Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Public Water Supplies (PWSs) are managed by Irish Water, Ireland's national water utility, since 2013. Before this, public water supplies were managed by Local Authorities. More than 70% of public supplies take groundwater from boreholes, springs and infiltration galleries. This accounts for about 23% by volume (Irish Water, 2018).Source Protection Areas (SPAs) are areas outlined around groundwater abstraction points (e.g. borehole or spring) which provide drinking water. The aim of the SPAs is to protect groundwater by placing tighter controls on activities within all or part of the zone of contribution (ZOC) of the source. The Zone of Contribution (ZOC) is the land area that contributes water to the well or spring.Two Source Protection Areas (SPAs) are outlined. The Inner Protection Area (SI) aims to protect against the effects of human activities that might have an immediate effect on the source and, in particular, against microbial pollution. The Outer Protection Area (SO) covers the rest of the zone of contribution (ZOC) to the groundwater abstraction point.Not all groundwater-fed public supply sources have SPAs outlined around them. Most studies (more than 125) have been carried out by the Geological Survey Ireland as part of County Groundwater Protection Schemes. The Environmental Protection Agency carried out more than 40 studies as part of the national groundwater monitoring network characterisation. Further studies have been carried out by consultancies for Local Authorities and Irish Water.Different methods are used to map the entire Zone of Contribution to a spring, borehole or well, resulting in different degrees of confidence associated with the boundaries of the delineated area. To be able to specify the Inner Protection Zone within the entire Zone of Contribution, knowledge or estimates of groundwater travel time within the aquifer are needed (e.g. from site-specific hydrogeological parameters or tracer tests).Source Protection Areas have been mapped by the GSI and EPA following the ‘GSI method’ (e.g., GSI/EPA/IGI Source Protection Zonation course, 2009; Kelly, 2010; DELG/EPA/GSI, 1999). These SPAs were mapped as part of County Groundwater Protection Schemes or as part of the WFD Groundwater Monitoring network characterisation. Other SPAs have been mapped by consultants for Local Authorities/Irish Water. They have not been peer-reviewed by the GSI. The Zone of Contribution and the Source Protection Area account for the ‘horizontal’ movement of groundwater. Source Protection Zones are obtained by integrating the Source Protection Areas with the groundwater vulnerability categories. The Source Protection Zone includes the complete pathway, both vertical and horizontal, for re-charge and any entrained contaminants to the abstraction point.Whereas the aim of delineating ZOCs is to define approximate areas that contribute water to an abstraction point, the aim of SPZs is to geo-scientifically characterise the pathway and receptor elements of risk to groundwater within the ZOC of a given source (Kelly, 2010). EPA prepared an advice note on “Source Protection and Catchment Management to protect Groundwater Supplies” that outlines the key measures and policies in place in Ireland (EPA, 2011).This map shows the location of SPA's which have been mapped around public supplies of groundwater in Ireland. This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The data is shown as polygons. Each polygon holds information on Source Protection Area such as name, code, id, data source, county, reviewed by GSI and links to online reportsGroup Water Schemes (GWSs) are community-run water supply schemes. About 70% of GWSs take their water from a privately-sourced supply. The rest take their water from an Irish Water connection (DHPLG, 2017). 81% of the privately-sourced supplies affiliated to the National Federation of Group Water Schemes (NFGWS) take groundwater from boreholes, springs and dug wells. This is around 54% by volume (NFGWS, 2018).The NFGWS is the representative for community-owned rural water services in Ireland. The NFGWS assists schemes in meeting the challenges of water quality legislation and promotes a ‘multi-barrier approach’ to source protection. The ‘multi-barrier approach’ includes delineation of the Zone of Contribution to a supply source. A Zone of Contribution (ZOC) is the land area that contributes water to a well or spring (Misstear et al., 2006). It can be considered as the ‘catchment’ to the supply source. Like surface water bodies, springs have natural catchment areas, whereas catchment areas to boreholes depend on a number of hydrogeological and meteorological factors plus the abstraction rate. A ZOC accounts for the ‘horizontal’ movement of groundwater and any entrained contamination once it has reached the water table and is moving towards the abstraction point. The aim of delineating ZOCs is to define the area that contributes water to an abstraction point. Knowledge of where the water is coming from is critical when trying to interpret water quality data at the groundwater source. The ZOC also provides an area in which to focus further investigation and is an area where protective measures can be introduced to maintain or improve the quality of groundwater.Different methods can be used to map the ZOC to a spring, borehole or dug well, resulting in different degrees of confidence associated with the boundaries of the de-lineated area. The ZOCs and accompanying reports should be considered as preliminary source protection studies. The work was undertaken by consultants under supervision and review by GSI, and represents a partnership between the GWSs, the NFGWS and GSI. The work was funded through the Rural Water Programme funding initiative of grants towards specific source protection works on GWSs (DECLG Circular L5/13 and Explanatory Memorandum).The ZOCs were delineated in the period 2011 to 2019. The maps produced are based largely on the readily available information in the area, a field walkover survey, and on mapping techniques which use inferences and judgements based on experience at other sites. As such, the maps cannot claim to be definitively accurate across the whole area covered and should not be used as the sole basis for site-specific decisions, which will usually require the collection of additional site-specific data.This map shows the location of ZOCs which have been mapped around GWS supplies of groundwater in Ireland. This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The data is shown as polygons. Each polygon holds information on name, year and consultant.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Public Water Supplies (PWSs) are managed by Irish Water, Ireland's national water utility, since 2013. Before this, public water supplies were managed by Local Authorities. More than 70% of public supplies take groundwater from boreholes, springs and infiltration galleries. This accounts for about 23% by volume (Irish Water, 2018).Source Protection Areas (SPAs) are areas outlined around groundwater abstraction points (e.g. borehole or spring) which provide drinking water. The aim of the SPAs is to protect groundwater by placing tighter controls on activities within all or part of the zone of contribution (ZOC) of the source. The Zone of Contribution (ZOC) is the land area that contributes water to the well or spring.Two Source Protection Areas (SPAs) are outlined. The Inner Protection Area (SI) aims to protect against the effects of human activities that might have an immediate effect on the source and, in particular, against microbial pollution. The Outer Protection Area (SO) covers the rest of the zone of contribution (ZOC) to the groundwater abstraction point.Not all groundwater-fed public supply sources have SPAs outlined around them. Most studies (more than 125) have been carried out by the Geological Survey Ireland as part of County Groundwater Protection Schemes. The Environmental Protection Agency carried out more than 40 studies as part of the national groundwater monitoring network characterisation. Further studies have been carried out by consultancies for Local Authorities and Irish Water.Different methods are used to map the entire Zone of Contribution to a spring, borehole or well, resulting in different degrees of confidence associated with the boundaries of the delineated area. To be able to specify the Inner Protection Zone within the entire Zone of Contribution, knowledge or estimates of groundwater travel time within the aquifer are needed (e.g. from site-specific hydrogeological parameters or tracer tests).Source Protection Areas have been mapped by the GSI and EPA following the ‘GSI method’ (e.g., GSI/EPA/IGI Source Protection Zonation course, 2009; Kelly, 2010; DELG/EPA/GSI, 1999). These SPAs were mapped as part of County Groundwater Protection Schemes or as part of the WFD Groundwater Monitoring network characterisation. Other SPAs have been mapped by consultants for Local Authorities/Irish Water. They have not been peer-reviewed by the GSI. The Zone of Contribution and the Source Protection Area account for the ‘horizontal’ movement of groundwater. Source Protection Zones are obtained by integrating the Source Protection Areas with the groundwater vulnerability categories. The Source Protection Zone includes the complete pathway, both vertical and horizontal, for re-charge and any entrained contaminants to the abstraction point.Whereas the aim of delineating ZOCs is to define approximate areas that contribute water to an abstraction point, the aim of SPZs is to geo-scientifically characterise the pathway and receptor elements of risk to groundwater within the ZOC of a given source (Kelly, 2010). EPA prepared an advice note on “Source Protection and Catchment Management to protect Groundwater Supplies” that outlines the key measures and policies in place in Ireland (EPA, 2011).This map shows the location of SPA's which have been mapped around public supplies of groundwater in Ireland. This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The data is shown as polygons. Each polygon holds information on Source Protection Area such as name, code, id, data source, county, reviewed by GSI and links to online reportsGroup Water Schemes (GWSs) are community-run water supply schemes. About 70% of GWSs take their water from a privately-sourced supply. The rest take their water from an Irish Water connection (DHPLG, 2017). 81% of the privately-sourced supplies affiliated to the National Federation of Group Water Schemes (NFGWS) take groundwater from boreholes, springs and dug wells. This is around 54% by volume (NFGWS, 2018).The NFGWS is the representative for community-owned rural water services in Ireland. The NFGWS assists schemes in meeting the challenges of water quality legislation and promotes a ‘multi-barrier approach’ to source protection. The ‘multi-barrier approach’ includes delineation of the Zone of Contribution to a supply source. A Zone of Contribution (ZOC) is the land area that contributes water to a well or spring (Misstear et al., 2006). It can be considered as the ‘catchment’ to the supply source. Like surface water bodies, springs have natural catchment areas, whereas catchment areas to boreholes depend on a number of hydrogeological and meteorological factors plus the abstraction rate. A ZOC accounts for the ‘horizontal’ movement of groundwater and any entrained contamination once it has reached the water table and is moving towards the abstraction point. The aim of delineating ZOCs is to define the area that contributes water to an abstraction point. Knowledge of where the water is coming from is critical when trying to interpret water quality data at the groundwater source. The ZOC also provides an area in which to focus further investigation and is an area where protective measures can be introduced to maintain or improve the quality of groundwater.Different methods can be used to map the ZOC to a spring, borehole or dug well, resulting in different degrees of confidence associated with the boundaries of the de-lineated area. The ZOCs and accompanying reports should be considered as preliminary source protection studies. The work was undertaken by consultants under supervision and review by GSI, and represents a partnership between the GWSs, the NFGWS and GSI. The work was funded through the Rural Water Programme funding initiative of grants towards specific source protection works on GWSs (DECLG Circular L5/13 and Explanatory Memorandum).The ZOCs were delineated in the period 2011 to 2019. The maps produced are based largely on the readily available information in the area, a field walkover survey, and on mapping techniques which use inferences and judgements based on experience at other sites. As such, the maps cannot claim to be definitively accurate across the whole area covered and should not be used as the sole basis for site-specific decisions, which will usually require the collection of additional site-specific data.This map shows the location of ZOCs which have been mapped around GWS supplies of groundwater in Ireland. This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The data is shown as polygons. Each polygon holds information on name, year and consultant.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Groundwater is the water that soaks into the ground from rain and can be stored beneath the ground. An aquifer is a body of rock and/or sediment that holds groundwater. There are two main types of aquifer in Ireland – bedrock aquifers, and sand and gravel aquifers. Bedrock is the solid rock at or below the land surface. Over much of Ireland, the bedrock is covered by materials such as sands and gravel. The sands and gravels occur naturally on top of the bedrock. They were laid down by meltwater from melting ice sheets, by rivers, or by wind. There are two main types of bedrock aquifer. In most of them, groundwater flows through fractures and fissures. In about half of the limestone rocks, groundwater flows through cavities and caves. This type of limestone is called karst. Not all sand and gravel layers are aquifers. This is because some of them are very thin or are dry. If the sands and gravels are saturated with water, they have the potential to supply large volumes of water through wells or springs. The aquifer maps show the potential of areas in Ireland to provide water supplies. There are three main groups based on their resource potential: Regionally important – the aquifers are capable of supporting large public water supplies sufficient to support a large town; Locally important – the aquifers are capable of supporting smaller public water supplies or group schemes; Poor – the aquifers are only capable of supporting small supplies, such as houses or farms, or small group schemes. The three main groups are broken down into nine aquifer categories in total. Please read the lineage for further details. Information used to assign bedrock aquifer categories include: rock type (Hydrostratigraphic Rock Unit Groups - simplified bedrock geology with similar hydrogeological properties), yield (existing wells and springs), permeability and structural characteristics. All of the information is interpreted by a hydrogeologist and areas are drawn on a map to show the aquifers. The Sand and Gravel Aquifer map is to the scale 1:40,000 (1 cm on the map relates to a distance of 400 m). It is a vector dataset. The sand and gravel aquifer data is shown as polygons. Each polygon holds information on the aquifer code, description, name, comments and confidence level associated with the delineation of the area as an aquifer. The Aquifer Geological Lines shows the details of the structural geology; faults and thrusts. Faults are the result of great pressure being applied to rock across a whole continent or more. These rocks break under the pressure, forming faults. Faults are recorded as lines where the break in the rock meets the surface. A thrust fault is a break in the Earth's crust, across which older rocks are pushed above younger rocks. Geologists map and record information on the composition and structure of rock outcrops (rock which can be seen on the land surface) and boreholes (a deep narrow round hole drilled in the ground). Lines are drawn on a map to show the structure. To produce this dataset, the twenty one 1:100,000 paper maps covering Ireland were digitised and any inconsistencies between map sheets were fixed. We collect new data to update our map and also use data made available from other sources. This map is to the scale 1:100,000 (1cm on the map relates to a distance of 1km). It is a vector dataset. The Geological Lines data is shown as lines. Each line holds information on: description of the line, bedrock 100k map sheet number, line code and name (if it has one).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Public Supply Source Protection Areas Ireland (ROI) ITM. Published by Geological Survey Ireland. Available under the license Creative Commons Attribution 4.0 (CC-BY-4.0).Public Water Supplies (PWSs) are managed by Irish Water, Ireland's national water utility, since 2013. Before this, public water supplies were managed by Local Authorities. More than 70% of public supplies take groundwater from boreholes, springs and infiltration galleries. This accounts for about 23% by volume (Irish Water, 2018).
Source Protection Areas (SPAs) are areas outlined around groundwater abstraction points (e.g. borehole or spring) which provide drinking water. The aim of the SPAs is to protect groundwater by placing tighter controls on activities within all or part of the zone of contribution (ZOC) of the source. The Zone of Contribution (ZOC) is the land area that contributes water to the well or spring.
Two Source Protection Areas (SPAs) are outlined. The Inner Protection Area (SI) aims to protect against the effects of human activities that might have an immediate effect on the source and, in particular, against microbial pollution. The Outer Protection Area (SO) covers the rest of the zone of contribution (ZOC) to the groundwater abstraction point.
Not all groundwater-fed public supply sources have SPAs outlined around them. Most studies (more than 125) have been carried out by the Geological Survey Ireland as part of County Groundwater Protection Schemes. The Environmental Protection Agency carried out more than 40 studies as part of the national groundwater monitoring network characterisation. Further studies have been carried out by consultancies for Local Authorities and Irish Water.
Different methods are used to map the entire Zone of Contribution to a spring, borehole or well, resulting in different degrees of confidence associated with the boundaries of the delineated area. To be able to specify the Inner Protection Zone within the entire Zone of Contribution, knowledge or estimates of groundwater travel time within the aquifer are needed (e.g. from site-specific hydrogeological parameters or tracer tests).
Source Protection Areas have been mapped by the GSI and EPA following the ‘GSI method’ (e.g., GSI/EPA/IGI Source Protection Zonation course, 2009; Kelly, 2010; DELG/EPA/GSI, 1999). These SPAs were mapped as part of County Groundwater Protection Schemes or as part of the WFD Groundwater Monitoring network characterisation. Other SPAs have been mapped by consultants for Local Authorities/Irish Water. They have not been peer-reviewed by the GSI.
The Zone of Contribution and the Source Protection Area account for the ‘horizontal’ movement of groundwater. Source Protection Zones are obtained by integrating the Source Protection Areas with the groundwater vulnerability categories. The Source Protection Zone includes the complete pathway, both vertical and horizontal, for re-charge and any entrained contaminants to the abstraction point.
Whereas the aim of delineating ZOCs is to define approximate areas that contribute water to an abstraction point, the aim of SPZs is to geo-scientifically characterise the pathway and receptor elements of risk to groundwater within the ZOC of a given source (Kelly, 2010). EPA prepared an advice note on “Source Protection and Catchment Management to protect Groundwater Supplies” that outlines the key measures and policies in place in Ireland (EPA, 2011).
This map shows the location of SPA's which have been mapped around public supplies of groundwater in Ireland.
This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.
It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).
The data is shown as polygons. Each polygon holds information on Source Protection Area such as name, code, id, data source, county, reviewed by GSI and links to online reports....
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Group Scheme Preliminary Source Protection Areas Ireland (ROI) ITM. Published by Geological Survey Ireland. Available under the license Creative Commons Attribution 4.0 (CC-BY-4.0).Group Water Schemes (GWSs) are community-run water supply schemes. About 70% of GWSs take their water from a privately-sourced supply. The rest take their water from an Irish Water connection (DHPLG, 2017). 81% of the privately-sourced supplies affiliated to the National Federation of Group Water Schemes (NFGWS) take groundwater from boreholes, springs and dug wells. This is around 54% by volume (NFGWS, 2018).
The NFGWS is the representative for community-owned rural water services in Ireland. The NFGWS assists schemes in meeting the challenges of water quality legislation and promotes a ‘multi-barrier approach’ to source protection. The ‘multi-barrier approach’ includes delineation of the Zone of Contribution to a supply source.
A Zone of Contribution (ZOC) is the land area that contributes water to a well or spring (Misstear et al., 2006). It can be considered as the ‘catchment’ to the supply source. Like surface water bodies, springs have natural catchment areas, whereas catchment areas to boreholes depend on a number of hydrogeological and meteorological factors plus the abstraction rate. A ZOC accounts for the ‘horizontal’ movement of groundwater and any entrained contamination once it has reached the water table and is moving towards the abstraction point.
The aim of delineating ZOCs is to define the area that contributes water to an abstraction point. Knowledge of where the water is coming from is critical when trying to interpret water quality data at the groundwater source. The ZOC also provides an area in which to focus further investigation and is an area where protective measures can be introduced to maintain or improve the quality of groundwater.
Different methods can be used to map the ZOC to a spring, borehole or dug well, resulting in different degrees of confidence associated with the boundaries of the de-lineated area. The ZOCs and accompanying reports should be considered as preliminary source protection studies. The work was undertaken by consultants under supervision and review by GSI, and represents a partnership between the GWSs, the NFGWS and GSI. The work was funded through the Rural Water Programme funding initiative of grants towards specific source protection works on GWSs (DECLG Circular L5/13 and Explanatory Memorandum).
The ZOCs were delineated in the period 2011 to 2019. The maps produced are based largely on the readily available information in the area, a field walkover survey, and on mapping techniques which use inferences and judgements based on experience at other sites. As such, the maps cannot claim to be definitively accurate across the whole area covered and should not be used as the sole basis for site-specific decisions, which will usually require the collection of additional site-specific data.
This map shows the location of ZOCs which have been mapped around GWS supplies of groundwater in Ireland.
This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.
It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).
The data is shown as polygons. Each polygon holds information on name, year and consultant....
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Group Water Schemes (GWSs) are community-run water supply schemes. About 70% of GWSs take their water from a privately-sourced supply. The rest take their water from an Irish Water connection (DHPLG, 2017). 81% of the privately-sourced supplies affiliated to the National Federation of Group Water Schemes (NFGWS) take groundwater from boreholes, springs and dug wells. This is around 54% by volume (NFGWS, 2018).The NFGWS is the representative for community-owned rural water services in Ireland. The NFGWS assists schemes in meeting the challenges of water quality legislation and promotes a ‘multi-barrier approach’ to source protection. The ‘multi-barrier approach’ includes delineation of the Zone of Contribution to a supply source. A Zone of Contribution (ZOC) is the land area that contributes water to a well or spring (Misstear et al., 2006). It can be considered as the ‘catchment’ to the supply source. Like surface water bodies, springs have natural catchment areas, whereas catchment areas to boreholes depend on a number of hydrogeological and meteorological factors plus the abstraction rate. A ZOC accounts for the ‘horizontal’ movement of groundwater and any entrained contamination once it has reached the water table and is moving towards the abstraction point. The aim of delineating ZOCs is to define the area that contributes water to an abstraction point. Knowledge of where the water is coming from is critical when trying to interpret water quality data at the groundwater source. The ZOC also provides an area in which to focus further investigation and is an area where protective measures can be introduced to maintain or improve the quality of groundwater.Different methods can be used to map the ZOC to a spring, borehole or dug well, resulting in different degrees of confidence associated with the boundaries of the de-lineated area. The ZOCs and accompanying reports should be considered as preliminary source protection studies. The work was undertaken by consultants under supervision and review by GSI, and represents a partnership between the GWSs, the NFGWS and GSI. The work was funded through the Rural Water Programme funding initiative of grants towards specific source protection works on GWSs (DECLG Circular L5/13 and Explanatory Memorandum).The ZOCs were delineated in the period 2011 to 2019. The maps produced are based largely on the readily available information in the area, a field walkover survey, and on mapping techniques which use inferences and judgements based on experience at other sites. As such, the maps cannot claim to be definitively accurate across the whole area covered and should not be used as the sole basis for site-specific decisions, which will usually require the collection of additional site-specific data.This map shows the location of ZOCs which have been mapped around GWS supplies of groundwater in Ireland. This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The data is shown as polygons. Each polygon holds information on name, year and consultant.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Groundwater is the water that soaks into the ground from rain and can be stored beneath the ground. An aquifer is a body of rock and/or sediment that holds groundwater. There are two main types of aquifer in Ireland – bedrock aquifers, and sand and gravel aquifers. Bedrock is the solid rock at or below the land surface. Over much of Ireland, the bedrock is covered by materials such as sands and gravel. The sands and gravels occur naturally on top of the bedrock. They were laid down by meltwater from melting ice sheets, by rivers, or by wind. There are two main types of bedrock aquifer. In most of them, groundwater flows through fractures and fissures. In about half of the limestone rocks, groundwater flows through cavities and caves. This type of limestone is called karst. Not all sand and gravel layers are aquifers. This is because some of them are very thin or are dry. If the sands and gravels are saturated with water, they have the potential to supply large volumes of water through wells or springs. The aquifer maps show the potential of areas in Ireland to provide water supplies. There are three main groups based on their resource potential:Regionally important – the aquifers are capable of supporting large public water supplies sufficient to support a large town; Locally important – the aquifers are capable of supporting smaller public water supplies or group schemes; Poor – the aquifers are only capable of supporting small supplies, such as houses or farms, or small group schemes.The three main groups are broken down into nine aquifer categories in total. Please read the lineage for further details.Information used to assign bedrock aquifer categories include: rock type (Hydrostratigraphic Rock Unit Groups - simplified bedrock geology with similar hydrogeological properties), yield (existing wells and springs), permeability and structural characteristics. All of the information is interpreted by a hydrogeologist and areas are drawn on a map to show the aquifers.This Bedrock Aquifer map is to the scale 1:100,000 (1 cm on the map relates to a distance of 1km).It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The bedrock aquifer data is shown as polygons. Each polygon holds information on the aquifer code, description, rock unit name, rock unit description, Hydrostratigraphic Rock Unit Group Name, Hydrostratigraphic Rock Unit Group Changes, Bedrock Geology 100k newcode, stratigraphy code (rock layers with age profile), lithology code (rock type), Aquifer Category Original and Comments.Geologists record information about how thick the sand and gravel layers on top of the bedrock are. They also note down how big the different grains of sand and gravel are. Information from quarries and deep pits is used. Information from boreholes (a deep narrow round hole drilled in the ground) is also used. All of the information is interpreted by a hydrogeologist and areas are drawn on a map to show the aquifersThe Sand and Gravel Aquifer map is to the scale 1:40,000 (1 cm on the map relates to a distance of 400 m).It is a vector dataset. The sand and gravel aquifer data is shown as polygons. Each polygon holds information on the aquifer code, description, name, comments and confidence level associated with the delineation of the area as an aquifer.The Aquifer Geological Lines shows the details of the structural geology; faults and thrusts. Faults are the result of great pressure being applied to rock across a whole continent or more. These rocks break under the pressure, forming faults. Faults are recorded as lines where the break in the rock meets the surface. A thrust fault is a break in the Earth's crust, across which older rocks are pushed above younger rocks.Geologists map and record information on the composition and structure of rock outcrops (rock which can be seen on the land surface) and boreholes (a deep narrow round hole drilled in the ground). Lines are drawn on a map to show the structure. To produce this dataset, the twenty one 1:100,000 paper maps covering Ireland were digitised and any inconsistencies between map sheets were fixed. We collect new data to update our map and also use data made available from other sources. This map is to the scale 1:100,000 (1cm on the map relates to a distance of 1km).It is a vector dataset. The Geological Lines data is shown as lines. Each line holds information on: description of the line, bedrock 100k map sheet number, line code and name (if it has one).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Groundwater is the water that soaks into the ground from rain and can be stored beneath the ground. An aquifer is a body of rock and/or sediment that holds groundwater. There are two main types of aquifer in Ireland – bedrock aquifers, and sand and gravel aquifers. Bedrock is the solid rock at or below the land surface. Over much of Ireland, the bedrock is covered by materials such as sands and gravel. The sands and gravels occur naturally on top of the bedrock. They were laid down by meltwater from melting ice sheets, by rivers, or by wind. There are two main types of bedrock aquifer. In most of them, groundwater flows through fractures and fissures. In about half of the limestone rocks, groundwater flows through cavities and caves. This type of limestone is called karst. Not all sand and gravel layers are aquifers. This is because some of them are very thin or are dry. If the sands and gravels are saturated with water, they have the potential to supply large volumes of water through wells or springs. The aquifer maps show the potential of areas in Ireland to provide water supplies. There are three main groups based on their resource potential: Regionally important – the aquifers are capable of supporting large public water supplies sufficient to support a large town; Locally important – the aquifers are capable of supporting smaller public water supplies or group schemes; Poor – the aquifers are only capable of supporting small supplies, such as houses or farms, or small group schemes. The three main groups are broken down into nine aquifer categories in total. Please read the lineage for further details. Information used to assign bedrock aquifer categories include: rock type (Hydrostratigraphic Rock Unit Groups - simplified bedrock geology with similar hydrogeological properties), yield (existing wells and springs), permeability and structural characteristics. All of the information is interpreted by a hydrogeologist and areas are drawn on a map to show the aquifers. The Sand and Gravel Aquifer map is to the scale 1:40,000 (1 cm on the map relates to a distance of 400 m). It is a vector dataset. The sand and gravel aquifer data is shown as polygons. Each polygon holds information on the aquifer code, description, name, comments and confidence level associated with the delineation of the area as an aquifer. The Aquifer Geological Lines shows the details of the structural geology; faults and thrusts. Faults are the result of great pressure being applied to rock across a whole continent or more. These rocks break under the pressure, forming faults. Faults are recorded as lines where the break in the rock meets the surface. A thrust fault is a break in the Earth's crust, across which older rocks are pushed above younger rocks. Geologists map and record information on the composition and structure of rock outcrops (rock which can be seen on the land surface) and boreholes (a deep narrow round hole drilled in the ground). Lines are drawn on a map to show the structure. To produce this dataset, the twenty one 1:100,000 paper maps covering Ireland were digitised and any inconsistencies between map sheets were fixed. We collect new data to update our map and also use data made available from other sources. This map is to the scale 1:100,000 (1cm on the map relates to a distance of 1km). It is a vector dataset. The Geological Lines data is shown as lines. Each line holds information on: description of the line, bedrock 100k map sheet number, line code and name (if it has one).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map shows the ship survey lines where the seabed has been mapped in Irish waters.The seabed is mapped using boats. The boats use special equipment called a multibeam echosounder. A multibeam echosounder is a type of sonar that is used to map the seabed. Sound waves are emitted in a fan shape beneath the boat. The amount of time it takes for the sound waves to bounce off the bottom of the sea and return to a receiver is used to determine water depth. The data are collected as points in XYZ format. X and Y coordinates and Z (depth). The boat travels up and down the water in a series of lines (trackline). An XYZ file is created for each line and contains thousands of points. The line files are merged together and converted into gridded data to create a Digital Terrain Model of the seabed. We use different sized boats and equipment depending on the depth of the water. This data shows the extent of each survey area. It also gives information on the boat and equipment used to map the area.It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The tracklines are shown as lines. Each line holds information on the line type,survey id, day, project, time, heading, comments, geographical area, id, trackline km, sound velocity profiles and sub-bottom profiles.This data shows ship survey lines that have been surveyed. There are plans to fill in the missing areas between 2020 and 2026. The deeper offshore waters were mapped as part of the Irish National Seabed Survey (INSS) between 1999 and 2005. INtegrated Mapping FOr the Sustainable Development of Ireland's MArine Resource (INFOMAR) is mapping the inshore areas. (2006 - 2026).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Groundwater is the water that soaks into the ground from rain and can be stored beneath the ground. An aquifer is a body of rock and/or sediment that holds groundwater. There are two main types of aquifer in Ireland – bedrock aquifers, and sand and gravel aquifers. Bedrock is the solid rock at or below the land surface. Over much of Ireland, the bedrock is covered by materials such as sands and gravel. The sands and gravels occur naturally on top of the bedrock. They were laid down by meltwater from melting ice sheets, by rivers, or by wind. There are two main types of bedrock aquifer. In most of them, groundwater flows through fractures and fissures. In about half of the limestone rocks, groundwater flows through cavities and caves. This type of limestone is called karst. Not all sand and gravel layers are aquifers. This is because some of them are very thin or are dry. If the sands and gravels are saturated with water, they have the potential to supply large volumes of water through wells or springs. The aquifer maps show the potential of areas in Ireland to provide water supplies. There are three main groups based on their resource potential:Regionally important – the aquifers are capable of supporting large public water supplies sufficient to support a large town; Locally important – the aquifers are capable of supporting smaller public water supplies or group schemes; Poor – the aquifers are only capable of supporting small supplies, such as houses or farms, or small group schemes.The three main groups are broken down into nine aquifer categories in total. Please read the lineage for further details.Information used to assign bedrock aquifer categories include: rock type (Hydrostratigraphic Rock Unit Groups - simplified bedrock geology with similar hydrogeological properties), yield (existing wells and springs), permeability and structural characteristics. All of the information is interpreted by a hydrogeologist and areas are drawn on a map to show the aquifers.This Bedrock Aquifer map is to the scale 1:100,000 (1 cm on the map relates to a distance of 1km).It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The bedrock aquifer data is shown as polygons. Each polygon holds information on the aquifer code, description, rock unit name, rock unit description, Hydrostratigraphic Rock Unit Group Name, Hydrostratigraphic Rock Unit Group Changes, Bedrock Geology 100k newcode, stratigraphy code (rock layers with age profile), lithology code (rock type), Aquifer Category Original and Comments.Geologists record information about how thick the sand and gravel layers on top of the bedrock are. They also note down how big the different grains of sand and gravel are. Information from quarries and deep pits is used. Information from boreholes (a deep narrow round hole drilled in the ground) is also used. All of the information is interpreted by a hydrogeologist and areas are drawn on a map to show the aquifersThe Sand and Gravel Aquifer map is to the scale 1:40,000 (1 cm on the map relates to a distance of 400 m).It is a vector dataset. The sand and gravel aquifer data is shown as polygons. Each polygon holds information on the aquifer code, description, name, comments and confidence level associated with the delineation of the area as an aquifer.The Aquifer Geological Lines shows the details of the structural geology; faults and thrusts. Faults are the result of great pressure being applied to rock across a whole continent or more. These rocks break under the pressure, forming faults. Faults are recorded as lines where the break in the rock meets the surface. A thrust fault is a break in the Earth's crust, across which older rocks are pushed above younger rocks.Geologists map and record information on the composition and structure of rock outcrops (rock which can be seen on the land surface) and boreholes (a deep narrow round hole drilled in the ground). Lines are drawn on a map to show the structure. To produce this dataset, the twenty one 1:100,000 paper maps covering Ireland were digitised and any inconsistencies between map sheets were fixed. We collect new data to update our map and also use data made available from other sources. This map is to the scale 1:100,000 (1cm on the map relates to a distance of 1km).It is a vector dataset. The Geological Lines data is shown as lines. Each line holds information on: description of the line, bedrock 100k map sheet number, line code and name (if it has one).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map shows the ship survey lines where the seabed has been mapped in Irish waters.The seabed is mapped using boats. The boats use special equipment called a multibeam echosounder. A multibeam echosounder is a type of sonar that is used to map the seabed. Sound waves are emitted in a fan shape beneath the boat. The amount of time it takes for the sound waves to bounce off the bottom of the sea and return to a receiver is used to determine water depth. The data are collected as points in XYZ format. X and Y coordinates and Z (depth). The boat travels up and down the water in a series of lines (trackline). An XYZ file is created for each line and contains thousands of points. The line files are merged together and converted into gridded data to create a Digital Terrain Model of the seabed. We use different sized boats and equipment depending on the depth of the water. This data shows the extent of each survey area. It also gives information on the boat and equipment used to map the area.It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The tracklines are shown as lines. Each line holds information on the vessel name, line type, line no., survey name, survey area, id and trackline length km.The dataset was mapped as part of the Joint Irish Bathymetric Survey Project (JIBS). The Maritime and Coastguard Agency was the Project leader, approved under the INTERREG IIIA Programme, with the Marine Institute of Ireland as project partner. The objective of the JIBS Project was to promote joint action to survey the seabed in such a way as to satisfy the needs of many organisations. The JIBS project commenced on 10 April 2007 and was completed in June 2008.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Groundwater is the water that soaks into the ground from rain and can be stored beneath the ground. An aquifer is a body of rock and/or sediment that holds groundwater. There are two main types of aquifer in Ireland – bedrock aquifers, and sand and gravel aquifers. Bedrock is the solid rock at or below the land surface. Over much of Ireland, the bedrock is covered by materials such as sands and gravel. The sands and gravels occur naturally on top of the bedrock. They were laid down by meltwater from melting ice sheets, by rivers, or by wind. There are two main types of bedrock aquifer. In most of them, groundwater flows through fractures and fissures. In about half of the limestone rocks, groundwater flows through cavities and caves. This type of limestone is called karst. Not all sand and gravel layers are aquifers. This is because some of them are very thin or are dry. If the sands and gravels are saturated with water, they have the potential to supply large volumes of water through wells or springs. The aquifer maps show the potential of areas in Ireland to provide water supplies. There are three main groups based on their resource potential:Regionally important – the aquifers are capable of supporting large public water supplies sufficient to support a large town; Locally important – the aquifers are capable of supporting smaller public water supplies or group schemes; Poor – the aquifers are only capable of supporting small supplies, such as houses or farms, or small group schemes.The three main groups are broken down into nine aquifer categories in total. Please read the lineage for further details.Information used to assign bedrock aquifer categories include: rock type (Hydrostratigraphic Rock Unit Groups - simplified bedrock geology with similar hydrogeological properties), yield (existing wells and springs), permeability and structural characteristics. All of the information is interpreted by a hydrogeologist and areas are drawn on a map to show the aquifers.This Bedrock Aquifer map is to the scale 1:100,000 (1 cm on the map relates to a distance of 1km).It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The bedrock aquifer data is shown as polygons. Each polygon holds information on the aquifer code, description, rock unit name, rock unit description, Hydrostratigraphic Rock Unit Group Name, Hydrostratigraphic Rock Unit Group Changes, Bedrock Geology 100k newcode, stratigraphy code (rock layers with age profile), lithology code (rock type), Aquifer Category Original and Comments.Geologists record information about how thick the sand and gravel layers on top of the bedrock are. They also note down how big the different grains of sand and gravel are. Information from quarries and deep pits is used. Information from boreholes (a deep narrow round hole drilled in the ground) is also used. All of the information is interpreted by a hydrogeologist and areas are drawn on a map to show the aquifersThe Sand and Gravel Aquifer map is to the scale 1:40,000 (1 cm on the map relates to a distance of 400 m).It is a vector dataset. The sand and gravel aquifer data is shown as polygons. Each polygon holds information on the aquifer code, description, name, comments and confidence level associated with the delineation of the area as an aquifer.The Aquifer Geological Lines shows the details of the structural geology; faults and thrusts. Faults are the result of great pressure being applied to rock across a whole continent or more. These rocks break under the pressure, forming faults. Faults are recorded as lines where the break in the rock meets the surface. A thrust fault is a break in the Earth's crust, across which older rocks are pushed above younger rocks.Geologists map and record information on the composition and structure of rock outcrops (rock which can be seen on the land surface) and boreholes (a deep narrow round hole drilled in the ground). Lines are drawn on a map to show the structure. To produce this dataset, the twenty one 1:100,000 paper maps covering Ireland were digitised and any inconsistencies between map sheets were fixed. We collect new data to update our map and also use data made available from other sources. This map is to the scale 1:100,000 (1cm on the map relates to a distance of 1km).It is a vector dataset. The Geological Lines data is shown as lines. Each line holds information on: description of the line, bedrock 100k map sheet number, line code and name (if it has one).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map shows the ship survey lines where the seabed has been mapped in Irish waters.The seabed is mapped using boats. The boats use special equipment called a multibeam echosounder. A multibeam echosounder is a type of sonar that is used to map the seabed. Sound waves are emitted in a fan shape beneath the boat. The amount of time it takes for the sound waves to bounce off the bottom of the sea and return to a receiver is used to determine water depth. The data are collected as points in XYZ format. X and Y coordinates and Z (depth). The boat travels up and down the water in a series of lines (trackline). An XYZ file is created for each line and contains thousands of points. The line files are merged together and converted into gridded data to create a Digital Terrain Model of the seabed. We use different sized boats and equipment depending on the depth of the water. This data shows the extent of each survey area. It also gives information on the boat and equipment used to map the area.It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The tracklines are shown as lines. Each line holds information on the line type,survey id, day, project, time, heading, comments, geographical area, id, trackline km, sound velocity profiles and sub-bottom profiles.This data shows ship survey lines that have been surveyed. There are plans to fill in the missing areas between 2020 and 2026. The deeper offshore waters were mapped as part of the Irish National Seabed Survey (INSS) between 1999 and 2005. INtegrated Mapping FOr the Sustainable Development of Ireland's MArine Resource (INFOMAR) is mapping the inshore areas. (2006 - 2026).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map shows the ship survey lines where the seabed has been mapped in Irish waters.The seabed is mapped using boats. The boats use special equipment called a multibeam echosounder. A multibeam echosounder is a type of sonar that is used to map the seabed. Sound waves are emitted in a fan shape beneath the boat. The amount of time it takes for the sound waves to bounce off the bottom of the sea and return to a receiver is used to determine water depth. The data are collected as points in XYZ format. X and Y coordinates and Z (depth). The boat travels up and down the water in a series of lines (trackline). An XYZ file is created for each line and contains thousands of points. The line files are merged together and converted into gridded data to create a Digital Terrain Model of the seabed. We use different sized boats and equipment depending on the depth of the water. This data shows the extent of each survey area. It also gives information on the boat and equipment used to map the area.It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The tracklines are shown as lines. Each line holds information on the line type,survey id, day, project, time, heading, comments, geographical area, id, trackline km, sound velocity profiles and sub-bottom profiles.This data shows ship survey lines that have been surveyed. There are plans to fill in the missing areas between 2020 and 2026. The deeper offshore waters were mapped as part of the Irish National Seabed Survey (INSS) between 1999 and 2005. INtegrated Mapping FOr the Sustainable Development of Ireland's MArine Resource (INFOMAR) is mapping the inshore areas. (2006 - 2026).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Public Water Supplies (PWSs) are managed by Irish Water, Ireland's national water utility, since 2013. Before this, public water supplies were managed by Local Authorities. More than 70% of public supplies take groundwater from boreholes, springs and infiltration galleries. This accounts for about 23% by volume (Irish Water, 2018).Source Protection Areas (SPAs) are areas outlined around groundwater abstraction points (e.g. borehole or spring) which provide drinking water. The aim of the SPAs is to protect groundwater by placing tighter controls on activities within all or part of the zone of contribution (ZOC) of the source. The Zone of Contribution (ZOC) is the land area that contributes water to the well or spring.Two Source Protection Areas (SPAs) are outlined. The Inner Protection Area (SI) aims to protect against the effects of human activities that might have an immediate effect on the source and, in particular, against microbial pollution. The Outer Protection Area (SO) covers the rest of the zone of contribution (ZOC) to the groundwater abstraction point.Not all groundwater-fed public supply sources have SPAs outlined around them. Most studies (more than 125) have been carried out by the Geological Survey Ireland as part of County Groundwater Protection Schemes. The Environmental Protection Agency carried out more than 40 studies as part of the national groundwater monitoring network characterisation. Further studies have been carried out by consultancies for Local Authorities and Irish Water.Different methods are used to map the entire Zone of Contribution to a spring, borehole or well, resulting in different degrees of confidence associated with the boundaries of the delineated area. To be able to specify the Inner Protection Zone within the entire Zone of Contribution, knowledge or estimates of groundwater travel time within the aquifer are needed (e.g. from site-specific hydrogeological parameters or tracer tests).Source Protection Areas have been mapped by the GSI and EPA following the ‘GSI method’ (e.g., GSI/EPA/IGI Source Protection Zonation course, 2009; Kelly, 2010; DELG/EPA/GSI, 1999). These SPAs were mapped as part of County Groundwater Protection Schemes or as part of the WFD Groundwater Monitoring network characterisation. Other SPAs have been mapped by consultants for Local Authorities/Irish Water. They have not been peer-reviewed by the GSI. The Zone of Contribution and the Source Protection Area account for the ‘horizontal’ movement of groundwater. Source Protection Zones are obtained by integrating the Source Protection Areas with the groundwater vulnerability categories. The Source Protection Zone includes the complete pathway, both vertical and horizontal, for re-charge and any entrained contaminants to the abstraction point.Whereas the aim of delineating ZOCs is to define approximate areas that contribute water to an abstraction point, the aim of SPZs is to geo-scientifically characterise the pathway and receptor elements of risk to groundwater within the ZOC of a given source (Kelly, 2010). EPA prepared an advice note on “Source Protection and Catchment Management to protect Groundwater Supplies” that outlines the key measures and policies in place in Ireland (EPA, 2011).This map shows the location of SPA's which have been mapped around public supplies of groundwater in Ireland. This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The data is shown as polygons. Each polygon holds information on Source Protection Area such as name, code, id, data source, county, reviewed by GSI and links to online reportsGroup Water Schemes (GWSs) are community-run water supply schemes. About 70% of GWSs take their water from a privately-sourced supply. The rest take their water from an Irish Water connection (DHPLG, 2017). 81% of the privately-sourced supplies affiliated to the National Federation of Group Water Schemes (NFGWS) take groundwater from boreholes, springs and dug wells. This is around 54% by volume (NFGWS, 2018).The NFGWS is the representative for community-owned rural water services in Ireland. The NFGWS assists schemes in meeting the challenges of water quality legislation and promotes a ‘multi-barrier approach’ to source protection. The ‘multi-barrier approach’ includes delineation of the Zone of Contribution to a supply source. A Zone of Contribution (ZOC) is the land area that contributes water to a well or spring (Misstear et al., 2006). It can be considered as the ‘catchment’ to the supply source. Like surface water bodies, springs have natural catchment areas, whereas catchment areas to boreholes depend on a number of hydrogeological and meteorological factors plus the abstraction rate. A ZOC accounts for the ‘horizontal’ movement of groundwater and any entrained contamination once it has reached the water table and is moving towards the abstraction point. The aim of delineating ZOCs is to define the area that contributes water to an abstraction point. Knowledge of where the water is coming from is critical when trying to interpret water quality data at the groundwater source. The ZOC also provides an area in which to focus further investigation and is an area where protective measures can be introduced to maintain or improve the quality of groundwater.Different methods can be used to map the ZOC to a spring, borehole or dug well, resulting in different degrees of confidence associated with the boundaries of the de-lineated area. The ZOCs and accompanying reports should be considered as preliminary source protection studies. The work was undertaken by consultants under supervision and review by GSI, and represents a partnership between the GWSs, the NFGWS and GSI. The work was funded through the Rural Water Programme funding initiative of grants towards specific source protection works on GWSs (DECLG Circular L5/13 and Explanatory Memorandum).The ZOCs were delineated in the period 2011 to 2019. The maps produced are based largely on the readily available information in the area, a field walkover survey, and on mapping techniques which use inferences and judgements based on experience at other sites. As such, the maps cannot claim to be definitively accurate across the whole area covered and should not be used as the sole basis for site-specific decisions, which will usually require the collection of additional site-specific data.This map shows the location of ZOCs which have been mapped around GWS supplies of groundwater in Ireland. This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The data is shown as polygons. Each polygon holds information on name, year and consultant.