Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Digital raster graphic (1:24,000-scale DRG) is a scanned image of a US Geological Survey (USGS) standard series topographic map. The image is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator projection.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
U.S. Geological Survey (USGS) scientists conducted field data collection efforts between October 25th and 31st, 2020 at several sites in eastern Iowa using high accuracy surveying technologies. The work was initiated as an effort to validate commercially acquired topographic light detection and ranging (lidar) data that was collected between December 7th, 2019 and November 19th, 2020 using wide area mapping lidar systems for the USGS 3D Elevation Program (3DEP). The goal was to compare and validate the airborne lidar data to topographic, structural, and infrastructural data collected through more traditional means (e.g., Global Navigational Satellite System (GNSS) surveying). Evaluating these data will provide valuable information on the performance of wide area topographic lidar mapping capabilities that are becoming more widely used in 3DEP. The airborne lidar was collected to support the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Hig ...
This coverage contains the section lines for the Public Land Survey System (PLSS). These lines form polygons which are labelled for PLSS township, range and section number. Coordinates were digitized from U. S. Geological Survey 7.5' topographic maps (paper copies) using a digitizing program developed in-house by the Geological Survey Bureau, Iowa DNR. The digitizing tablet accuracy was 1/50 inch. Section lines from individual quads were combined and edited using PC Arc/Info.
This Digital Elevation Model (DEM) of the bedrock surface elevation in Iowa was compiled using all available data, principally information from GEOSAM, supplemented with well and boring information from the Iowa DOT, exposure reports from Iowa Geological & Water Survey reports and files, and the Department of Soil Conservation county soil maps for Iowa. The soil maps were especially valuable, since they identified soils that encountered bedrock within the soil horizon, and less dependably also spot-located rock exposures. A 50 foot contour interval was chosen for the map because it was considered to best represent the accuracy of the well data, allowed for fairly good representation of the bedrock surface in areas with limited well control, and was mappable in high relief areas (the contours packed so close together that it precluded mapping or forced the software to snap-join contours). The 50 foot contour interval also allowed areas where bedrock was present within the soil horizon (2-3 feet) to be treated as areas of exposures. In these areas the bedrock elevation was mapped as only slightly below the surface elevation, so contours on the 7«' topographic maps were closely followed in mapping the bedrock elevation. Consequently, on the completed map of bedrock elevation, these areas display much more contorted and crenulated contour lines than the areas where only drill control was utilized.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Digital raster graphic (1:100,000-scale DRG) is a scanned image of a US Geological Survey (USGS) standard series topographic map. The image is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator projection.
This site provides free access to Iowa geographic map data, including aerial photography, orthophotos, elevation maps, and historical maps. The data is available through an on-line map viewer and through Web Map Service (WMS) connections for GIS. The site was developed by the Iowa State University Geographic Information Systems Support and Research Facility in cooperation with the Iowa Department of Natural Resources, the USDA Natural Resources Conservation Service, and the Massachusetts Institute of Technology. This site was first launched in March 1999.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Digital raster graphic (1:250,000-scale DRG) is a scanned image of a US Geological Survey (USGS) standard series topographic map. The image is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator projection.
Published to allow joining of spreadsheet data to county geometry in ESRI Maps for Office or Map Analysis Tools, contains Iowa DOM County Code (1-99) as a small integer, Census County FIPS as a both an string and integer. This data was originally created by the Iowa DNR and digitized from USGS 7.5' topographic maps.Click on the data tab above to see an example of expected data. OCIO has a tutorial on how to join your spreadsheet to this Feature layer to create a new feature layer with your county based information. Please contact patrick.wilke-brown@iowa.gov.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
This dataset provides the geographic names data for Iowa. All names data products are extracted from the Geographic Names Information System (GNIS), the Federal Government's repository of official geographic names. The GNIS contains the federally recognized name of each feature and defines its _location by State, county, USGS topographic map, and geographic coordinates. GNIS also lists variant names, which are non-official names by which a feature is or was known. Other attributes include unique Feature ID and feature class. Feature classes under the purview of the U.S. Board on Geographic Names include natural features, unincorporated populated places, canals, channels, reservoirs, and more.
This dataset contains commonly used codes for counties and polygons representing boundaries for counties of the State of Iowa. Boundaries were developed from a set of 99 individual coverages of the Public Land Survey System (PLSS) for each county in the state. The PLSS coverages were digitized from paper copies of 7.5' topographic quadrangle maps. River boundaries were also digitized from 7.5' maps.
These vector contour lines are derived from the 3D Elevation Program using automated and semi-automated processes. They were created to support 1:24,000-scale topographic map products, but are also published in this GIS vector format. Contour intervals are assigned by 7.5-minute quadrangle, so this vector dataset is not visually seamless across quadrangle boundaries. The vector lines have elevation attributes (in feet above mean sea level on NAVD88), but this dataset does not carry line symbols or annotation.
These vector contour lines are derived from the 3D Elevation Program using automated and semi-automated processes. They were created to support 1:24,000-scale topographic map products, but are also published in this GIS vector format. Contour intervals are assigned by 7.5-minute quadrangle, so this vector dataset is not visually seamless across quadrangle boundaries. The vector lines have elevation attributes (in feet above mean sea level on NAVD88), but this dataset does not carry line symbols or annotation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Elevation Dataset (NED) is a primary elevation data product that has been produced and distributed by the U.S. Geological Survey (USGS). Since its inception, the USGS has compiled and published topographic information in many forms, and the NED is a significant development in this long line of products that describe the land surface. The NED provides seamless raster elevation data of the conterminous United States (CONUS), Alaska, Hawaii, U.S. island territories, Mexico, and Canada. The NED is derived from diverse source datasets that are processed to a specification with consistent resolutions, coordinate system, elevation units, and horizontal and vertical datums. The NED was developed as the logical result of the maturation of the long-standing USGS elevation program, which for many years concentrated on production of quadrangle-based digital elevation models (DEM). The NED contributes to the elevation layer of The National Map, and it provides basic elevation information for earth science studies and mapping applications in the U.S. and most of North America.For over 15 years (1999–2014), the NED served as the flagship elevation product of the USGS. In 2015, the 3D Elevation Program (3DEP) was initiated. When the 3DEP initiative became operational, the name “National Elevation Dataset” (and the abbreviation “NED”) were retired as the USGS elevation activities and data were rebranded under the 3DEP banner. However, elevation data produced and distributed as part of the NED are still widely used (and distributed by other entities), so there is a continuing need for detailed documentation, including how it was produced, its accuracy, and how it is used.
These vector contour lines are derived from the 3D Elevation Program using automated and semi-automated processes. They were created to support 1:24,000-scale topographic map products, but are also published in this GIS vector format. Contour intervals are assigned by 7.5-minute quadrangle, so this vector dataset is not visually seamless across quadrangle boundaries. The vector lines have elevation attributes (in feet above mean sea level on NAVD88), but this dataset does not carry line symbols or annotation.
An interactive map of contour maps, fishing structure locations, topography and more.
Version 10.0 (Alaska, Hawaii and Puerto Rico added) of these data are part of a larger U.S. Geological Survey (USGS) project to develop an updated geospatial database of mines, mineral deposits, and mineral regions in the United States. Mine and prospect-related symbols, such as those used to represent prospect pits, mines, adits, dumps, tailings, etc., hereafter referred to as “mine” symbols or features, have been digitized from the 7.5-minute (1:24,000, 1:25,000-scale; and 1:10,000, 1:20,000 and 1:30,000-scale in Puerto Rico only) and the 15-minute (1:48,000 and 1:62,500-scale; 1:63,360-scale in Alaska only) archive of the USGS Historical Topographic Map Collection (HTMC), or acquired from available databases (California and Nevada, 1:24,000-scale only). Compilation of these features is the first phase in capturing accurate locations and general information about features related to mineral resource exploration and extraction across the U.S. The compilation of 725,690 point and polygon mine symbols from approximately 106,350 maps across 50 states, the Commonwealth of Puerto Rico (PR) and the District of Columbia (DC) has been completed: Alabama (AL), Alaska (AK), Arizona (AZ), Arkansas (AR), California (CA), Colorado (CO), Connecticut (CT), Delaware (DE), Florida (FL), Georgia (GA), Hawaii (HI), Idaho (ID), Illinois (IL), Indiana (IN), Iowa (IA), Kansas (KS), Kentucky (KY), Louisiana (LA), Maine (ME), Maryland (MD), Massachusetts (MA), Michigan (MI), Minnesota (MN), Mississippi (MS), Missouri (MO), Montana (MT), Nebraska (NE), Nevada (NV), New Hampshire (NH), New Jersey (NJ), New Mexico (NM), New York (NY), North Carolina (NC), North Dakota (ND), Ohio (OH), Oklahoma (OK), Oregon (OR), Pennsylvania (PA), Rhode Island (RI), South Carolina (SC), South Dakota (SD), Tennessee (TN), Texas (TX), Utah (UT), Vermont (VT), Virginia (VA), Washington (WA), West Virginia (WV), Wisconsin (WI), and Wyoming (WY). The process renders not only a more complete picture of exploration and mining in the U.S., but an approximate timeline of when these activities occurred. These data may be used for land use planning, assessing abandoned mine lands and mine-related environmental impacts, assessing the value of mineral resources from Federal, State and private lands, and mapping mineralized areas and systems for input into the land management process. These data are presented as three groups of layers based on the scale of the source maps. No reconciliation between the data groups was done.Datasets were developed by the U.S. Geological Survey Geology, Geophysics, and Geochemistry Science Center (GGGSC). Compilation work was completed by USGS National Association of Geoscience Teachers (NAGT) interns: Emma L. Boardman-Larson, Grayce M. Gibbs, William R. Gnesda, Montana E. Hauke, Jacob D. Melendez, Amanda L. Ringer, and Alex J. Schwarz; USGS student contractors: Margaret B. Hammond, Germán Schmeda, Patrick C. Scott, Tyler Reyes, Morgan Mullins, Thomas Carroll, Margaret Brantley, and Logan Barrett; and by USGS personnel Virgil S. Alfred, Damon Bickerstaff, E.G. Boyce, Madelyn E. Eysel, Stuart A. Giles, Autumn L. Helfrich, Alan A. Hurlbert, Cheryl L. Novakovich, Sophia J. Pinter, and Andrew F. Smith.USMIN project website: https://www.usgs.gov/USMIN
A landscape is a collection of land shapes or land forms. Landform regions are a grouping of individual landscape features that have a common geomophology. In Iowa, these regions are composed of earth materials derived from glacial, wind, river, and marine environments of the geologic past. This is a new representation of the landform regions of Iowa, at a scale of 1:24,000, and derived from a variety of sources including soils, slope maps, topographic maps
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental assessments such as vegetation distribution patterns. The bathymetry "footprint" is a database that can be used as a tool to provide a quick search of collection dates corresponding to bathymetric coverages within each LTRM pool.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Digital raster graphic (1:24,000-scale DRG) is a scanned image of a US Geological Survey (USGS) standard series topographic map. The image is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator projection.