13 datasets found
  1. H

    Iris dataset for machine learning

    • dataverse.harvard.edu
    Updated Oct 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kyle M. Monahan (2020). Iris dataset for machine learning [Dataset]. http://doi.org/10.7910/DVN/R2RGXR
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 19, 2020
    Dataset provided by
    Harvard Dataverse
    Authors
    Kyle M. Monahan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This is an iris dataset commonly used in machine learning. Accessed on 10-19-2020 from the following URL: http://faculty.smu.edu/tfomby/eco5385_eco6380/data/Iris.xls

  2. h

    iris

    • huggingface.co
    Updated Sep 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    scikit-learn (2022). iris [Dataset]. https://huggingface.co/datasets/scikit-learn/iris
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 23, 2022
    Dataset authored and provided by
    scikit-learn
    License

    https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/

    Description

    Iris Species Dataset

    The Iris dataset was used in R.A. Fisher's classic 1936 paper, The Use of Multiple Measurements in Taxonomic Problems, and can also be found on the UCI Machine Learning Repository. It includes three iris species with 50 samples each as well as some properties about each flower. One flower species is linearly separable from the other two, but the other two are not linearly separable from each other. The dataset is taken from UCI Machine Learning Repository's… See the full description on the dataset page: https://huggingface.co/datasets/scikit-learn/iris.

  3. Edgar Anderson's Iris Data

    • zenodo.org
    csv
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Edgar Anderson; Edgar Anderson (2020). Edgar Anderson's Iris Data [Dataset]. http://doi.org/10.5281/zenodo.1319069
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Edgar Anderson; Edgar Anderson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This famous (Fisher's or Anderson's) iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

  4. T

    iris

    • tensorflow.org
    Updated Sep 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). iris [Dataset]. https://www.tensorflow.org/datasets/catalog/iris
    Explore at:
    Dataset updated
    Sep 9, 2023
    Description

    This is perhaps the best known database to be found in the pattern recognition literature. Fisher's paper is a classic in the field and is referenced frequently to this day. (See Duda & Hart, for example.) The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable from each other.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('iris', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

  5. Iris_Classification

    • kaggle.com
    Updated Sep 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    end_of_night.17j03 (2023). Iris_Classification [Dataset]. https://www.kaggle.com/datasets/endofnight17j03/iris-classification
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 14, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    end_of_night.17j03
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    The Iris Classification dataset is a well-known dataset in machine learning, commonly used for classification tasks. It contains measurements of various iris flowers, including sepal length, sepal width, petal length, and petal width, as well as the corresponding species label.

    Columns Description:

    1. Sepal Length (cm): Length of the sepals of the iris flower.

    2. Sepal Width (cm): Width of the sepals of the iris flower.

    3. Petal Length (cm): Length of the petals of the iris flower.

    4. Petal Width (cm): Width of the petals of the iris flower.

    5. Species: The species of the iris flower, which is the target variable to be predicted.

    This dataset is commonly used for practicing classification algorithms and exploring data analysis techniques.

  6. irisknn

    • kaggle.com
    Updated Aug 4, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaurya Munshi (2017). irisknn [Dataset]. https://www.kaggle.com/datasets/shauryamunshi/irisknn
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 4, 2017
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Shaurya Munshi
    Description

    Context

    There's a story behind every dataset and here's your opportunity to share yours.

    Content

    What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too.

    Acknowledgements

    We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

  7. Edgar Anderson's Iris Data

    • data.europa.eu
    unknown
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2025). Edgar Anderson's Iris Data [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-10396807?locale=nl
    Explore at:
    unknown(295)Available download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This famous (Fisher's or Anderson's) iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica. The iris_dataset.rds serialisation is a replication of datasets::iris_dataset as dataset s3 class. The iris_dataset.csv serialisation is an incomplete replication of the iris_dataset because the CSV file does not contain important semantic information; that is exported to iris_dataset.json (in a not standardised form) and the dataset-level metadata into the iris_dataset.bib BibLatex text file.

  8. Iris Dataset

    • kaggle.com
    zip
    Updated Jul 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deepak Thakur (2020). Iris Dataset [Dataset]. https://www.kaggle.com/ehitdeepakthakur/iriscsv
    Explore at:
    zip(1307 bytes)Available download formats
    Dataset updated
    Jul 26, 2020
    Authors
    Deepak Thakur
    Description

    Dataset

    This dataset was created by Deepak Thakur

    Released under Data files © Original Authors

    Contents

    It contains the following files:

  9. Small PASTIS training dataset config: Self-Supervised Spatio-Temporal...

    • zenodo.org
    zip
    Updated May 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iris Dumeur; Iris Dumeur; Silvia Valero; Silvia Valero; Jordi Inglada; Jordi Inglada (2023). Small PASTIS training dataset config: Self-Supervised Spatio-Temporal Representation Learning of Satellite Image Time Series [Dataset]. http://doi.org/10.5281/zenodo.7885880
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 3, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Iris Dumeur; Iris Dumeur; Silvia Valero; Silvia Valero; Jordi Inglada; Jordi Inglada
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Files to run the small dataset experiments used in the preprint "Self-Supervised Spatio-Temporal Representation Learning Of Satellite Image Time Series" available here. This .csv files enables to generate balanced small dataset from the PASTIS dataset. These files are required to run the experiment with a small training data-set, from the open source code ssl_ubarn. In the .csv file name selected_patches_fold_{FOLD}_nb_{NSITS}_seed_{SEED}.csv :

    • FOLD: id which corresponds to one of the 5 experiments run due to PASTIS K-fold.
    • NSITS: Number of SITS selected to construct this training data-set
    • SEED: the randomness used to create this small dataset

  10. Data from: Dataset for "Environmental drivers of increased ecosystem...

    • zenodo.org
    bin, csv, tiff
    Updated Dec 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sybryn Maes; Sybryn Maes; Jan Dietrich; Jan Dietrich; Gabriele Midolo; Gabriele Midolo; Sarah Schwieger; Sarah Schwieger; Matti Kummu; Matti Kummu; Vigdis Vandvik; Vigdis Vandvik; Rien Aerts; Rien Aerts; Inge Althuizen; Inge Althuizen; Christina Biasi; Christina Biasi; Robert G. Björk; Robert G. Björk; Hanna Böhner; Hanna Böhner; Michele Carbognani; Michele Carbognani; Giorgio Chiari; Giorgio Chiari; Casper T. Christiansen; Casper T. Christiansen; Karina E. Clemmensen; Karina E. Clemmensen; Elisabeth J. Cooper; Elisabeth J. Cooper; Hans Cornelissen; Hans Cornelissen; Bo Elberling; Bo Elberling; Patrick Faubert; Patrick Faubert; Ned Fetcher; Ned Fetcher; T'ai Forte; T'ai Forte; Joseph Gaudard; Joseph Gaudard; Konstantin Gavazov; Konstantin Gavazov; Zhen-Huan Guan; Zhen-Huan Guan; Jón Guðmundsson; Jón Guðmundsson; Ragnhild Gya; Ragnhild Gya; Sara Hallin; Sara Hallin; Brage Bremset Hansen; Brage Bremset Hansen; Siri V. Haugum; Siri V. Haugum; Jin-Sheng He; Jin-Sheng He; Caitlin Hicks Pries; Caitlin Hicks Pries; Mark Hovenden; Mark Hovenden; Mika Jalava; Mika Jalava; Ingibjörg Svala Jónsdóttir; Ingibjörg Svala Jónsdóttir; Jaanis Juhanson; Jaanis Juhanson; Ji Young Jung; Ji Young Jung; Elina Kaarlejärvi; Elina Kaarlejärvi; Minjung Kwon; Minjung Kwon; Richard Lamprecht; Richard Lamprecht; Simone Iris Lang; Simone Iris Lang; Mathilde Le Moullec; Mathilde Le Moullec; Hanna Lee; Hanna Lee; Maija E. Marushchak; Maija E. Marushchak; Anders Michelsen; Anders Michelsen; Tariq Munir; Tariq Munir; Eero Myrsky; Eero Myrsky; Cecilie Skov Nielsen; Cecilie Skov Nielsen; Marion Nyberg; Marion Nyberg; Johan Olofsson; Johan Olofsson; Hlynur Óskarsson; Hlynur Óskarsson; Thomas C. Parker; Thomas C. Parker; Emily Pickering Pedersen; Emily Pickering Pedersen; Matteo Petit Bon; Matteo Petit Bon; Alessandro Petraglia; Alessandro Petraglia; Katrine Raundrup; Katrine Raundrup; Nynne R. Ravn; Nynne R. Ravn; Riikka Rinnan; Riikka Rinnan; Heidi Rodenhizer; Heidi Rodenhizer; Ingvild Ryde; Ingvild Ryde; Niels Martin Schmidt; Niels Martin Schmidt; Ted Schuur; Ted Schuur; Sofie Sjogersten; Sofie Sjogersten; Sari Stark; Sari Stark; Maria Strack; Maria Strack; Jim Tang; Jim Tang; Anne Tolvanen; Anne Tolvanen; Joachim Paul Töpper; Joachim Paul Töpper; Maria Väisänen; Maria Väisänen; Richard van Logtestijn; Richard van Logtestijn; Carolina Voigt; Carolina Voigt; Josefine Walz; Josefine Walz; James Weedon; James Weedon; Yuanhe Yang; Yuanhe Yang; Henni Ylänne; Henni Ylänne; Mats P. Björkman; Mats P. Björkman; Judith Sarneel; Judith Sarneel; Ellen Dorrepaal; Ellen Dorrepaal (2024). Dataset for "Environmental drivers of increased ecosystem respiration in a warming tundra" [Dataset]. http://doi.org/10.5281/zenodo.10572480
    Explore at:
    tiff, csv, binAvailable download formats
    Dataset updated
    Dec 20, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sybryn Maes; Sybryn Maes; Jan Dietrich; Jan Dietrich; Gabriele Midolo; Gabriele Midolo; Sarah Schwieger; Sarah Schwieger; Matti Kummu; Matti Kummu; Vigdis Vandvik; Vigdis Vandvik; Rien Aerts; Rien Aerts; Inge Althuizen; Inge Althuizen; Christina Biasi; Christina Biasi; Robert G. Björk; Robert G. Björk; Hanna Böhner; Hanna Böhner; Michele Carbognani; Michele Carbognani; Giorgio Chiari; Giorgio Chiari; Casper T. Christiansen; Casper T. Christiansen; Karina E. Clemmensen; Karina E. Clemmensen; Elisabeth J. Cooper; Elisabeth J. Cooper; Hans Cornelissen; Hans Cornelissen; Bo Elberling; Bo Elberling; Patrick Faubert; Patrick Faubert; Ned Fetcher; Ned Fetcher; T'ai Forte; T'ai Forte; Joseph Gaudard; Joseph Gaudard; Konstantin Gavazov; Konstantin Gavazov; Zhen-Huan Guan; Zhen-Huan Guan; Jón Guðmundsson; Jón Guðmundsson; Ragnhild Gya; Ragnhild Gya; Sara Hallin; Sara Hallin; Brage Bremset Hansen; Brage Bremset Hansen; Siri V. Haugum; Siri V. Haugum; Jin-Sheng He; Jin-Sheng He; Caitlin Hicks Pries; Caitlin Hicks Pries; Mark Hovenden; Mark Hovenden; Mika Jalava; Mika Jalava; Ingibjörg Svala Jónsdóttir; Ingibjörg Svala Jónsdóttir; Jaanis Juhanson; Jaanis Juhanson; Ji Young Jung; Ji Young Jung; Elina Kaarlejärvi; Elina Kaarlejärvi; Minjung Kwon; Minjung Kwon; Richard Lamprecht; Richard Lamprecht; Simone Iris Lang; Simone Iris Lang; Mathilde Le Moullec; Mathilde Le Moullec; Hanna Lee; Hanna Lee; Maija E. Marushchak; Maija E. Marushchak; Anders Michelsen; Anders Michelsen; Tariq Munir; Tariq Munir; Eero Myrsky; Eero Myrsky; Cecilie Skov Nielsen; Cecilie Skov Nielsen; Marion Nyberg; Marion Nyberg; Johan Olofsson; Johan Olofsson; Hlynur Óskarsson; Hlynur Óskarsson; Thomas C. Parker; Thomas C. Parker; Emily Pickering Pedersen; Emily Pickering Pedersen; Matteo Petit Bon; Matteo Petit Bon; Alessandro Petraglia; Alessandro Petraglia; Katrine Raundrup; Katrine Raundrup; Nynne R. Ravn; Nynne R. Ravn; Riikka Rinnan; Riikka Rinnan; Heidi Rodenhizer; Heidi Rodenhizer; Ingvild Ryde; Ingvild Ryde; Niels Martin Schmidt; Niels Martin Schmidt; Ted Schuur; Ted Schuur; Sofie Sjogersten; Sofie Sjogersten; Sari Stark; Sari Stark; Maria Strack; Maria Strack; Jim Tang; Jim Tang; Anne Tolvanen; Anne Tolvanen; Joachim Paul Töpper; Joachim Paul Töpper; Maria Väisänen; Maria Väisänen; Richard van Logtestijn; Richard van Logtestijn; Carolina Voigt; Carolina Voigt; Josefine Walz; Josefine Walz; James Weedon; James Weedon; Yuanhe Yang; Yuanhe Yang; Henni Ylänne; Henni Ylänne; Mats P. Björkman; Mats P. Björkman; Judith Sarneel; Judith Sarneel; Ellen Dorrepaal; Ellen Dorrepaal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data for Nature manuscript titled

    Environmental drivers of increased ecosystem respiration in a warming tundra

    Corresponding author Dr. Sybryn Maes – sybryn.maes@gmail.com

    Github contains all R scripts on https://github.com/mjalava/tundraflux

    Part A. Meta-analysis

    The bold names refer to scripts (see the Github repository https://github.com/mjalava/tundraflux) and names in italics refer to files in this repository

    df_0

    -Study design Figure 1 and Extended Fig. 1 from main text

    df_1a

    -Effect size calculations of response (ER)

    -Links to df_1.csv file with raw flux and environmental data

    -Only the experiments that state ‘Open Access’ in the excel file Authors_Datasets (sheet 2). For experiments stating ‘Available Upon Request’, you need to contact the authors for the -raw flux data.

    df_1b

    -Effect size calculations of environmental drivers

    -Links to df_1.csv file with raw flux data data (see above) and Dataset_ID.csv (this file includes all dataset IDs to merge the drivers into one dataframe)

    df_2a-f

    -Meta-analysis (2a) and meta-regression models (2b-f) (ER, N=136)

    -Links to df_2.csv file with effect size data and context-dependencies and Forestplot_horiz_weights_fig.csv (this file includes the mean pooled Hedges SMD as well as the individual dataset Hedges SMD to plot figure 2)

    -Contains code for Figs. 2-4 and Extended Figs 2-3

    df_3

    -Meta-regression for experimental warming duration

    -Contains code for Fig. 5

    df_4a

    -Effect size calculations of autotrophic-heterotrophic respiration partitioning (Ra, Rh, N=9)

    -Links to df_3.csv file with raw partitioning data of subset experiments (output file df_4.csv)

    df_4b

    -Sub-meta-analysis models (ER, Ra, Rh)

    -Links to df_4.csv (input file)

    NOTES

    · All additional input files for the meta-analysis R-scripts are included within the folders.

    · ER, Ra, Rh = ecosystem, autotrophic, and heterotrophic respiration

    · N = sample size (number of datasets)

    Part B. Upscaling results

    For upscaling, the input data is described in the code files (see the Github repository) and the accompanying Readme.txt.

    percentageChangeResp_tundraAlpine.tif: modelled change in respiration

    baseResp_tundraAlpine.tif: baseline respiration (calculated from the data from literature)

    modResp_tundraAlpine.tif: modelled respiration after warming (our calculations: (percentageChangeResp_tundraAlpine+1) * baseResp_tundraAlpine)

    changeResp_tundraAlpine.tif: modResp-baseResp

    standError_tundraAlpine.tif: standard error of modelled respiration (

    standError_tundraAlpine_onlyDataUncertainty.tif: standard error of modelled respiration where only data uncertainty is taken into account

  11. D

    Replication Data for: Nest site preference depends on the relative density...

    • dataverse.nl
    csv, pdf, txt
    Updated Apr 17, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jelmer M. Samplonius; Iris M. Kromhout Van Der Meer; Christiaan Both; Jelmer M. Samplonius; Iris M. Kromhout Van Der Meer; Christiaan Both (2018). Replication Data for: Nest site preference depends on the relative density of conspecifics and heterospecifics in wild birds [Dataset]. http://doi.org/10.34894/34CS4U
    Explore at:
    csv(6504), txt(6128), pdf(6806)Available download formats
    Dataset updated
    Apr 17, 2018
    Dataset provided by
    DataverseNL
    Authors
    Jelmer M. Samplonius; Iris M. Kromhout Van Der Meer; Christiaan Both; Jelmer M. Samplonius; Iris M. Kromhout Van Der Meer; Christiaan Both
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset consists of three files: PF_ChoiceDataM.csv: Text file with choice data of male pied flycatchers Samplonius_etal_Rscript.R: The R script used for statistical analysis of the data and creating the graph used in the paper Samplonius_Data_legend_key.pdf: Metadata explaining the variables in the data file

  12. f

    EVIP: An eye video-based intraocular pressure dataset for non-contact...

    • figshare.com
    mp4
    Updated Jul 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kun Zheng; Linghui Dai; Boxiang Hu; Xuejia Zheng; Guang Chen; Xinming Peng; Peng Chen; Junjie Zhang (2025). EVIP: An eye video-based intraocular pressure dataset for non-contact intraocular pressure measurement [Dataset]. http://doi.org/10.6084/m9.figshare.29605745.v3
    Explore at:
    mp4Available download formats
    Dataset updated
    Jul 25, 2025
    Dataset provided by
    figshare
    Authors
    Kun Zheng; Linghui Dai; Boxiang Hu; Xuejia Zheng; Guang Chen; Xinming Peng; Peng Chen; Junjie Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Existing facial rPPG datasets (e.g., for heart rate or oxygen saturation monitoring) primarily capture full-face regions, focusing on skin perfusion signals from the forehead, cheeks, or periorbital areas. These datasets lack specialized annotations for ocular structures (pupil, iris, sclera) and direct IOP measurements, as their core goal is general physiological parameter estimation rather than eye-specific pressure analysis. In contrast, EVIP is uniquely designed to link ocular physiological signals with IOP values: it provides high-resolution eye-region videos (isolating pupil-iris complexes) paired with clinically validated IOP measurements, enabling the extraction of IOP-related BVP features from eye regions.The folder contains two subfolders, EVIP-1 and EVIP-2, representing the two versions of the EVIP dataset. Each subfolder contains eye videos recorded in MP4 format, along with data files containing the actual IOP values recorded and stored in CSV file. For the EVIP-1 folder, there were 60 eye videos from 30 participants, named in Arabic numeral order, along with an “EVIP-1.CSV” data file. The data included a column named “Actual Value” containing the actual IOP records, which corresponded to the order of the video files from top to bottom. EVIP-2 was stored in the same manner, containing 122 eye videos from 60 participants, along with a synchronously recorded actual IOP value data file named “EVIP-2.CSV”.

  13. f

    Clothing colour preferences as a function of facial complexion

    • figshare.com
    txt
    Updated Jan 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Perrett (2024). Clothing colour preferences as a function of facial complexion [Dataset]. http://doi.org/10.6084/m9.figshare.24969042.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 9, 2024
    Dataset provided by
    figshare
    Authors
    David Perrett
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    One csv file contain colour measures of 24 facial stimuli (iris, hair, and skin colour in CIE La*b* colour space).The other csv file contains the proportion of warm colours chosen by 87 participants in a 2 alternative forced choice between a warm vs cool colour pair at a high colour saturation and mid-level colour value (lightness), or a high colour value and mid level colour saturation. Facial stimuli vary in eye lightness and in skin lightness.

  14. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kyle M. Monahan (2020). Iris dataset for machine learning [Dataset]. http://doi.org/10.7910/DVN/R2RGXR

Iris dataset for machine learning

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Oct 19, 2020
Dataset provided by
Harvard Dataverse
Authors
Kyle M. Monahan
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

This is an iris dataset commonly used in machine learning. Accessed on 10-19-2020 from the following URL: http://faculty.smu.edu/tfomby/eco5385_eco6380/data/Iris.xls

Search
Clear search
Close search
Google apps
Main menu