95 datasets found
  1. Maryland Archived American Community Survey Census Tracts 2009 to 2013

    • hub.arcgis.com
    • data.imap.maryland.gov
    • +1more
    Updated Jan 1, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2013). Maryland Archived American Community Survey Census Tracts 2009 to 2013 [Dataset]. https://hub.arcgis.com/maps/maryland::maryland-archived-american-community-survey-census-tracts-2009-to-2013
    Explore at:
    Dataset updated
    Jan 1, 2013
    Dataset provided by
    https://arcgis.com/
    Authors
    ArcGIS Online for Maryland
    Area covered
    Description

    The American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social and economic data. The ACS replaces the decennial census long form in 2010 and every year thereafter. The annual ACS sample is smaller than that of previous long form surveys resulting in a larger sampling error. Coefficients of Variation (CVs), which are statistical measures that show the relative amount of sampling error associated with an estimate, are presented here as a measure of reliability and usability of the data. The unit of geography used for the 2009 - 2013 data is the census tract - a small statistical area within a county, which is delineated every 10 years prior to the decennial census.This is a MD iMAP hosted service. Find more information on https://imap.maryland.gov.Feature Service Link: https://archive.geodata.md.gov/imap/rest/services/Demographics/MD_ArchivedAmericanCommunitySurvey/FeatureServer/2

  2. V

    PLACES: ZCTA Data (GIS Friendly Format), 2023 release

    • data.virginia.gov
    • healthdata.gov
    • +2more
    csv, json, rdf, xsl
    Updated Aug 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2024). PLACES: ZCTA Data (GIS Friendly Format), 2023 release [Dataset]. https://data.virginia.gov/dataset/places-zcta-data-gis-friendly-format-2023-release
    Explore at:
    xsl, rdf, json, csvAvailable download formats
    Dataset updated
    Aug 26, 2024
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This dataset contains model-based ZIP Code Tabulation Area (ZCTA) level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2021 or 2020 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2023 release uses 2021 BRFSS data for 29 measures and 2020 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours) that the survey collects data on every other year. These data can be joined with the census 2010 ZCTA boundary file in a GIS system to produce maps for 36 measures at the ZCTA level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=2c3deb0c05a748b391ea8c9cf9903588

  3. PLACES: Local Data for Better Health, ZCTA Data 2023 release

    • data.virginia.gov
    csv, json, rdf, xsl
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2024). PLACES: Local Data for Better Health, ZCTA Data 2023 release [Dataset]. https://data.virginia.gov/dataset/places-local-data-for-better-health-zcta-data-2023-release
    Explore at:
    csv, json, rdf, xslAvailable download formats
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset contains model-based ZIP Code Tabulation Area (ZCTA) level estimates. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. The dataset includes estimates for 36 measures: 13 for health outcomes, 9 for preventive services use, 4 for chronic disease-related health risk behaviors, 7 for disabilities, and 3 for health status. These estimates can be used to identify emerging health problems and to help develop and carry out effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2021 or 2020 data, Census Bureau 2010 population data, and American Community Survey 2015–2019 estimates. The 2023 release uses 2021 BRFSS data for 29 measures and 2020 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours) that the survey collects data on every other year. More information about the methodology can be found at www.cdc.gov/places.

  4. d

    PLACES: Census Tract Data (GIS Friendly Format), 2023 release

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Feb 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). PLACES: Census Tract Data (GIS Friendly Format), 2023 release [Dataset]. https://catalog.data.gov/dataset/places-census-tract-data-gis-friendly-format-2023-release
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This dataset contains model-based census tract level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2021 or 2020 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2023 release uses 2021 BRFSS data for 29 measures and 2020 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours) that the survey collects data on every other year. These data can be joined with the census tract 2015 boundary file in a GIS system to produce maps for 36 measures at the census tract level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=2c3deb0c05a748b391ea8c9cf9903588

  5. a

    Linguistic Isolation (by Zip Code) 2017

    • opendata.atlantaregional.com
    Updated Jun 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2019). Linguistic Isolation (by Zip Code) 2017 [Dataset]. https://opendata.atlantaregional.com/datasets/b6506c41f85c4ab898559255c022147e
    Explore at:
    Dataset updated
    Jun 26, 2019
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show number and percentage of U.S. population 5 years and older that speaks English less than "very well" and don’t speak English at home by by Zip Code Tabulation Area in the Atlanta region. The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website. Naming conventions: Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)Suffixes:NoneChange over two periods_eEstimate from most recent ACS_mMargin of Error from most recent ACS_00Decennial 2000 Attributes:SumLevelSummary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, SuperDistrict, etc)GEOIDCensus tract Federal Information Processing Series (FIPS) code NAMEName of geographic unitPlanning_RegionPlanning region designation for ARC purposesAcresTotal area within the tract (in acres)SqMiTotal area within the tract (in square miles)CountyCounty identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)CountyNameCounty NamePop5P_e# Population 5 years and over, 2017Pop5P_m# Population 5 years and over, 2017 (MOE)EnglishOnly_e# Speaks English only, 2017EnglishOnly_m# Speaks English only, 2017 (MOE)pEnglishOnly_e% Speaks English only, 2017pEnglishOnly_m% Speaks English only, 2017 (MOE)NotEnglish_e# Speaks language other than English at home, 2017NotEnglish_m# Speaks language other than English at home, 2017 (MOE)pNotEnglish_e% Speaks language other than English at home, 2017pNotEnglish_m% Speaks language other than English at home, 2017 (MOE)EngLtVeryWell_e# English not spoken at home, speaks English less than 'very well', 2017EngLtVeryWell_m# English not spoken at home, speaks English less than 'very well', 2017 (MOE)pEngLtVeryWell_e% English not spoken at home, speaks English less than 'very well', 2017pEngLtVeryWell_m% English not spoken at home, speaks English less than 'very well', 2017 (MOE)Spanish_e# Speaks Spanish at home, 2017Spanish_m# Speaks Spanish at home, 2017 (MOE)pSpanish_e% Speaks Spanish at home, 2017pSpanish_m% Speaks Spanish at home, 2017 (MOE)SpanishEngLtVeryWell_e# Speaks Spanish at home, speaks English less than 'very well', 2017SpanishEngLtVeryWell_m# Speaks Spanish at home, speaks English less than 'very well', 2017 (MOE)pSpanishEngLtVeryWell_e% Speaks Spanish at home, speaks English less than 'very well', 2017pSpanishEngLtVeryWell_m% Speaks Spanish at home, speaks English less than 'very well', 2017 (MOE)IndoEurNotEnglish_e# Speaks other Indo-European language at home, 2017IndoEurNotEnglish_m# Speaks other Indo-European language at home, 2017 (MOE)pIndoEurNotEnglish_e% Speaks other Indo-European language at home, 2017pIndoEurNotEnglish_m% Speaks other Indo-European language at home, 2017 (MOE)IndoEurEngLtVeryWell_e# Speaks other Indo-European language at home, speaks English less than 'very well', 2017IndoEurEngLtVeryWell_m# Speaks other Indo-European language at home, speaks English less than 'very well', 2017 (MOE)pIndoEurEngLtVeryWell_e% Speaks other Indo-European language at home, speaks English less than 'very well', 2017pIndoEurEngLtVeryWell_m% Speaks other Indo-European language at home, speaks English less than 'very well', 2017 (MOE)AsianNotEnglish_e# Speaks Asian language at home, 2017AsianNotEnglish_m# Speaks Asian language at home, 2017 (MOE)pAsianNotEnglish_e% Speaks Asian language at home, 2017pAsianNotEnglish_m% Speaks Asian language at home, 2017 (MOE)AsianEngLtVeryWell_e# Speaks Asian language at home, speaks English less than 'very well', 2017AsianEngLtVeryWell_m# Speaks Asian language at home, speaks English less than 'very well', 2017 (MOE)pAsianEngLtVeryWell_e% Speaks Asian language at home, speaks English less than 'very well', 2017pAsianEngLtVeryWell_m% Speaks Asian language at home, speaks English less than 'very well', 2017 (MOE)OthLangNotEnglish_e# Speaks other language at home, 2017OthLangNotEnglish_m# Speaks other language at home, 2017 (MOE)pOthLangNotEnglish_e% Speaks other language at home, 2017pOthLangNotEnglish_m% Speaks other language at home, 2017 (MOE)OthLangEngLtVeryWell_e# Speaks other language at home, speaks English less than 'very well', 2017OthLangEngLtVeryWell_m# Speaks other language at home, speaks English less than 'very well', 2017 (MOE)pOthLangEngLtVeryWell_e% Speaks other language at home, speaks English less than 'very well', 2017pOthLangEngLtVeryWell_m% Speaks other language at home, speaks English less than 'very well', 2017 (MOE)last_edited_dateLast date the feature was edited by ARC Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2013-2017 For additional information, please visit the Census ACS website.

  6. PLACES: Local Data for Better Health, ZCTA Data 2021 release

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Aug 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). PLACES: Local Data for Better Health, ZCTA Data 2021 release [Dataset]. https://catalog.data.gov/dataset/places-local-data-for-better-health-zcta-data-2021-release-09bbe
    Explore at:
    Dataset updated
    Aug 26, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset contains model-based ZIP Code Tabulation Area (ZCTA) level estimates for the PLACES 2021 release. PLACES is the expansion of the original 500 Cities Project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. The dataset includes estimates for 29 measures: 4 chronic disease-related health risk behaviors, 13 health outcomes, 3 health status, and 9 on using preventive services. These estimates can be used to identify emerging health problems and to help develop and carry out effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2019 or 2018 data, Census Bureau 2010 population data, and American Community Survey (ACS) 2015–2019 or 2014–2018 estimates. The 2021 release uses 2019 BRFSS data for 22 measures and 2018 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours a night). Seven measures are based on the 2018 BRFSS because the relevant questions are only asked every other year in the BRFSS. More information about the methodology can be found at www.cdc.gov/places.

  7. MD iMAP: Maryland Archived American Community Survey Census Tracts 2009 to...

    • data.wu.ac.at
    • opendata.maryland.gov
    • +1more
    csv, json, xml
    Updated Jul 13, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2017). MD iMAP: Maryland Archived American Community Survey Census Tracts 2009 to 2013 [Dataset]. https://data.wu.ac.at/schema/data_maryland_gov/dzI4aC1lOWFh
    Explore at:
    csv, xml, jsonAvailable download formats
    Dataset updated
    Jul 13, 2017
    Dataset provided by
    https://arcgis.com/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Maryland
    Description

    This is a MD iMAP hosted service. Find more information on http://imap.maryland.gov. The American Community Survey (ACS) is a nationwide - continuous survey designed to provide communities with reliable and timely demographic - housing - social and economic data. The ACS replaces the decennial census long form in 2010 and every year thereafter. The annual ACS sample is smaller than that of previous long form surveys resulting in a larger sampling error. Coefficients of Variation (CVs) - which are statistical measures that show the relative amount of sampling error associated with an estimate - are presented here as a measure of reliability and usability of the data. The unit of geography used for the 2009 - 2013 data is the census tract - a small statistical area within a county - which is delineated every 10 years prior to the decennial census. Map Service Link: http://archive.geodata.md.gov/imap/rest/services/ Demographics/MD_ArchivedAmericanCommunitySurvey/MapServer/2 ADDITIONAL LICENSE TERMS: The Spatial Data and the information therein (collectively "the Data") is provided "as is" without warranty of any kind either expressed implied or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct indirect incidental consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.

  8. PLACES: Local Data for Better Health, Census Tract Data 2023 release

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Feb 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). PLACES: Local Data for Better Health, Census Tract Data 2023 release [Dataset]. https://catalog.data.gov/dataset/places-local-data-for-better-health-census-tract-data-2023-release
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset contains model-based census tract estimates. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. The dataset includes estimates for 36 measures: 13 for health outcomes, 9 for preventive services use, 4 for chronic disease-related health risk behaviors, 7 for disabilities, and 3 for health status. These estimates can be used to identify emerging health problems and to help develop and carry out effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2021 or 2020 data, Census Bureau 2010 population data, and American Community Survey 2015–2019 estimates. The 2023 release uses 2021 BRFSS data for 29 measures and 2020 BRFSS data for seven measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours) that the survey collects data on every other year. More information about the methodology can be found at www.cdc.gov/places.

  9. National Neighborhood Data Archive (NaNDA): Essential Workers by Census...

    • icpsr.umich.edu
    • archive.icpsr.umich.edu
    ascii, delimited, r +3
    Updated Jan 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Duchowny, Kate; Melendez, Robert; Noppert, Grace; Clarke, Philippa; Gypin, Lindsay (2024). National Neighborhood Data Archive (NaNDA): Essential Workers by Census Tract and ZIP Code Tabulation Area, United States, 2016-2020 [Dataset]. http://doi.org/10.3886/ICPSR38974.v1
    Explore at:
    ascii, spss, delimited, stata, sas, rAvailable download formats
    Dataset updated
    Jan 16, 2024
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Duchowny, Kate; Melendez, Robert; Noppert, Grace; Clarke, Philippa; Gypin, Lindsay
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38974/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38974/terms

    Time period covered
    2016 - 2020
    Area covered
    United States
    Description

    During the COVID-19 pandemic, certain occupations and industries were deemed "essential", and typically included individuals who worked in healthcare, food service, public transportation, etc. However, early on in the pandemic, while these workers faced disproportionately higher risks, they often did not receive adequate personal protective equipment (PPE), were unable to work from home, and were limited in their ability to take other precautions to safeguard their health (Chen et al., 2021). As a result, previous studies have documented higher rates of infection, hospitalization, and death among essential workers compared to their non-essential worker counterparts (Selden & Berdahl, 2021; Wei et al., 2022). This dataset provides users with information on the number and proportion of essential workers in census tracts or ZIP Code tabulation areas (ZCTAs) in the United States over the 2016-2020 period.

  10. PLACES: Local Data for Better Health, ZCTA Data 2023 release

    • healthdata.gov
    • data.virginia.gov
    • +2more
    application/rdfxml +5
    Updated Aug 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2024). PLACES: Local Data for Better Health, ZCTA Data 2023 release [Dataset]. https://healthdata.gov/dataset/PLACES-Local-Data-for-Better-Health-ZCTA-Data-2023/an6t-ibhw
    Explore at:
    application/rdfxml, csv, application/rssxml, json, tsv, xmlAvailable download formats
    Dataset updated
    Aug 24, 2024
    Dataset provided by
    data.cdc.gov
    Description

    This dataset contains model-based ZIP Code Tabulation Area (ZCTA) level estimates. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. The dataset includes estimates for 36 measures: 13 for health outcomes, 9 for preventive services use, 4 for chronic disease-related health risk behaviors, 7 for disabilities, and 3 for health status. These estimates can be used to identify emerging health problems and to help develop and carry out effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2021 or 2020 data, Census Bureau 2010 population data, and American Community Survey 2015–2019 estimates. The 2023 release uses 2021 BRFSS data for 29 measures and 2020 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours) that the survey collects data on every other year. More information about the methodology can be found at www.cdc.gov/places.

  11. PLACES: Census Tract Data (GIS Friendly Format), 2021 release

    • catalog.data.gov
    • healthdata.gov
    • +3more
    Updated Aug 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). PLACES: Census Tract Data (GIS Friendly Format), 2021 release [Dataset]. https://catalog.data.gov/dataset/places-census-tract-data-gis-friendly-format-2021-release-07f98
    Explore at:
    Dataset updated
    Aug 26, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset contains model-based census tract level estimates for the PLACES 2021 release in GIS-friendly format. PLACES is the expansion of the original 500 Cities project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2019 or 2018 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 or 2014–2018 estimates. The 2021 release uses 2019 BRFSS data for 22 measures and 2018 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours a night). Seven measures are based on the 2018 BRFSS data because the relevant questions are only asked every other year in the BRFSS. These data can be joined with the census tract 2015 boundary file in a GIS system to produce maps for 29 measures at the census tract level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=024cf3f6f59e49fe8c70e0e5410fe3cf

  12. C

    COVID-19 Cases by Geography and Date (archived)

    • data.marincounty.org
    application/rdfxml +5
    Updated Feb 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marin Health and Human Services (2023). COVID-19 Cases by Geography and Date (archived) [Dataset]. https://data.marincounty.org/w/hhfr-mrmb/363b-2f3p?cur=yLYIj34_rwo
    Explore at:
    tsv, application/rssxml, application/rdfxml, csv, xml, jsonAvailable download formats
    Dataset updated
    Feb 16, 2023
    Dataset authored and provided by
    Marin Health and Human Services
    Description

    This dataset has been retired as of February 17, 2023. This dataset will be kept for historical purposes, but will no longer be updated. Similar data are available on the state’s open data portal: https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state.

    A. DATASET DESCRIPTION This dataset contains COVID-19 positive confirmed cases aggregated by several different geographic areas and by day. COVID-19 cases are mapped to the residence of the individual and shown on the date the positive test was collected. In addition, 2019 American Community Survey (ACS) 5-year population estimates are included to calculate the cumulative rate per 10,000 residents.

    Dataset covers cases going back to March 18th, 2020 when the first person in Marin County tested positive for COVID-19. This data may not be immediately available for recently reported cases and data will change to reflect as information becomes available. Data updated daily.

    COVID-19 case data undergo quality assurance and other data verification processes and are continually updated to maximize completeness and accuracy of information. This means data may change for previous days as information is updated.

    Geographic areas summarized are: 1. City, Town, or Community Area 2. Census Tracts 3. Census ZIP Code Tabulation Areas (ZCTAs)

    B. HOW THE DATASET IS CREATED Addresses from the COVID-19 case data are geocoded by Marin County HHS. Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area for a given date.

    The 2019 ACS estimates for population provided by the Census are used to create a cumulative rate which is equal to ([cumulative count up to that date] / [acs_population]) * 10000) representing the number of total cases per 10,000 residents (as of the specified date).

    C. UPDATE PROCESS Geographic analysis is scripted by Marin HHS staff and synced to this dataset each day.

    D. HOW TO USE THIS DATASET This dataset can be used to track the spread of COVID-19 throughout Marin County in a variety of geographic areas. Note that the new cases column in the data represents the number of new cases confirmed in a certain area on the specified day, while the cumulative cases column is the cumulative total of cases in a certain area as of the specified date.

    Privacy rules in effect To protect privacy, certain rules are in effect: 1. Any area with a cumulative case count less than 10 are dropped for all days the cumulative count was less than 10. These will be null values. For example if a zip code did not have 10 cumulative cases until June 1, 2020 that location will not be included in the dataset until June 1. 2. Once an area has a cumulative case count of 10 or greater, that area will have a new row of case data every day following. 3. 3. Cases are dropped altogether for areas where acs_population < 1000. Some adjacent geographic areas may be combined until the ACS population exceeds 1,000 to still provide information for these regions.

    Note: 14-day case rate or 30-day case rate where the counts are lower than 20 may be unstable. We advise caution in interpreting rates at these small numbers.

    A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are areal representations of routes.

  13. d

    Shapefile Zip File. Invalid URL provided in original metadata, see the @id...

    • datadiscoverystudio.org
    tgrshp (compressed)
    Updated 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Shapefile Zip File. Invalid URL provided in original metadata, see the @id string [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/229c594ee14740599e2e40751ea31f6d/html
    Explore at:
    tgrshp (compressed)Available download formats
    Dataset updated
    2016
    Area covered
    North Pacific Ocean, Pacific Ocean
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. A tribal census tract is a relatively permanent statistical subdivision of a federally recognized American Indian reservation and/or off-reservation trust land, delineated by the American Indian tribal government and/or the Census Bureau for the purpose of presenting demographic data. For the 2010 Census, tribal census tracts are defined independently of the standard county-based census tract delineation. For federally recognized American Indian Tribes with reservations and/or off-reservation trust lands with a population less than 2,400, a single tribal census tract is defined. Qualifying areas with a population greater than 2,400 could define additional tribal census tracts within their area. The tribal census tract codes for the 2010 Census are six characters long with a leading 'T 'alphabetic character followed by a five-digit numeric code, for example, T01000, which translates as tribal census tract 10. Tribal block groups nest within tribal census tracts. Since individual tabulation blocks are defined within the standard State-county-census tract geographic hierarchy, a tribal census tract can contain seemingly duplicate block numbers, thus tribal census tracts cannot be used to uniquely identify census tabulation blocks for the 2010 Census. The boundaries of tribal census tracts are those delineated through the Tribal Statistical Areas Program (TSAP) for the 2010 Census.

  14. PLACES: ZCTA Data (GIS Friendly Format), 2021 release

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Aug 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). PLACES: ZCTA Data (GIS Friendly Format), 2021 release [Dataset]. https://catalog.data.gov/dataset/places-zcta-data-gis-friendly-format-2021-release-b07e9
    Explore at:
    Dataset updated
    Aug 26, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset contains model-based ZIP Code Tabulation Area (ZCTA) level estimates for the PLACES 2021 release in GIS-friendly format. PLACES is the expansion of the original 500 Cities Project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2019 or 2018 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 or 2014–2018 estimates. The 2021 release uses 2019 BRFSS data for 22 measures and 2018 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours a night). Seven measures are based on the 2018 BRFSS data because the relevant questions are only asked every other year in the BRFSS. These data can be joined with the census 2010 ZCTA boundary file in a GIS system to produce maps for 29 measures at the ZCTA level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=024cf3f6f59e49fe8c70e0e5410fe3cf

  15. Data from: Public Housing Developments

    • data-lojic.hub.arcgis.com
    • opendata.atlantaregional.com
    • +3more
    Updated Nov 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2024). Public Housing Developments [Dataset]. https://data-lojic.hub.arcgis.com/items/5c96143f79c940a0a8cedae99a1ac562
    Explore at:
    Dataset updated
    Nov 12, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    North Pacific Ocean, Pacific Ocean
    Description

    HUD furnishes technical and professional assistance in planning, developing and managing these developments. Public Housing Developments are depicted as a distinct address chosen to represent the general location of an entire Public Housing Development, which may be comprised of several buildings scattered across a community. The building with the largest number of units is selected to represent the location of the development. Location data for HUD-related properties and facilities are derived from HUD's enterprise geocoding service. While not all addresses are able to be geocoded and mapped to 100% accuracy, we are continuously working to improve address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD. When using this data, take note of the field titled “LVL2KX” which indicates the overall accuracy of the geocoded address using the following return codes: ‘R’ - Interpolated rooftop (high degree of accuracy, symbolized as green) ‘4’ - ZIP+4 centroid (high degree of accuracy, symbolized as green) ‘B’ - Block group centroid (medium degree of accuracy, symbolized as yellow) ‘T’ - Census tract centroid (low degree of accuracy, symbolized as red) ‘2’ - ZIP+2 centroid (low degree of accuracy, symbolized as red) ‘Z’ - ZIP5 centroid (low degree of accuracy, symbolized as red) ‘5’ - ZIP5 centroid (same as above, low degree of accuracy, symbolized as red) Null - Could not be geocoded (does not appear on the map) For the purposes of displaying the location of an address on a map only use addresses and their associated lat/long coordinates where the LVL2KX field is coded ‘R’ or ‘4’. These codes ensure that the address is displayed on the correct street segment and in the correct census block. The remaining LVL2KX codes provide a cascading indication of the most granular level geography for which an address can be confirmed. For example, if an address cannot be accurately interpolated to a rooftop (‘R’), or ZIP+4 centroid (‘4’), then the address will be mapped to the centroid of the next nearest confirmed geography: block group, tract, and so on. When performing any point-in polygon analysis it is important to note that points mapped to the centroids of larger geographies will be less likely to map accurately to the smaller geographies of the same area. For instance, a point coded as ‘5’ in the correct ZIP Code will be less likely to map to the correct block group or census tract for that address. In an effort to protect Personally Identifiable Information (PII), the characteristics for each building are suppressed with a -4 value when the “Number_Reported” is equal to, or less than 10. To learn more about Public Housing visit: https://www.hud.gov/program_offices/public_indian_housing/programs/ph/ Data Dictionary: DD_Public Housing Developments Date Updated: 12/2024 Q3 2024

  16. a

    ACS2023 Housing YearMovedIn Tract

    • opendata.atlantaregional.com
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2025). ACS2023 Housing YearMovedIn Tract [Dataset]. https://opendata.atlantaregional.com/datasets/acs2023-housing-yearmovedin-tract
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Department at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.For a deep dive into the data model including every specific metric, see the ACS 2019-2023. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e23Estimate from 2019-23 ACS_m23Margin of Error from 2019-23 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_23Change, 2010-23 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)CCDIST = County Commission Districts (statewide where applicable)CCSUPERDIST = County Commission Superdistricts (DeKalb)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2019-2023). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2019-2023Open Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/182e6fcf8201449086b95adf39471831/about

  17. Data from: Public Housing Authorities

    • hub.arcgis.com
    • data.lojic.org
    • +1more
    Updated Nov 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2024). Public Housing Authorities [Dataset]. https://hub.arcgis.com/maps/HUD::public-housing-authorities-1
    Explore at:
    Dataset updated
    Nov 12, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    North Pacific Ocean, Pacific Ocean
    Description

    Public Housing was established to provide decent and safe rental housing for eligible low-income families, the elderly, and persons with disabilities. Public housing comes in all sizes and types, from scattered single family houses to high-rise apartments for elderly families. There are approximately 1.2 million households living in public housing units, managed by over 3,300 housing agencies (HAs). HUD administers Federal aid to local housing agencies (HAs) that manage the housing for low-income residents at rents they can afford. HUD furnishes technical and professional assistance in planning, developing and managing these developments. Location data for HUD-related properties and facilities are derived from HUD's enterprise geocoding service. While not all addresses are able to be geocoded and mapped to 100% accuracy, we are continuously working to improve address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD. When using this data, take note of the field titled “LVL2KX” which indicates the overall accuracy of the geocoded address using the following return codes: ‘R’ - Interpolated rooftop (high degree of accuracy, symbolized as green) ‘4’ - ZIP+4 centroid (high degree of accuracy, symbolized as green) ‘B’ - Block group centroid (medium degree of accuracy, symbolized as yellow) ‘T’ - Census tract centroid (low degree of accuracy, symbolized as red) ‘2’ - ZIP+2 centroid (low degree of accuracy, symbolized as red) ‘Z’ - ZIP5 centroid (low degree of accuracy, symbolized as red) ‘5’ - ZIP5 centroid (same as above, low degree of accuracy, symbolized as red) Null - Could not be geocoded (does not appear on the map) For the purposes of displaying the location of an address on a map only use addresses and their associated lat/long coordinates where the LVL2KX field is coded ‘R’ or ‘4’. These codes ensure that the address is displayed on the correct street segment and in the correct census block. The remaining LVL2KX codes provide a cascading indication of the most granular level geography for which an address can be confirmed. For example, if an address cannot be accurately interpolated to a rooftop (‘R’), or ZIP+4 centroid (‘4’), then the address will be mapped to the centroid of the next nearest confirmed geography: block group, tract, and so on. When performing any point-in polygon analysis it is important to note that points mapped to the centroids of larger geographies will be less likely to map accurately to the smaller geographies of the same area. For instance, a point coded as ‘5’ in the correct ZIP Code will be less likely to map to the correct block group or census tract for that address. To learn more about Public Housing visit: https://www.hud.gov/program_offices/public_indian_housing/programs/ph/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Public Housing Authorities Date Updated: 12/2024 Q3 2024

  18. a

    Grandparents (by Zip Code) 2017

    • opendata.atlantaregional.com
    Updated Jun 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2019). Grandparents (by Zip Code) 2017 [Dataset]. https://opendata.atlantaregional.com/datasets/grandparents-by-zip-code-2017/explore?showTable=true
    Explore at:
    Dataset updated
    Jun 26, 2019
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show the number of grandparents living with grandchildren and the number and percentage of grandparents responsible for grandchildren by Zip Code Tabulation Area in the Atlanta region.

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Naming conventions:

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    Suffixes:

    None

    Change over two periods

    _e

    Estimate from most recent ACS

    _m

    Margin of Error from most recent ACS

    _00

    Decennial 2000

    Attributes:

    SumLevel

    Summary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, SuperDistrict, etc)

    GEOID

    Census tract Federal Information Processing Series (FIPS) code

    NAME

    Name of geographic unit

    Planning_Region

    Planning region designation for ARC purposes

    Acres

    Total area within the tract (in acres)

    SqMi

    Total area within the tract (in square miles)

    County

    County identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)

    CountyName

    County Name

    GrandWChild_e

    # Grandparents living with grandchildren under age 18, 2017

    GrandWChild_m

    # Grandparents living with grandchildren under age 18, 2017 (MOE)

    GrandRespChild_e

    # Grandparents responsible for grandchildren under age 18, 2017

    GrandRespChild_m

    # Grandparents responsible for grandchildren under age 18, 2017 (MOE)

    pGrandRespChild_e

    % Grandparents responsible for grandchildren under age 18, 2017

    pGrandRespChild_m

    % Grandparents responsible for grandchildren under age 18, 2017 (MOE)

    PopU18_e

    # Population under age 18, 2017

    PopU18_m

    # Population under age 18, 2017 (MOE)

    ChildrenByGrandHH_e

    # Children raised by grandparent, 2017

    ChildrenByGrandHH_m

    # Children raised by grandparent, 2017 (MOE)

    pChildrenByGrandHH_e

    % Children raised by grandparent, 2017

    pChildrenByGrandHH_m

    % Children raised by grandparent, 2017 (MOE)

    last_edited_date

    Last date the feature was edited by ARC

    Source: U.S. Census Bureau, Atlanta Regional Commission

    Date: 2013-2017

    For additional information, please visit the Census ACS website.

  19. Multifamily Properties - Assisted

    • hudgis-hud.opendata.arcgis.com
    • data.lojic.org
    • +1more
    Updated Mar 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2024). Multifamily Properties - Assisted [Dataset]. https://hudgis-hud.opendata.arcgis.com/datasets/multifamily-properties-assisted/about
    Explore at:
    Dataset updated
    Mar 4, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    North Pacific Ocean, Pacific Ocean
    Description

    HUD’s Multifamily Housing property portfolio consist primarily of rental housing properties with five or more dwelling units such as apartments or town houses, but can also include nursing homes, hospitals, elderly housing, mobile home parks, retirement service centers, and occasionally vacant land. HUD provides subsidies and grants to property owners and developers in an effort to promote the development and preservation of affordable rental units for low-income populations, and those with special needs such as the elderly, and disabled. The portfolio can be broken down into two basic categories: insured, and assisted. The three largest assistance programs for Multifamily Housing are Section 8 Project Based Assistance, Section 202 Supportive Housing for the Elderly, and Section 811 Supportive Housing for Persons with Disabilities. The Multifamily property locations represent the approximate location of the property. The locations of individual buildings associated with each property are not depicted here. Location data for HUD-related properties and facilities are derived from HUD's enterprise geocoding service. While not all addresses are able to be geocoded and mapped to 100% accuracy, we are continuously working to improve address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD. When using this data, take note of the field titled “LVL2KX” which indicates the overall accuracy of the geocoded address using the following return codes: ‘R’ - Interpolated rooftop (high degree of accuracy, symbolized as green) ‘4’ - ZIP+4 centroid (high degree of accuracy, symbolized as green) ‘B’ - Block group centroid (medium degree of accuracy, symbolized as yellow) ‘T’ - Census tract centroid (low degree of accuracy, symbolized as red) ‘2’ - ZIP+2 centroid (low degree of accuracy, symbolized as red) ‘Z’ - ZIP5 centroid (low degree of accuracy, symbolized as red) ‘5’ - ZIP5 centroid (same as above, low degree of accuracy, symbolized as red) Null - Could not be geocoded (does not appear on the map) For the purposes of displaying the location of an address on a map only use addresses and their associated lat/long coordinates where the LVL2KX field is coded ‘R’ or ‘4’. These codes ensure that the address is displayed on the correct street segment and in the correct census block. The remaining LVL2KX codes provide a cascading indication of the most granular level geography for which an address can be confirmed. For example, if an address cannot be accurately interpolated to a rooftop (‘R’), or ZIP+4 centroid (‘4’), then the address will be mapped to the centroid of the next nearest confirmed geography: block group, tract, and so on. When performing any point-in polygon analysis it is important to note that points mapped to the centroids of larger geographies will be less likely to map accurately to the smaller geographies of the same area. For instance, a point coded as ‘5’ in the correct ZIP Code will be less likely to map to the correct block group or census tract for that address. In an effort to protect Personally Identifiable Information (PII), the characteristics for each building are suppressed with a -4 value when the “Number_Reported” is equal to, or less than 10. To learn more about Multifamily Housing visit: https://www.hud.gov/program_offices/housing/mfh, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov.Data Dictionary: DD_HUD Assisted Multifamily Properties Date of Coverage: 12/2023

  20. PLACES: County Data (GIS Friendly Format), 2023 release

    • catalog.data.gov
    • data.virginia.gov
    • +1more
    Updated Feb 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). PLACES: County Data (GIS Friendly Format), 2023 release [Dataset]. https://catalog.data.gov/dataset/places-county-data-gis-friendly-format-2023-release
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset contains model-based county-level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. Project was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2021 or 2020 data, Census Bureau 2021 or 2020 county population estimates, and American Community Survey (ACS) 2017–2021 or 2016–2020 estimates. The 2023 release uses 2021 BRFSS data for 29 measures and 2020 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours) that the survey collects data on every other year. These data can be joined with the census 2020 county boundary file in a GIS system to produce maps for 36 measures at the county level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=2c3deb0c05a748b391ea8c9cf9903588

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ArcGIS Online for Maryland (2013). Maryland Archived American Community Survey Census Tracts 2009 to 2013 [Dataset]. https://hub.arcgis.com/maps/maryland::maryland-archived-american-community-survey-census-tracts-2009-to-2013
Organization logo

Maryland Archived American Community Survey Census Tracts 2009 to 2013

Explore at:
Dataset updated
Jan 1, 2013
Dataset provided by
https://arcgis.com/
Authors
ArcGIS Online for Maryland
Area covered
Description

The American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social and economic data. The ACS replaces the decennial census long form in 2010 and every year thereafter. The annual ACS sample is smaller than that of previous long form surveys resulting in a larger sampling error. Coefficients of Variation (CVs), which are statistical measures that show the relative amount of sampling error associated with an estimate, are presented here as a measure of reliability and usability of the data. The unit of geography used for the 2009 - 2013 data is the census tract - a small statistical area within a county, which is delineated every 10 years prior to the decennial census.This is a MD iMAP hosted service. Find more information on https://imap.maryland.gov.Feature Service Link: https://archive.geodata.md.gov/imap/rest/services/Demographics/MD_ArchivedAmericanCommunitySurvey/FeatureServer/2

Search
Clear search
Close search
Google apps
Main menu