that integrates multiple values on the landscape including wildlife conservation, forest and agriculture production, recreation, cultural and human health. The prototype will be created based upon readily available data.This analysis will be used to understand landscape-scale conservation and working landscape priorities, while incorporating other important values.The blueprint will be used to represent a sustainable landscape in the future.◦Desired Outcome: A map or maps that represents a balance of multiple values on the landscape, with a focus on conservation and working landscape values.

  9. Datasets for R-as-GIS book, lectures, and workshops

    • figshare.com
    txt
    Updated Apr 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Taro Mieno (2024). Datasets for R-as-GIS book, lectures, and workshops [Dataset]. http://doi.org/10.6084/m9.figshare.24529897.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Apr 26, 2024
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Taro Mieno
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data repository hosts datasets that are used for students to practice spatial operations introduced in R-as-GIS lectures and workshops.

  10. n

    Thinking Geographically: Introduction to Maps, Geographic Data, The Power of...

    • library.ncge.org
    Updated Aug 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2022). Thinking Geographically: Introduction to Maps, Geographic Data, The Power of Geographic Data, Spatial Concepts (1.1-1.4)2022 [Dataset]. https://library.ncge.org/documents/d638748c696942f8be245cf85c580b3c
    Explore at:
    Dataset updated
    Aug 12, 2022
    Dataset authored and provided by
    NCGE
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Bell Ringer activities designed to support Advanced Placement Human Geography.

  11. Spatial distribution of housing rental value in Amsterdam 1647-1652

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv, jpeg, png +1
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Weixuan Li; Weixuan Li (2025). Spatial distribution of housing rental value in Amsterdam 1647-1652 [Dataset]. http://doi.org/10.5281/zenodo.7473120
    Explore at:
    txt, csv, png, bin, jpegAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Weixuan Li; Weixuan Li
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Amsterdam
    Description

    This dataset visualises the spatial distribution of the rental value in Amsterdam between 1647 and 1652. The source of rental value comes from the Verponding registration in Amsterdam. The verponding or the ‘Verpondings-quohieren van den 8sten penning’ was a tax in the Netherlands on the 8th penny of the rental value of immovable property that had to be paid annually. In Amsterdam, the citywide verponding registration started in 1647 and continued into the early 19th century. With the introduction of the cadastre system in 1810, the verponding came to an end.

    The original tax registration is kept in the Amsterdam City Archives (Archief nr. 5044) and the four registration books transcribed in this dataset are Archief 5044, inventory 255, 273, 281, 284. The verponding was collected by districts (wijken). The tax collectors documented their collecting route by writing down the street or street-section names as they proceed. For each property, the collector wrote down the names of the owner and, if applicable, the renter (after ‘per’), and the estimated rental value of the property (in guilders). Next to the rental value was the tax charged (in guilders and stuivers). Below the owner/renter names and rental value were the records of tax payments by year.

    This dataset digitises four registration books of the verponding between 1647 and 1652 in two ways. First, it transcribes the rental value of all real estate properties listed in the registrations. The names of the owners/renters are transcribed only selectively, focusing on the properties that exceeded an annual rental value of 300 guilders. These transcriptions can be found in Verponding1647-1652.csv. For a detailed introduction to the data, see Verponding1647-1652_data_introduction.txt.

    Second, it geo-references the registrations based on the street names and the reconstruction of tax collectors’ travel routes in the verponding. The tax records are then plotted on the historical map of Amsterdam using the first cadaster of 1832 as a reference. Since the geo-reference is based on the street or street sections, the location of each record/house may not be the exact location but rather a close proximation of the possible locations based on the street names and the sequence of the records on the same street or street section. Therefore, this geo-referenced verponding can be used to visualise the rental value distribution in Amsterdam between 1647 and 1652. The preview below shows an extrapolation of rental values in Amsterdam. And for the geo-referenced GIS files, see Verponding_wijken.shp.

    GIS specifications:

    Coordination Reference System (CRS): Amersfoort/RD New (ESPG:28992)

    Historical map tiles URL (From Amsterdam Time Machine)

    NB: This verponding dataset is a provisional version. The georeferenced points and the name transcriptions might contain errors and need to be treated with caution.

    Contributors

    • Historical and archival research: Weixuan Li, Bart Reuvekamp
    • Plotting of geo-referenced points: Bart Reuvekamp
    • Spatial analysis: Weixuan Li
    • Mapping software: QGIS
    • Acknowledgements: Virtual Interiors project, Daan de Groot

  12. G

    Geospatial Analytics Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Jan 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Geospatial Analytics Market Report [Dataset]. https://www.marketresearchforecast.com/reports/geospatial-analytics-market-1650
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Jan 10, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geospatial Analytics Marketsize was valued at USD 79.06 USD billion in 2023 and is projected to reach USD 202.74 USD billion by 2032, exhibiting a CAGR of 14.4 % during the forecast period. Recent developments include: February 2024: Placer.ai and Esri, a Geographic Information System (GIS) technology provider, partnered to empower customers with enhanced analytics capabilities, integrating consumer behavior analysis. Additionally, the agreement will foster collaborations to unlock further features by synergizing our respective product offerings., December 2023: CKS and Esri India Technologies Pvt Ltd teamed up to introduce the 'MMGEIS' program, focusing on students from 8th grade to undergraduates, to position India as a global leader in geospatial technology through skill development and innovation., December 2023: In collaboration with Bayanat, the UAE Space Agency revealed the initiation of the operational phase of the Geospatial Analytics Platform during its participation in organizing the Space at COP28 initiatives., November 2023: USAID unveiled its inaugural Geospatial Strategy, designed to harness geospatial data and technology for more targeted international program delivery. The strategy foresees a future where geographic methods enhance the effectiveness of USAID's efforts by pinpointing development needs, monitoring program implementation, and evaluating outcomes based on location., May 2023: TomTom International BV, a geolocation technology specialist, expanded its partnership with Alteryx, Inc. Through this partnership, Alteryx will use TomTom’s Maps APIs and location data to integrate spatial data into Alteryx’s products and location insights packages, such as Alteryx Designer., May 2023: Oracle Corporation announced the launch of Oracle Spatial Studio 23.1, available in the Oracle Cloud Infrastructure (OCI) marketplace and for on-premises deployment. Users can browse, explore, and analyze geographic data stored in and managed by Oracle using a no-code mapping tool., May 2023: CAPE Analytics, a property intelligence company, announced an enhanced insurance offering by leveraging Google geospatial data. Google’s geospatial data can help CAPE create appropriate solutions for insurance carriers., February 2023: HERE Global B.V. announced a collaboration with Cognizant, an information technology, services, and consulting company, to offer digital customer experience using location data. In this partnership, Cognizant will utilize the HERE location platform’s real-time traffic data, weather, and road attribute data to develop spatial intelligent solutions for its customers., July 2022: Athenium Analytics, a climate risk analytics company, launched a comprehensive tornado data set on the Esri ArcGIS Marketplace. This offering, which included the last 25 years of tornado insights from Athenium Analytics, would extend its Bronze partner relationship with Esri. . Key drivers for this market are: Advancements in Technologies to Fuel Market Growth. Potential restraints include: Lack of Standardization Coupled with Shortage of Skilled Workforce to Limit Market Growth. Notable trends are: Rise of Web-based GIS Platforms Will Transform Market.

  13. United States Geospatial Analytics Market Forecasts to 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jan 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). United States Geospatial Analytics Market Forecasts to 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/united-states-geospatial-analytics
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jan 28, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    United States
    Description

    The United States Geospatial Analytics Market is Segmented by Type (Surface Analysis, Network Analysis, Geovisualization), by End User Vertical ( Agriculture, Utility and Communication, Defense and Intelligence, Government, Mining and Natural Resources, Automotive and Transportation, Healthcare, Real Estate and Construction). The Market Sizes and Forecasts are Provided in Terms of Value (USD) for all the Above Segments.

  14. Vector datasets for workshop "Introduction to Geospatial Raster and Vector...

    • figshare.com
    Updated Oct 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryan Avery (2022). Vector datasets for workshop "Introduction to Geospatial Raster and Vector Data with Python" [Dataset]. http://doi.org/10.6084/m9.figshare.21273837.v1
    Explore at:
    application/x-sqlite3Available download formats
    Dataset updated
    Oct 5, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Ryan Avery
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cadaster data from PDOK used to illustrate the use of geopandas and shapely, geospatial python packages for manipulating vector data. The brpgewaspercelen_definitief_2020.gpkg file has been subsetted in order to make the download manageable for workshops. Other datasets are copies of those available from PDOK.

  15. g

    BLM Natl WesternUS GRSG Sagebrush Focal Areas

    • gimi9.com
    • catalog.data.gov
    Updated Jun 22, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). BLM Natl WesternUS GRSG Sagebrush Focal Areas [Dataset]. https://gimi9.com/dataset/data-gov_blm-natl-westernus-grsg-sagebrush-focal-areas-87219/
    Explore at:
    Dataset updated
    Jun 22, 2015
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This dataset is a modified version of the FWS developed data depicting “Highly Important Landscapes”, as outlined in Memorandum FWS/AES/058711 and provided to the Wildlife Habitat Spatial analysis Lab on October 29th 2014. Other names and acronyms used to refer to this dataset have included: Areas of Significance (AoSs - name of GIS data set provided by FWS), Strongholds (FWS), and Sagebrush Focal Areas (SFAs - BLM). The BLM will refer to these data as Sagebrush Focal Areas (SFAs). Data were provided as a series of ArcGIS map packages which, when extracted, contained several datasets each. Based on the recommendation of the FWS Geographer/Ecologist (email communication, see data originator for contact information) the dataset called “Outiline_AreasofSignificance” was utilized as the source for subsequent analysis and refinement. Metadata was not provided by the FWS for this dataset. For detailed information regarding the dataset’s creation refer to Memorandum FWS/AES/058711 or contact the FWS directly. Several operations and modifications were made to this source data, as outlined in the “Description” and “Process Step” sections of this metadata file. Generally: The source data was named by the Wildlife Habitat Spatial Analysis Lab to identify polygons as described (but not identified in the GIS) in the FWS memorandum. The Nevada/California EIS modified portions within their decision space in concert with local FWS personnel and provided the modified data back to the Wildlife Habitat Spatial Analysis Lab. Gaps around Nevada State borders, introduced by the NVCA edits, were then closed as was a large gap between the southern Idaho & southeast Oregon present in the original dataset. Features with an area below 40 acres were then identified and, based on FWS guidance, either removed or retained. Finally, guidance from BLM WO resulted in the removal of additional areas, primarily non-habitat with BLM surface or subsurface management authority. Data were then provided to each EIS for use in FEIS development. Based on guidance from WO, SFAs were to be limited to BLM decision space (surface/sub-surface management areas) within PHMA. Each EIS was asked to provide the limited SFA dataset back to the National Operations Center to ensure consistent representation and analysis. Returned SFA data, modified by each individual EIS, was then consolidated at the BLM’s National Operations Center retaining the three standardized fields contained in this dataset.Several Modifications from the original FWS dataset have been made. Below is a summary of each modification.1. The data as received from FWS: 16,514,163 acres & 1 record.2. Edited to name SFAs by Wildlife Habitat Spatial Analysis Lab:Upon receipt of the “Outiline_AreasofSignificance” dataset from the FWS, a copy was made and the one existing & unnamed record was exploded in an edit session within ArcMap. A text field, “AoS_Name”, was added. Using the maps provided with Memorandum FWS/AES/058711, polygons were manually selected and the “AoS_Name” field was calculated to match the names as illustrated. Once all polygons in the exploded dataset were appropriately named, the dataset was dissolved, resulting in one record representing each of the seven SFAs identified in the memorandum.3. The NVCA EIS made modifications in concert with local FWS staff. Metadata and detailed change descriptions were not returned with the modified data. Contact Leisa Wesch, GIS Specialist, BLM Nevada State Office, 775-861-6421, lwesch@blm.gov, for details.4. Once the data was returned to the Wildlife Habitat Spatial Analysis Lab from the NVCA EIS, gaps surrounding the State of NV were closed. These gaps were introduced by the NVCA edits, exacerbated by them, or existed in the data as provided by the FWS. The gap closing was performed in an edit session by either extending each polygon towards each other or by creating a new polygon, which covered the gap, and merging it with the existing features. In addition to the gaps around state boundaries, a large area between the S. Idaho and S.E. Oregon SFAs was filled in. To accomplish this, ADPP habitat (current as of January 2015) and BLM GSSP SMA data were used to create a new polygon representing PHMA and BLM management that connected the two existing SFAs.5. In an effort to simplify the FWS dataset, features whose areas were less than 40 acres were identified and FWS was consulted for guidance on possible removal. To do so, features from #4 above were exploded once again in an ArcMap edit session. Features whose areas were less than forty acres were selected and exported (770 total features). This dataset was provided to the FWS and then returned with specific guidance on inclusion/exclusion via email by Lara Juliusson (lara_juliusson@fws.gov). The specific guidance was:a. Remove all features whose area is less than 10 acresb. Remove features identified as slivers (the thinness ratio was calculated and slivers identified by Lara Juliusson according to https://tereshenkov.wordpress.com/2014/04/08/fighting-sliver-polygons-in-arcgis-thinness-ratio/) and whose area was less than 20 acres.c. Remove features with areas less than 20 acres NOT identified as slivers and NOT adjacent to other features.d. Keep the remainder of features identified as less than 40 acres.To accomplish “a” and “b”, above, a simple selection was applied to the dataset representing features less than 40 acres. The select by location tool was used, set to select identical, to select these features from the dataset created in step 4 above. The records count was confirmed as matching between the two data sets and then these features were deleted. To accomplish “c” above, a field (“AdjacentSH”, added by FWS but not calculated) was calculated to identify features touching or intersecting other features. A series of selections was used: first to select records 6. Based on direction from the BLM Washington Office, the portion of the Upper Missouri River Breaks National Monument (UMRBNM) that was included in the FWS SFA dataset was removed. The BLM NOC GSSP NLCS dataset was used to erase these areas from #5 above. Resulting sliver polygons were also removed and geometry was repaired.7. In addition to removing UMRBNM, the BLM Washington Office also directed the removal of Non-ADPP habitat within the SFAs, on BLM managed lands, falling outside of Designated Wilderness’ & Wilderness Study Areas. An exception was the retention of the Donkey Hills ACEC and adjacent BLM lands. The BLM NOC GSSP NLCS datasets were used in conjunction with a dataset containing all ADPP habitat, BLM SMA and BLM sub-surface management unioned into one file to identify and delete these areas.8. The resulting dataset, after steps 2 – 8 above were completed, was dissolved to the SFA name field yielding this feature class with one record per SFA area.9. Data were provided to each EIS for use in FEIS allocation decision data development.10. Data were subset to BLM decision space (surface/sub-surface) within PHMA by each EIS and returned to the NOC.11. Due to variations in field names and values, three standardized fields were created and calculated by the NOC:a. SFA Name – The name of the SFA.b. Subsurface – Binary “Yes” or “No” to indicated federal subsurface estate.c. SMA – Represents BLM, USFS, other federal and non-federal surface management 12. The consolidated data (with standardized field names and values) were dissolved on the three fields illustrated above and geometry was repaired, resulting in this dataset.

  16. U

    Composite relative risk indices for dreissenid mussel introductions in the...

    • data.usgs.gov
    • catalog.data.gov
    Updated Jul 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joseph Raymond; Lucas Bair; Michael Springborn; Matthew Neilson; Timothy Counihan; Wesley Daniel (2025). Composite relative risk indices for dreissenid mussel introductions in the Missouri River Basin: scripts and output [Dataset]. http://doi.org/10.5066/P14DZRCH
    Explore at:
    Dataset updated
    Jul 30, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Joseph Raymond; Lucas Bair; Michael Springborn; Matthew Neilson; Timothy Counihan; Wesley Daniel
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2021 - 2024
    Area covered
    Missouri River
    Description

    This data product develops a composite relative risk index (CRR) for watersheds within the Missouri River Basin, a region in the U.S. on the front line of dreissenid spread. The CRR is developed using datasets in order to account for the direct and indirect damages from a potential infestation along with the risk of an infestation occurring with a HUC10 watershed. Included are indices calculated on a Missouri River Basin-wide scale, and indices calculated on an individual state basis. This dataset includes the code used to build the CRR dataset and generated geospatial output.

  17. H

    Effective Data Management and Spatial Analytics

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Feb 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Data Lab (2024). Effective Data Management and Spatial Analytics [Dataset]. http://doi.org/10.7910/DVN/PG5YMV
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 20, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Spatial Data Lab
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This webinar introduced the implementations of effective data management and spatial analytics by academic and industry leaders of the field, and discuss the directions for further enhancement through integration with a cloud-based platform for research data sharing and workflow-based data analytics.

  18. D

    Geospatial Data Management Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Oct 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Geospatial Data Management Market Research Report 2033 [Dataset]. https://dataintelo.com/report/geospatial-data-management-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geospatial Data Management Market Outlook



    According to our latest research, the global geospatial data management market size stood at USD 103.7 billion in 2024, demonstrating robust momentum driven by rapid digital transformation across industries. The market is forecasted to reach USD 271.5 billion by 2033, expanding at a remarkable CAGR of 11.2% during the 2025–2033 period. This growth is primarily fueled by the increasing adoption of location-based services, proliferation of IoT devices, and the rising need for advanced spatial analytics to support critical decision-making across sectors such as urban planning, disaster management, and transportation.




    One of the primary growth factors for the geospatial data management market is the escalating reliance on spatial data analytics to drive operational efficiency and innovation. Organizations are increasingly leveraging geospatial technologies to enhance asset management, optimize logistics, and improve disaster response strategies. The integration of geospatial data with artificial intelligence and machine learning algorithms has further amplified the value proposition, enabling predictive analytics and real-time insights. This trend is particularly evident in sectors like transportation, where route optimization and traffic management are critical, and in utilities, where asset monitoring and infrastructure planning rely heavily on accurate geospatial information.




    Moreover, the rapid expansion of smart city initiatives worldwide has significantly contributed to the demand for advanced geospatial data management solutions. Governments and municipal authorities are deploying sophisticated GIS platforms to manage urban growth, streamline resource allocation, and improve public services. The convergence of geospatial data with IoT sensors and cloud computing has enabled real-time monitoring of urban environments, facilitating data-driven policy making and efficient emergency response. As cities continue to grow and urbanize, the need for scalable and interoperable geospatial management tools is expected to intensify, driving further investment and innovation in this market.




    Another significant driver is the increasing frequency and severity of natural disasters, which has underscored the importance of robust geospatial data management for disaster preparedness and response. Advanced geospatial analytics enable authorities to model risk scenarios, map vulnerable regions, and coordinate relief efforts more effectively. The agriculture sector is also witnessing a surge in geospatial adoption, with precision farming and crop monitoring applications helping to maximize yields and minimize resource usage. As climate change continues to pose unprecedented challenges, the ability to harness and manage spatial data will be critical for resilience and sustainability across multiple industries.




    Regionally, North America currently dominates the geospatial data management market, accounting for the largest share in 2024. The presence of leading technology providers, strong government support for spatial data infrastructure, and high adoption rates of advanced analytics have collectively contributed to this leadership. However, Asia Pacific is expected to register the fastest CAGR through 2033, propelled by rapid urbanization, expanding smart city projects, and growing investments in geospatial technologies across emerging economies such as China and India. Europe, Latin America, and the Middle East & Africa are also witnessing increased adoption, albeit at varying paces, reflecting the global nature of the market’s expansion.



    Component Analysis



    The geospatial data management market by component is segmented into software, hardware, and services, each playing a distinct and vital role in the ecosystem. The software segment encompasses Geographic Information Systems (GIS), remote sensing software, spatial data analytics platforms, and mapping tools. This segment is witnessing rapid innovation with the introduction of cloud-native GIS platforms, open-source spatial analytics, and AI-driven mapping solutions. The demand for user-friendly, scalable, and interoperable software is surging as organizations seek to derive actionable insights from large volumes of geospatial data. Vendors are increasingly focusing on enhancing data visualization, integration capabilities, and real-time analytics to cater to diverse industry requirements.


    &l

  19. Data from: Exploring local and global regression models to estimate the...

    • scielo.figshare.com
    jpeg
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rafael Silva dos Anjos; Ranyére Silva Nóbrega; Henrique dos Santos Ferreira; António Pais de Lacerda; Nuno de Sousa-Neves (2023). Exploring local and global regression models to estimate the spatial variability of Zika and Chikungunya cases in Recife, Brazil [Dataset]. http://doi.org/10.6084/m9.figshare.14277151.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    SciELOhttp://www.scielo.org/
    Authors
    Rafael Silva dos Anjos; Ranyére Silva Nóbrega; Henrique dos Santos Ferreira; António Pais de Lacerda; Nuno de Sousa-Neves
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brazil, Recife
    Description

    Abstract INTRODUCTION: In this study, we aim to compare spatial statistic models to estimate the spatial distribution of Zika and Chikungunya infections in the city of Recife, Brazil. We also aim to establish the relationship between the diseases and the analyzed geographical conditions. METHODS: The models were defined by combining three categories: type of spatial unit, calculation of the dependent variable format, and estimation methods (Geographical Weighted Regression [GWR] and Ordinary Least Square [OLS]). We identified the most accurate model to estimate the spatial distribution of the diseases. After selecting the model that provided best results, the relationship between the geographical conditions and the incidence of the diseases was analyzed. RESULTS: It was observed that the matrix of 100 meters (as the spatial unit) showed the highest efficiency to estimate the diseases. The best results were observed in the models that utilized the kernel density estimation (as the calculation of the dependent variable). In all models, the GWR method showed the best results. By considering the OLS coefficient values, it was observed that all geographical conditions are related to the incidence of Zika and Chikungunya, while the GWR coefficient values showed where this relationship was more noticeable. CONCLUSIONS: The model that utilized the combination of the matrix of 100 meters, kernel density estimation (as the calculation of the dependent variable) and GWR method showed the highest efficiency in estimating the spatial distribution of the diseases. The coefficient values showed that all analyzed geographical conditions are related to the illnesses’ incidence.

  20. f

    A New Methodology of Spatial Cross-Correlation Analysis

    • plos.figshare.com
    xlsx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yanguang Chen (2023). A New Methodology of Spatial Cross-Correlation Analysis [Dataset]. http://doi.org/10.1371/journal.pone.0126158
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Yanguang Chen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China’s urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ckan.americaview.org (2022). Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/open-source-spatial-analytics-r
Organization logo

Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN

Explore at:
Dataset updated
Sep 10, 2022
Dataset provided by
CKANhttps://ckan.org/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.

Search
Clear search
Close search
Google apps
Main menu