100+ datasets found
  1. n

    Census Microdata Samples Project

    • neuinfo.org
    • scicrunch.org
    • +2more
    Updated Jan 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Census Microdata Samples Project [Dataset]. http://identifiers.org/RRID:SCR_008902
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219

  2. Data from: Census of Population, 1950 [United States]: Public Use Microdata...

    • icpsr.umich.edu
    ascii
    Updated Jan 18, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of the Census (2006). Census of Population, 1950 [United States]: Public Use Microdata Sample [Dataset]. http://doi.org/10.3886/ICPSR08251.v1
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Jan 18, 2006
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of the Census
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/8251/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8251/terms

    Time period covered
    1950
    Area covered
    Minnesota, Ohio, Hawaii, Iowa, New York (state), Rhode Island, New Mexico, Wisconsin, Louisiana, United States
    Description

    This data collection contains a stratified 1-percent sample of households, with separate records for each household, each "sample line" respondent, and each person in the household. These records were encoded from microfilm copies of original handwritten enumeration schedules from the 1950 Census of Population. Geographic identification of the location of the sampled households includes Census regions and divisions, states (except Alaska and Hawaii), Standard Metropolitan Areas (SMAs), and State Economic Areas (SEAs). The data collection was constructed from and consists of 20 independently-drawn subsamples stored in 20 discrete physical files. The 1950 Census had both a complete-count and a sample component. Individuals selected for the sample component were asked a set of additional questions. Only households with a sample line person were included in the 1950 Public Use Microdata Sample. The collection also contains records of group quarters members who were also on the Census sample line. Each household record contains variables describing the location and composition of the household. The sample line records contain variables describing demographic characteristics such as nativity, marital status, number of children, veteran status, education, income, and occupation. The person records contain demographic variables such as nativity, marital status, family membership, and occupation.

  3. i

    Surveying Japanese-Brazilian Households: Comparison of Census-Based,...

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David McKenzie (2019). Surveying Japanese-Brazilian Households: Comparison of Census-Based, Snowball and Intercept Point Surveys 2006 - Brazil [Dataset]. https://catalog.ihsn.org/index.php/catalog/6032
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    David McKenzie
    Johan Mistiaen
    Time period covered
    2006 - 2007
    Area covered
    Brazil
    Description

    Abstract

    This study is an experiment designed to compare the performance of three methodologies for sampling households with migrants:

    • a stratified sample using the census to sample census tracts randomly, in which each household is then listed and screened to determine whether or not it has a migrant, with the full length questionnaire then being applied in a second phase only to the households of interest;
    • a snowball survey in which households are asked to provide referrals to other households with migrant members;
    • an intercept point survey (or time-and-space sampling survey), in which individuals are sampled during set time periods at a prespecified set of locations where households in the target group are likely to congregate.

    Researchers from the World Bank applied these methods in the context of a survey of Brazilians of Japanese descent (Nikkei), requested by the World Bank. There are approximately 1.2-1.9 million Nikkei among Brazil’s 170 million population.

    The survey was designed to provide detail on the characteristics of households with and without migrants, to estimate the proportion of households receiving remittances and with migrants in Japan, and to examine the consequences of migration and remittances on the sending households.

    The same questionnaire was used for the stratified random sample and snowball surveys, and a shorter version of the questionnaire was used for the intercept surveys. Researchers can directly compare answers to the same questions across survey methodologies and determine the extent to which the intercept and snowball surveys can give similar results to the more expensive census-based survey, and test for the presence of biases.

    Geographic coverage

    Sao Paulo and Parana states

    Analysis unit

    Japanese-Brazilian (Nikkei) households and individuals

    The 2000 Brazilian Census was used to classify households as Nikkei or non-Nikkei. The Brazilian Census does not ask ethnicity but instead asks questions on race, country of birth and whether an individual has lived elsewhere in the last 10 years. On the basis of these questions, a household is classified as (potentially) Nikkei if it has any of the following: 1) a member born in Japan; 2) a member who is of yellow race and who has lived in Japan in the last 10 years; 3) a member who is of yellow race, who was not born in a country other than Japan (predominantly Korea, Taiwan or China) and who did not live in a foreign country other than Japan in the last 10 years.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    1) Stratified random sample survey

    Two states with the largest Nikkei population - Sao Paulo and Parana - were chosen for the study.

    The sampling process consisted of three stages. First, a stratified random sample of 75 census tracts was selected based on 2000 Brazilian census. Second, interviewers carried out a door-to-door listing within each census tract to determine which households had a Nikkei member. Third, the survey questionnaire was then administered to households that were identified as Nikkei. A door-to-door listing exercise of the 75 census tracts was then carried out between October 13th, 2006, and October 29th, 2006. The fieldwork began on November 19, 2006, and all dwellings were visited at least once by December 22, 2006. The second wave of surveying took place from January 18th, 2007, to February 2nd, 2007, which was intended to increase the number of households responding.

    2) Intercept survey

    The intercept survey was designed to carry out interviews at a range of locations that were frequented by the Nikkei population. It was originally designed to be done in Sao Paulo city only, but a second intercept point survey was later carried out in Curitiba, Parana. Intercept survey took place between December 9th, 2006, and December 20th, 2006, whereas the Curitiba intercept survey took place between March 3rd and March 12th, 2007.

    Consultations with Nikkei community organizations, local researchers and officers of the bank Sudameris, which provides remittance services to this community, were used to select a broad range of locations. Interviewers were assigned to visit each location during prespecified blocks of time. Two fieldworkers were assigned to each location. One fieldworker carried out the interviews, while the other carried out a count of the number of people with Nikkei appearance who appeared to be 18 years old or older who passed by each location. For the fixed places, this count was made throughout the prespecified time block. For example, between 2.30 p.m. and 3.30 p.m. at the sports club, the interviewer counted 57 adult Nikkeis. Refusal rates were carefully recorded, along with the sex and approximate age of the person refusing.

    In all, 516 intercept interviews were collected.

    3) Snowball sampling survey

    The questionnaire that was used was the same as used for the stratified random sample. The plan was to begin with a seed list of 75 households, and to aim to reach a total sample of 300 households through referrals from the initial seed households. Each household surveyed was asked to supply the names of three contacts: (a) a Nikkei household with a member currently in Japan; (b) a Nikkei household with a member who has returned from Japan; (c) a Nikkei household without members in Japan and where individuals had not returned from Japan.

    The snowball survey took place from December 5th to 20th, 2006. The second phase of the snowballing survey ran from January 22nd, 2007, to March 23rd, 2007. More associations were contacted to provide additional seed names (69 more names were obtained) and, as with the stratified sample, an adaptation of the intercept survey was used when individuals refused to answer the longer questionnaire. A decision was made to continue the snowball process until a target sample size of 100 had been achieved.

    The final sample consists of 60 households who came as seed households from Japanese associations, and 40 households who were chain referrals. The longest chain achieved was three links.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    1) Stratified sampling and snowball survey questionnaire

    This questionnaire has 36 pages with over 1,000 variables, taking over an hour to complete.

    If subjects refused to answer the questionnaire, interviewers would leave a much shorter version of the questionnaire to be completed by the household by themselves, and later picked up. This shorter questionnaire was the same as used in the intercept point survey, taking seven minutes on average. The intention with the shorter survey was to provide some data on households that would not answer the full survey because of time constraints, or because respondents were reluctant to have an interviewer in their house.

    2) Intercept questionnaire

    The questionnaire is four pages in length, consisting of 62 questions and taking a mean time of seven minutes to answer. Respondents had to be 18 years old or older to be interviewed.

    Response rate

    1) Stratified random sampling 403 out of the 710 Nikkei households were surveyed, an interview rate of 57%. The refusal rate was 25%, whereas the remaining households were either absent on three attempts or were not surveyed because building managers refused permission to enter the apartment buildings. Refusal rates were higher in Sao Paulo than in Parana, reflecting greater concerns about crime and a busier urban environment.

    2) Intercept Interviews 516 intercept interviews were collected, along with 325 refusals. The average refusal rate is 39%, with location-specific refusal rates ranging from only 3% at the food festival to almost 66% at one of the two grocery stores.

  4. H

    American Community Survey (ACS)

    • dataverse.harvard.edu
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). American Community Survey (ACS) [Dataset]. http://doi.org/10.7910/DVN/DKI9L4
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the american community survey (acs) with r and monetdb experimental. think of the american community survey (acs) as the united states' census for off-years - the ones that don't end in zero. every year, one percent of all americans respond, making it the largest complex sample administered by the u.s. government (the decennial census has a much broader reach, but since it attempts to contact 100% of the population, it's not a sur vey). the acs asks how people live and although the questionnaire only includes about three hundred questions on demography, income, insurance, it's often accurate at sub-state geographies and - depending how many years pooled - down to small counties. households are the sampling unit, and once a household gets selected for inclusion, all of its residents respond to the survey. this allows household-level data (like home ownership) to be collected more efficiently and lets researchers examine family structure. the census bureau runs and finances this behemoth, of course. the dow nloadable american community survey ships as two distinct household-level and person-level comma-separated value (.csv) files. merging the two just rectangulates the data, since each person in the person-file has exactly one matching record in the household-file. for analyses of small, smaller, and microscopic geographic areas, choose one-, three-, or fiv e-year pooled files. use as few pooled years as you can, unless you like sentences that start with, "over the period of 2006 - 2010, the average american ... [insert yer findings here]." rather than processing the acs public use microdata sample line-by-line, the r language brazenly reads everything into memory by default. to prevent overloading your computer, dr. thomas lumley wrote the sqlsurvey package principally to deal with t his ram-gobbling monster. if you're already familiar with syntax used for the survey package, be patient and read the sqlsurvey examples carefully when something doesn't behave as you expect it to - some sqlsurvey commands require a different structure (i.e. svyby gets called through svymean) and others might not exist anytime soon (like svyolr). gimme some good news: sqlsurvey uses ultra-fast monetdb (click here for speed tests), so follow the monetdb installation instructions before running this acs code. monetdb imports, writes, recodes data slowly, but reads it hyper-fast . a magnificent trade-off: data exploration typically requires you to think, send an analysis command, think some more, send another query, repeat. importation scripts (especially the ones i've already written for you) can be left running overnight sans hand-holding. the acs weights generalize to the whole united states population including individuals living in group quarters, but non-residential respondents get an abridged questionnaire, so most (not all) analysts exclude records with a relp variable of 16 or 17 right off the bat. this new github repository contains four scripts: 2005-2011 - download all microdata.R create the batch (.bat) file needed to initiate the monet database in the future download, unzip, and import each file for every year and size specified by the user create and save household- and merged/person-level replicate weight complex sample designs create a well-documented block of code to re-initiate the monet db server in the future fair warning: this full script takes a loooong time. run it friday afternoon, commune with nature for the weekend, and if you've got a fast processor and speedy internet connection, monday morning it should be ready for action. otherwise, either download only the years and sizes you need or - if you gotta have 'em all - run it, minimize it, and then don't disturb it for a week. 2011 single-year - analysis e xamples.R run the well-documented block of code to re-initiate the monetdb server load the r data file (.rda) containing the replicate weight designs for the single-year 2011 file perform the standard repertoire of analysis examples, only this time using sqlsurvey functions 2011 single-year - variable reco de example.R run the well-documented block of code to re-initiate the monetdb server copy the single-year 2011 table to maintain the pristine original add a new age category variable by hand add a new age category variable systematically re-create then save the sqlsurvey replicate weight complex sample design on this new table close everything, then load everything back up in a fresh instance of r replicate a few of the census statistics. no muss, no fuss replicate census estimates - 2011.R run the well-documented block of code to re-initiate the monetdb server load the r data file (.rda) containing the replicate weight designs for the single-year 2011 file match every nation wide statistic on the census bureau's estimates page, using sqlsurvey functions click here to view these four scripts for more detail about the american community survey (acs), visit: < ul> the us census...

  5. c

    Census of Population and Housing, 1960: Public Use Sample, 1 in 100

    • archive.ciser.cornell.edu
    Updated Feb 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of the Census (2020). Census of Population and Housing, 1960: Public Use Sample, 1 in 100 [Dataset]. http://doi.org/10.6077/j5/ohycfx
    Explore at:
    Dataset updated
    Feb 13, 2020
    Dataset authored and provided by
    Bureau of the Census
    Variables measured
    Individual, Household
    Description

    This collection contains individual-level and 1-percent national sample data from the 1960 Census of Population and Housing conducted by the Census Bureau. It consists of a representative sample of the records from the 1960 sample questionnaires. The data are stored in 30 separate files, containing in total over two million records, organized by state. Some files contain the sampled records of several states while other files contain all or part of the sample for a single state. There are two types of records stored in the data files: one for households and one for persons. Each household record is followed by a variable number of person records, one for each of the household members. Data items in this collection include the individual responses to the basic social, demographic, and economic questions asked of the population in the 1960 Census of Population and Housing. Data are provided on household characteristics and features such as the number of persons in household, number of rooms and bedrooms, and the availability of hot and cold piped water, flush toilet, bathtub or shower, sewage disposal, and plumbing facilities. Additional information is provided on tenure, gross rent, year the housing structure was built, and value and location of the structure, as well as the presence of air conditioners, radio, telephone, and television in the house, and ownership of an automobile. Other demographic variables provide information on age, sex, marital status, race, place of birth, nationality, education, occupation, employment status, income, and veteran status. The data files were obtained by ICPSR from the Center for Social Analysis, Columbia University. (Source: downloaded from ICPSR 7/13/10)

    Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR07756.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.

  6. Decennial Census: State Legislative District Demographic Profile (Sample)

    • catalog.data.gov
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Decennial Census: State Legislative District Demographic Profile (Sample) [Dataset]. https://catalog.data.gov/dataset/decennial-census-state-legislative-district-demographic-profile-sample
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The State Legislative District Summary File (Sample) (SLDSAMPLE) contains the sample data, which is the information compiled from the questions asked of a sample of all people and housing units. Population items include basic population totals; urban and rural; households and families; marital status; grandparents as caregivers; language and ability to speak English; ancestry; place of birth, citizenship status, and year of entry; migration; place of work; journey to work (commuting); school enrollment and educational attainment; veteran status; disability; employment status; industry, occupation, and class of worker; income; and poverty status. Housing items include basic housing totals; urban and rural; number of rooms; number of bedrooms; year moved into unit; household size and occupants per room; units in structure; year structure built; heating fuel; telephone service; plumbing and kitchen facilities; vehicles available; value of home; monthly rent; and shelter costs. The file contains subject content identical to that shown in Summary File 3 (SF 3).

  7. General Population Census of 1982 - IPUMS Subset - France

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Apr 19, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    INSEE (Institut National de la Statisque et des Etudes Economiques) (2019). General Population Census of 1982 - IPUMS Subset - France [Dataset]. https://microdata.worldbank.org/index.php/catalog/2145
    Explore at:
    Dataset updated
    Apr 19, 2019
    Dataset provided by
    The National Institute of Statistics and Economic Studieshttp://insee.fr/
    Minnesota Population Center
    Time period covered
    1982
    Area covered
    France
    Description

    Abstract

    IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.

    The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.

    Geographic coverage

    National coverage

    Analysis unit

    Dwelling

    UNITS IDENTIFIED: - Dwellings: No - Households: Yes - Individuals: Yes - Group quarters: Yes

    UNIT DESCRIPTIONS: - Group quarters: A collective household is a group of persons that does not live in an ordinary household, but lives in a collective establishment, sharing meal times.

    Universe

    Residents of France, of any nationality. Does not include French citizens living in other countries, foreign tourists, or people passing through.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    SAMPLE DESIGN: Systematic manual sorting into lots with different sample units according to target population. Lots divide the population into different samples (1/4 and 3/4). 1/20 sample is selected from 1/4 sample.

    SAMPLE UNIT: Private dwellings and individuals for group quarters and compte a part

    SAMPLE FRACTION: 5%

    SAMPLE UNIVERSE: The microdata sample includes mainland France.

    SAMPLE SIZE (person records): 2,631,713

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Separate forms for buildings, group quarters (collective households), group quarters (compte a part), private households, and boats. Four forms for individuals (living in group quarters and private dwellings; two different forms for people compte a part; living in boats).

  8. c

    United States Census Data, 1900: Public Use Sample

    • archive.ciser.cornell.edu
    • icpsr.umich.edu
    Updated Jan 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Higgs; Samuel Preston (2020). United States Census Data, 1900: Public Use Sample [Dataset]. http://doi.org/10.6077/j5/bkpbxo
    Explore at:
    Dataset updated
    Jan 19, 2020
    Authors
    Robert Higgs; Samuel Preston
    Area covered
    United States
    Variables measured
    Household, Individual
    Description

    This study was conducted under the auspices of the Center for Studies in Demography and Ecology at the University of Washington. It is a nationally representative sample of the population of the United States in 1900, drawn from the manuscript returns of individuals enumerated in the 1900 United States Census. Household variables include region, state and county of household, size of household, and type and ownership of dwelling. Individual variables for each household member include relationship to head of household, race, sex, age, marital status, number of children, and birthplace. Immigration variables include parents' birthplace, year of immigration and number of years in the United States. Occupation variables include occupation, coded by both the 1900 and 1950 systems, and number of months unemployed. Education variables include number of months in school, whether respondents could read or write a language, and whether they spoke English. (Source: downloaded from ICPSR 7/13/10)

    Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR07825.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.

  9. c

    Census of Population, 1880: Public Use Sample (1 in 1000 Preliminary...

    • archive.ciser.cornell.edu
    Updated Feb 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Russell Menard; Steven Ruggles (2020). Census of Population, 1880: Public Use Sample (1 in 1000 Preliminary Subsample) [Dataset]. http://doi.org/10.6077/j5/wrvf3n
    Explore at:
    Dataset updated
    Feb 25, 2020
    Authors
    Russell Menard; Steven Ruggles
    Variables measured
    Individual, Family.HouseholdFamily
    Description

    This collection is a nationally representative--although clustered--1 in 1000 preliminary subsample of the United States population in 1880. The subsample is based on every tenth microfilm reel of enumeration forms (there are a total of 1,454 reels) and, within each reel, on the census page itself. In terms of the Public Use Sample as a whole, a sample density of 1 person per 100 was chosen so that a single sample point was randomly generated for every two census pages. Sample points were chosen for inclusion in the collection only if the individual selected was the first person listed in the dwelling. Under this procedure each dwelling, family, and individual in the population had a 1 in 100 probability of inclusion in the Public Use Sample.

    Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR09474.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.

  10. Census of Population and Housing [United States], 1970 Public Use Sample:...

    • icpsr.umich.edu
    ascii, sas, spss +1
    Updated Aug 12, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of the Census (2009). Census of Population and Housing [United States], 1970 Public Use Sample: Modified 1/1000 5% State Samples [Dataset]. http://doi.org/10.3886/ICPSR07922.v2
    Explore at:
    stata, spss, sas, asciiAvailable download formats
    Dataset updated
    Aug 12, 2009
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of the Census
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/7922/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/7922/terms

    Time period covered
    1970
    Area covered
    United States
    Description

    This data collection consists of modified records from CENSUS OF POPULATION AND HOUSING, 1970 [UNITED STATES]: PUBLIC USE SAMPLES (ICPSR 0018). The original records consisted of 120-character household records and 120-character person records, whereas the new modified records are rectangular (each person record is combined with the corresponding household record) with a length of 188, after the deletion of some items. Additional information was added to the data records, including typical educational requirement for current occupation, occupational prestige score, and group identification code. This version also differs from the original public use census samples in other ways: all ages for all respondents were included, 1 percent of the majority from each 1970 file was included, 10 percent of the Black population in each file was included, and Mexican Americans outside the five southwestern states of Arizona, California, Colorado, New Mexico, and Texas were included, but were identified as "other Hispanics." Other variables provide information on the housing unit, such as occupancy and vacancy status of house, tenure, value of property, commercial use, rent, ratio of property value to family income, availability of plumbing facilities, sewage disposal, complete kitchen facilities, flush toilet, water, and telephone. Data are also provided on household characteristics such as the size of family, the presence of roomers, boarders, or lodgers, and household relationships. Other demographic variables specify age, sex, place of birth, income, marital status, race, citizenship, and ratio of family income to poverty cutoff level. This collection was made available by the National Chicano Research Network of the Institute for Social Research, University of Michigan. See the related collections, CENSUS OF POPULATION AND HOUSING [UNITED STATES], 1970 PUBLIC USE SAMPLE: MODIFIED 1/1000 15% STATE SAMPLES (ICPSR 7923), and CENSUS OF POPULATION AND HOUSING [UNITED STATES], 1970 PUBLIC USE SAMPLE: MERGED FAMILY HOUSEHOLD DATA RECORDS FOR 42 SMSAS (ICPSR 7759).

  11. d

    ACS 5-Year Demographic Characteristics DC

    • catalog.data.gov
    • opendata.dc.gov
    • +3more
    Updated May 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). ACS 5-Year Demographic Characteristics DC [Dataset]. https://catalog.data.gov/dataset/acs-5-year-demographic-characteristics-dc
    Explore at:
    Dataset updated
    May 7, 2025
    Dataset provided by
    City of Washington, DC
    Area covered
    Washington
    Description

    Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: District-wide. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  12. d

    ACS 5-Year Demographic Characteristics DC Census Tract

    • opendata.dc.gov
    • opdatahub.dc.gov
    • +6more
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). ACS 5-Year Demographic Characteristics DC Census Tract [Dataset]. https://opendata.dc.gov/datasets/62e1f639627342248a4d4027140a1935
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  13. 2023 American Community Survey: DP04 | Selected Housing Characteristics (ACS...

    • data.census.gov
    • test.data.census.gov
    Updated Jun 11, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2022). 2023 American Community Survey: DP04 | Selected Housing Characteristics (ACS 1-Year Estimates Data Profiles) [Dataset]. https://data.census.gov/cedsci/table?q=DP04
    Explore at:
    Dataset updated
    Jun 11, 2022
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Households not paying cash rent are excluded from the calculation of median gross rent..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  14. V

    Virginia Non-Single Occupancy Vehicle (SOV) Travel Percent by Urban Area...

    • data.virginia.gov
    csv
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of INTERMODAL Planning and Investment (2025). Virginia Non-Single Occupancy Vehicle (SOV) Travel Percent by Urban Area (ACS 5-Year) [Dataset]. https://data.virginia.gov/dataset/virginia-non-single-occupancy-vehicle-sov-travel-percent-by-urban-area-acs-5-year
    Explore at:
    csv(53336)Available download formats
    Dataset updated
    Jan 3, 2025
    Dataset authored and provided by
    Office of INTERMODAL Planning and Investment
    Area covered
    Virginia
    Description

    2013-2023 Virginia Non-Single Occupancy Vehicle (SOV) Travel Percent by Census Urban Area. Contains estimates. Workers 16 years and over, commuting to work, who are NOT using a car, truck, or van when driving alone.

    U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table DP03, Column DP03_0019PE Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)

    Documentation of the method to calculate Non-SOV is provided by the Federal Highway Administration (https://www.fhwa.dot.gov/tpm/guidance/hif18024.pdf) page 38 explains the calculation of the Non-SOV Travel measure.

    Urban areas with values of -666,666,666 or 0 have blanks calculated for Non-SOV values.

    The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)

    Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.

    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.

  15. g

    Census of Population and Housing, 1960 Public Use Sample: One-in-One-Hundred...

    • search.gesis.org
    Updated Jan 18, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Commerce. Bureau of the Census (2006). Census of Population and Housing, 1960 Public Use Sample: One-in-One-Hundred Sample - Version 1 [Dataset]. http://doi.org/10.3886/ICPSR07756.v1
    Explore at:
    Dataset updated
    Jan 18, 2006
    Dataset provided by
    GESIS search
    ICPSR - Interuniversity Consortium for Political and Social Research
    Authors
    United States Department of Commerce. Bureau of the Census
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de442054https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de442054

    Description

    Abstract (en): This collection contains individual-level and 1-percent national sample data from the 1960 Census of Population and Housing conducted by the Census Bureau. It consists of a representative sample of the records from the 1960 sample questionnaires. The data are stored in 30 separate files, containing in total over two million records, organized by state. Some files contain the sampled records of several states while other files contain all or part of the sample for a single state. There are two types of records stored in the data files: one for households and one for persons. Each household record is followed by a variable number of person records, one for each of the household members. Data items in this collection include the individual responses to the basic social, demographic, and economic questions asked of the population in the 1960 Census of Population and Housing. Data are provided on household characteristics and features such as the number of persons in household, number of rooms and bedrooms, and the availability of hot and cold piped water, flush toilet, bathtub or shower, sewage disposal, and plumbing facilities. Additional information is provided on tenure, gross rent, year the housing structure was built, and value and location of the structure, as well as the presence of air conditioners, radio, telephone, and television in the house, and ownership of an automobile. Other demographic variables provide information on age, sex, marital status, race, place of birth, nationality, education, occupation, employment status, income, and veteran status. The data files were obtained by ICPSR from the Center for Social Analysis, Columbia University. About 600,000 households and group quarters segments, and about 1,800,000 persons in the United States. One sample household for every 100 households, and persons in group quarters in the United States. Records have been sampled on a household-by-household basis so that the characteristics of family members may be interrelated and related to the characteristics of the housing unit. 2006-01-18 File CB7756.ALL.PDF was removed from any previous datasets and flagged as a study-level file, so that it will accompany all downloads.

  16. H

    Survey of Income and Program Participation (SIPP)

    • dataverse.harvard.edu
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). Survey of Income and Program Participation (SIPP) [Dataset]. http://doi.org/10.7910/DVN/I0FFJV
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the survey of income and program participation (sipp) with r if the census bureau's budget was gutted and only one complex sample survey survived, pray it's the survey of income and program participation (sipp). it's giant. it's rich with variables. it's monthly. it follows households over three, four, now five year panels. the congressional budget office uses it for their health insurance simulation . analysts read that sipp has person-month files, get scurred, and retreat to inferior options. the american community survey may be the mount everest of survey data, but sipp is most certainly the amazon. questions swing wild and free through the jungle canopy i mean core data dictionary. legend has it that there are still species of topical module variables that scientists like you have yet to analyze. ponce de león would've loved it here. ponce. what a name. what a guy. the sipp 2008 panel data started from a sample of 105,663 individuals in 42,030 households. once the sample gets drawn, the census bureau surveys one-fourth of the respondents every four months, over f our or five years (panel durations vary). you absolutely must read and understand pdf pages 3, 4, and 5 of this document before starting any analysis (start at the header 'waves and rotation groups'). if you don't comprehend what's going on, try their survey design tutorial. since sipp collects information from respondents regarding every month over the duration of the panel, you'll need to be hyper-aware of whether you want your results to be point-in-time, annualized, or specific to some other period. the analysis scripts below provide examples of each. at every four-month interview point, every respondent answers every core question for the previous four months. after that, wave-specific addenda (called topical modules) get asked, but generally only regarding a single prior month. to repeat: core wave files contain four records per person, topical modules contain one. if you stacked every core wave, you would have one record per person per month for the duration o f the panel. mmmassive. ~100,000 respondents x 12 months x ~4 years. have an analysis plan before you start writing code so you extract exactly what you need, nothing more. better yet, modify something of mine. cool? this new github repository contains eight, you read me, eight scripts: 1996 panel - download and create database.R 2001 panel - download and create database.R 2004 panel - download and create database.R 2008 panel - download and create database.R since some variables are character strings in one file and integers in anoth er, initiate an r function to harmonize variable class inconsistencies in the sas importation scripts properly handle the parentheses seen in a few of the sas importation scripts, because the SAScii package currently does not create an rsqlite database, initiate a variant of the read.SAScii function that imports ascii data directly into a sql database (.db) download each microdata file - weights, topical modules, everything - then read 'em into sql 2008 panel - full year analysis examples.R< br /> define which waves and specific variables to pull into ram, based on the year chosen loop through each of twelve months, constructing a single-year temporary table inside the database read that twelve-month file into working memory, then save it for faster loading later if you like read the main and replicate weights columns into working memory too, merge everything construct a few annualized and demographic columns using all twelve months' worth of information construct a replicate-weighted complex sample design with a fay's adjustment factor of one-half, again save it for faster loading later, only if you're so inclined reproduce census-publish ed statistics, not precisely (due to topcoding described here on pdf page 19) 2008 panel - point-in-time analysis examples.R define which wave(s) and specific variables to pull into ram, based on the calendar month chosen read that interview point (srefmon)- or calendar month (rhcalmn)-based file into working memory read the topical module and replicate weights files into working memory too, merge it like you mean it construct a few new, exciting variables using both core and topical module questions construct a replicate-weighted complex sample design with a fay's adjustment factor of one-half reproduce census-published statistics, not exactly cuz the authors of this brief used the generalized variance formula (gvf) to calculate the margin of error - see pdf page 4 for more detail - the friendly statisticians at census recommend using the replicate weights whenever possible. oh hayy, now it is. 2008 panel - median value of household assets.R define which wave(s) and spe cific variables to pull into ram, based on the topical module chosen read the topical module and replicate weights files into working memory too, merge once again construct a replicate-weighted complex sample design with a...

  17. w

    Reproductive and Child Health Survey 1999 - Tanzania

    • microdata.worldbank.org
    • dev.ihsn.org
    • +2more
    Updated Jun 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Bureau of Statistics (NBS) (2017). Reproductive and Child Health Survey 1999 - Tanzania [Dataset]. https://microdata.worldbank.org/index.php/catalog/1508
    Explore at:
    Dataset updated
    Jun 6, 2017
    Dataset authored and provided by
    National Bureau of Statistics (NBS)
    Time period covered
    1999
    Area covered
    Tanzania
    Description

    Abstract

    The Tanzania Demographic and Health Survey (TDHS) is part of the worldwide Demographic and Health Surveys (DHS) programme, which is designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 1999 TRCHS was to collect data at the national level (with breakdowns by urban-rural and Mainland-Zanzibar residence wherever warranted) on fertility levels and preferences, family planning use, maternal and child health, breastfeeding practices, nutritional status of young children, childhood mortality levels, knowledge and behaviour regarding HIV/AIDS, and the availability of specific health services within the community.1 Related objectives were to produce these results in a timely manner and to ensure that the data were disseminated to a wide audience of potential users in governmental and nongovernmental organisations within and outside Tanzania. The ultimate intent is to use the information to evaluate current programmes and to design new strategies for improving health and family planning services for the people of Tanzania.

    Geographic coverage

    National. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately.

    Analysis unit

    • Households
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The TRCHS used a three-stage sample design. Overall, 176 census enumeration areas were selected (146 on the Mainland and 30 in Zanzibar) with probability proportional to size on an approximately self-weighting basis on the Mainland, but with oversampling of urban areas and Zanzibar. To reduce costs and maximise the ability to identify trends over time, these enumeration areas were selected from the 357 sample points that were used in the 1996 TDHS, which in turn were selected from the 1988 census frame of enumeration in a two-stage process (first wards/branches and then enumeration areas within wards/branches). Before the data collection, fieldwork teams visited the selected enumeration areas to list all the households. From these lists, households were selected to be interviewed. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately. The health facilities component of the TRCHS involved visiting hospitals, health centres, and pharmacies located in areas around the households interviewed. In this way, the data from the two components can be linked and a richer dataset produced.

    See detailed sample implementation in the APPENDIX A of the final report.

    Mode of data collection

    Face-to-face

    Research instrument

    The household survey component of the TRCHS involved three questionnaires: 1) a Household Questionnaire, 2) a Women’s Questionnaire for all individual women age 15-49 in the selected households, and 3) a Men’s Questionnaire for all men age 15-59.

    The health facilities survey involved six questionnaires: 1) a Community Questionnaire administered to men and women in each selected enumeration area; 2) a Facility Questionnaire; 3) a Facility Inventory; 4) a Service Provider Questionnaire; 5) a Pharmacy Inventory Questionnaire; and 6) a questionnaire for the District Medical Officers.

    All these instruments were based on model questionnaires developed for the MEASURE programme, as well as on the questionnaires used in the 1991-92 TDHS, the 1994 TKAP, and the 1996 TDHS. These model questionnaires were adapted for use in Tanzania during meetings with representatives from the Ministry of Health, the University of Dar es Salaam, the Tanzania Food and Nutrition Centre, USAID/Tanzania, UNICEF/Tanzania, UNFPA/Tanzania, and other potential data users. The questionnaires and manual were developed in English and then translated into and printed in Kiswahili.

    The Household Questionnaire was used to list all the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for individual interview and children under five who were to be weighed and measured. Information was also collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, ownership of various consumer goods, and use of iodised salt. Finally, the Household Questionnaire was used to collect some rudimentary information about the extent of child labour.

    The Women’s Questionnaire was used to collect information from women age 15-49. These women were asked questions on the following topics: · Background characteristics (age, education, religion, type of employment) · Birth history · Knowledge and use of family planning methods · Antenatal, delivery, and postnatal care · Breastfeeding and weaning practices · Vaccinations, birth registration, and health of children under age five · Marriage and recent sexual activity · Fertility preferences · Knowledge and behaviour concerning HIV/AIDS.

    The Men’s Questionnaire covered most of these same issues, except that it omitted the sections on the detailed reproductive history, maternal health, and child health. The final versions of the English questionnaires are provided in Appendix E.

    Before the questionnaires could be finalised, a pretest was done in July 1999 in Kibaha District to assess the viability of the questions, the flow and logical sequence of the skip pattern, and the field organisation. Modifications to the questionnaires, including wording and translations, were made based on lessons drawn from the exercise.

    Response rate

    In all, 3,826 households were selected for the sample, out of which 3,677 were occupied. Of the households found, 3,615 were interviewed, representing a response rate of 98 percent. The shortfall is primarily due to dwellings that were vacant or in which the inhabitants were not at home despite of several callbacks.

    In the interviewed households, a total of 4,118 eligible women (i.e., women age 15-49) were identified for the individual interview, and 4,029 women were actually interviewed, yielding a response rate of 98 percent. A total of 3,792 eligible men (i.e., men age 15-59), were identified for the individual interview, of whom 3,542 were interviewed, representing a response rate of 93 percent. The principal reason for nonresponse among both eligible men and women was the failure to find them at home despite repeated visits to the household. The lower response rate among men than women was due to the more frequent and longer absences of men.

    The response rates are lower in urban areas due to longer absence of respondents from their homes. One-member households are more common in urban areas and are more difficult to interview because they keep their houses locked most of the time. In urban settings, neighbours often do not know the whereabouts of such people.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TRCHS to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TRCHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the TRCHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the TRCHS is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearisation method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rate

    Note: See detailed sampling error calculation in the APPENDIX B

  18. 2023 American Community Survey: B15003 | Educational Attainment for the...

    • data.census.gov
    Updated Sep 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2024). 2023 American Community Survey: B15003 | Educational Attainment for the Population 25 Years and Over (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/cedsci/table?q=B15003&tid=
    Explore at:
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  19. Census of Population and Housing, 2000 [United States]: Public Use Microdata...

    • icpsr.umich.edu
    ascii, sas, spss +1
    Updated Jan 12, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of the Census (2006). Census of Population and Housing, 2000 [United States]: Public Use Microdata Sample: 5-Percent Sample [Dataset]. http://doi.org/10.3886/ICPSR13568.v1
    Explore at:
    stata, ascii, spss, sasAvailable download formats
    Dataset updated
    Jan 12, 2006
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of the Census
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/13568/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/13568/terms

    Time period covered
    2000
    Area covered
    Idaho, Florida, Texas, Maryland, Vermont, Montana, District of Columbia, New Mexico, Hawaii, New Hampshire
    Description

    These Public Use Microdata Sample (PUMS) files contain records representing a 5-percent sample of the occupied and vacant housing units in the United States and the people in the occupied units. People living in group quarters also are included. The files provide individual weights for persons and housing units, which when applied to the individual records, expand the sample to the relevant totals. Some of the items on the housing record are acreage, agricultural sales, allocation flags for housing items, bedrooms, condominium fee, contract rent, cost of utilities, family income in 1999, family, subfamily, and relationship recodes, farm residence, fire, hazard, and flood insurance, fuels used, gross rent, heating fuel, household income in 1999, household type, housing unit weight, kitchen facilities, linguistic isolation, meals included in rent, mobile home costs, mortgage payment, mortgage status, plumbing facilities, presence and age of own children, presence of subfamilies in household, real estate taxes, number of rooms, selected monthly owner costs, size of building (units in structure), state code, telephone service, tenure, vacancy status, value (of housing unit), vehicles available, year householder moved into unit, and year structure built. Some of the items on the person record are ability to speak English, age, allocation flags for population items, ancestry, citizenship, class of worker, disability status, earnings in 1999, educational attainment, grandparents as caregivers, Hispanic origin, hours worked, income in 1999 by type, industry, language spoken at home, marital status, means of transportation to work, migration Public Use Microdata Area (PUMA), migration state, mobility status, veteran period of service, years of military service, occupation, persons weight, personal care limitation, place of birth, place of work PUMA, place of work state, poverty status in 1999, race, relationship, school enrollment and type of school, time of departure for work, travel time to work, vehicle occupancy, weeks worked in 1999, work limitation status, work status in 1999, and year of entry. The Public Use Microdata Sample (PUMS) files contain geographic units known as Public Use Microdata Areas (PUMAs) and super-Public Use Microdata Areas (super-PUMAs). To maintain the confidentiality of the PUMS data, minimum population thresholds are set for PUMAs and super-PUMAs. For the 1-percent state-level files, the super-PUMAs contain a minimum population of 400,000 and are composed of a PUMA or a group of contiguous PUMAs delineated on the 5-percent state-level PUMS files. Super-PUMAs are a new geographic entity for Census 2000. The 5-percent state-level files contain PUMAs, each having a minimum population of 100,000, and corresponding super-PUMA codes. Each state is separately identified and may be comprised of one or more super-PUMAs or PUMAs. Large metropolitan areas may be subdivided into super-PUMAs and PUMAs. PUMAs and super-PUMAs do not cross state lines. Super-PUMAs and PUMAs also are defined for place of residence on April 1, 1995, and place of work.

  20. Census of Population and Housing, 1940: Public Use Microdata Sample

    • archive.ciser.cornell.edu
    Updated Feb 21, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of the Census (2020). Census of Population and Housing, 1940: Public Use Microdata Sample [Dataset]. http://doi.org/10.6077/j5/3jnflx
    Explore at:
    Dataset updated
    Feb 21, 2020
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    Bureau of the Census
    Variables measured
    Household, Individual
    Description

    The 1940 Census Public Use Microdata Sample Project was assembled through a collaborative effort between the United States Bureau of the Census and the Center for Demography and Ecology at the University of Wisconsin. The collection contains a stratified 1-percent sample of households, with separate records for each household, for each "sample line" respondent, and for each person in the household. These records were encoded from microfilm copies of original handwritten enumeration schedules from the 1940 Census of Population. Geographic identification of the location of the sampled households includes Census regions and divisions, states (except Alaska and Hawaii), standard metropolitan areas (SMAs), and state economic areas (SEAs). Accompanying the data collection is a codebook that includes an abstract, descriptions of sample design, processing procedures and file structure, a data dictionary (record layout), category code lists, and a glossary. Also included is a procedural history of the 1940 Census. Each of the 20 subsamples contains three record types: household, sample line, and person. Household variables describe the location and condition of the household. The sample line records contain variables describing demographic characteristics such as nativity, marital status, number of children, veteran status, wage deductions for Social Security, and occupation. Person records also contain variables describing demographic characteristics including nativity, marital status, family membership, education, employment status, income, and occupation. (Source: downloaded from ICPSR 7/13/10)

    Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR08236.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2022). Census Microdata Samples Project [Dataset]. http://identifiers.org/RRID:SCR_008902

Census Microdata Samples Project

RRID:SCR_008902, nlx_151430, Census Microdata Samples Project (RRID:SCR_008902), Census Microdata Samples Project, Status of Older Persons in UNECE Countries, Dynamics of Population Aging in ECE Countries, PAU Census Microdata Samples Project, Population Activities Unit Census Microdata Samples Project, Dynamics of Population Aging in Economic Commission for Europe Countries

Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jan 29, 2022
Description

A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219

Search
Clear search
Close search
Google apps
Main menu