https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global data mining software market size was valued at USD 7.2 billion in 2023 and is projected to reach USD 15.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 8.7% during the forecast period. This growth is driven primarily by the increasing adoption of big data analytics and the rising demand for business intelligence across various industries. As businesses increasingly recognize the value of data-driven decision-making, the market is expected to witness substantial growth.
One of the significant growth factors for the data mining software market is the exponential increase in data generation. With the proliferation of internet-enabled devices and the rapid advancement of technologies such as the Internet of Things (IoT), there is a massive influx of data. Organizations are now more focused than ever on harnessing this data to gain insights, improve operations, and create a competitive advantage. This has led to a surge in demand for advanced data mining tools that can process and analyze large datasets efficiently.
Another driving force is the growing need for personalized customer experiences. In industries such as retail, healthcare, and BFSI, understanding customer behavior and preferences is crucial. Data mining software enables organizations to analyze customer data, segment their audience, and deliver personalized offerings, ultimately enhancing customer satisfaction and loyalty. This drive towards personalization is further fueling the adoption of data mining solutions, contributing significantly to market growth.
The integration of artificial intelligence (AI) and machine learning (ML) technologies with data mining software is also a key growth factor. These advanced technologies enhance the capabilities of data mining tools by enabling them to learn from data patterns and make more accurate predictions. The convergence of AI and data mining is opening new avenues for businesses, allowing them to automate complex tasks, predict market trends, and make informed decisions more swiftly. The continuous advancements in AI and ML are expected to propel the data mining software market over the forecast period.
Regionally, North America holds a significant share of the data mining software market, driven by the presence of major technology companies and the early adoption of advanced analytics solutions. The Asia Pacific region is also expected to witness substantial growth due to the rapid digital transformation across various industries and the increasing investments in data infrastructure. Additionally, the growing awareness and implementation of data-driven strategies in emerging economies are contributing to the market expansion in this region.
Text Mining Software is becoming an integral part of the data mining landscape, offering unique capabilities to analyze unstructured data. As organizations generate vast amounts of textual data from various sources such as social media, emails, and customer feedback, the need for specialized tools to extract meaningful insights is growing. Text Mining Software enables businesses to process and analyze this data, uncovering patterns and trends that were previously hidden. This capability is particularly valuable in industries like marketing, customer service, and research, where understanding the nuances of language can lead to more informed decision-making. The integration of text mining with traditional data mining processes is enhancing the overall analytical capabilities of organizations, allowing them to derive comprehensive insights from both structured and unstructured data.
The data mining software market is segmented by components, which primarily include software and services. The software segment encompasses various types of data mining tools that are used for analyzing and extracting valuable insights from raw data. These tools are designed to handle large volumes of data and provide advanced functionalities such as predictive analytics, data visualization, and pattern recognition. The increasing demand for sophisticated data analysis tools is driving the growth of the software segment. Enterprises are investing in these tools to enhance their data processing capabilities and derive actionable insights.
Within the software segment, the emergence of cloud-based data mining solutions is a notable trend. Cloud-based solutions offer several advantages, including s
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The Data Mining Tools Market size was valued at USD 1.01 USD billion in 2023 and is projected to reach USD 1.99 USD billion by 2032, exhibiting a CAGR of 10.2 % during the forecast period. The growing adoption of data-driven decision-making and the increasing need for business intelligence are major factors driving market growth. Data mining refers to filtering, sorting, and classifying data from larger datasets to reveal subtle patterns and relationships, which helps enterprises identify and solve complex business problems through data analysis. Data mining software tools and techniques allow organizations to foresee future market trends and make business-critical decisions at crucial times. Data mining is an essential component of data science that employs advanced data analytics to derive insightful information from large volumes of data. Businesses rely heavily on data mining to undertake analytics initiatives in the organizational setup. The analyzed data sourced from data mining is used for varied analytics and business intelligence (BI) applications, which consider real-time data analysis along with some historical pieces of information. Recent developments include: May 2023 – WiMi Hologram Cloud Inc. introduced a new data interaction system developed by combining neural network technology and data mining. Using real-time interaction, the system can offer reliable and safe information transmission., May 2023 – U.S. Data Mining Group, Inc., operating in bitcoin mining site, announced a hosting contract to deploy 150,000 bitcoins in partnership with major companies such as TeslaWatt, Sphere 3D, Marathon Digital, and more. The company is offering industry turn-key solutions for curtailment, accounting, and customer relations., April 2023 – Artificial intelligence and single-cell biotech analytics firm, One Biosciences, launched a single cell data mining algorithm called ‘MAYA’. The algorithm is for cancer patients to detect therapeutic vulnerabilities., May 2022 – Europe-based Solarisbank, a banking-as-a-service provider, announced its partnership with Snowflake to boost its cloud data strategy. Using the advanced cloud infrastructure, the company can enhance data mining efficiency and strengthen its banking position.. Key drivers for this market are: Increasing Focus on Customer Satisfaction to Drive Market Growth. Potential restraints include: Requirement of Skilled Technical Resources Likely to Hamper Market Growth. Notable trends are: Incorporation of Data Mining and Machine Learning Solutions to Propel Market Growth.
https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
Author Siming Zheng. Experiment CODES data(3 in 1).
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global data mining and modeling market size was valued at approximately $28.5 billion in 2023 and is projected to reach $70.8 billion by 2032, growing at a compound annual growth rate (CAGR) of 10.5% during the forecast period. This remarkable growth can be attributed to the increasing complexity and volume of data generated across various industries, necessitating robust tools and techniques for effective data analysis and decision-making processes.
One of the primary growth factors driving the data mining and modeling market is the exponential increase in data generation owing to advancements in digital technology. Modern enterprises generate extensive data from numerous sources such as social media platforms, IoT devices, and transactional databases. The need to make sense of this vast information trove has led to a surge in the adoption of data mining and modeling tools. These tools help organizations uncover hidden patterns, correlations, and insights, thereby enabling more informed decision-making and strategic planning.
Another significant growth driver is the increasing adoption of artificial intelligence (AI) and machine learning (ML) technologies. Data mining and modeling are critical components of AI and ML algorithms, which rely on large datasets to learn and make predictions. As businesses strive to stay competitive, they are increasingly investing in AI-driven analytics solutions. This trend is particularly prevalent in sectors such as healthcare, finance, and retail, where predictive analytics can provide a substantial competitive edge. Moreover, advancements in big data technologies are further bolstering the capabilities of data mining and modeling solutions, making them more effective and efficient.
The burgeoning demand for business intelligence (BI) and analytics solutions is also a major factor propelling the market. Organizations are increasingly recognizing the value of data-driven insights in identifying market trends, customer preferences, and operational inefficiencies. Data mining and modeling tools form the backbone of sophisticated BI platforms, enabling companies to transform raw data into actionable intelligence. This demand is further amplified by the growing importance of regulatory compliance and risk management, particularly in highly regulated industries such as banking, financial services, and healthcare.
From a regional perspective, North America currently dominates the data mining and modeling market, owing to the early adoption of advanced technologies and the presence of major market players. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid digital transformation initiatives and increasing investments in AI and big data technologies. Europe also holds a significant market share, supported by stringent data protection regulations and a strong focus on innovation.
The data mining and modeling market by component is broadly segmented into software and services. The software segment encompasses various tools and platforms that facilitate data mining and modeling processes. These software solutions range from basic data analysis tools to advanced platforms integrated with AI and ML capabilities. The increasing complexity of data and the need for real-time analytics are driving the demand for sophisticated software solutions. Companies are investing in custom and off-the-shelf software to enhance their data handling and analytical capabilities, thereby gaining a competitive edge.
The services segment includes consulting, implementation, training, and support services. As organizations strive to leverage data mining and modeling tools effectively, the demand for professional services is on the rise. Consulting services help businesses identify the right tools and strategies for their specific needs, while implementation services ensure the seamless integration of these tools into existing systems. Training services are crucial for building in-house expertise, enabling teams to maximize the benefits of data mining and modeling solutions. Support services ensure the ongoing maintenance and optimization of these tools, addressing any technical issues that may arise.
The software segment is expected to dominate the market throughout the forecast period, driven by continuous advancements in te
NASA has some of the largest and most complex data sources in the world, with data sources ranging from the earth sciences, space sciences, and massive distributed engineering data sets from commercial aircraft and spacecraft. This talk will discuss some of the issues and algorithms developed to analyze and discover patterns in these data sets. We will also provide an overview of a large research program in Integrated Vehicle Health Management. The goal of this program is to develop advanced technologies to automatically detect, diagnose, predict, and mitigate adverse events during the flight of an aircraft. A case study will be presented on a recent data mining analysis performed to support the Flight Readiness Review of the Space Shuttle Mission STS-119.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is transformed into Matlab format. They are designed to be in cell formats. Each cell is a matrix which consists of a column representing the gene and row for the subject.Each dataset is organized in a separate directory. The directory contains four versions: a) Original dataset, b) Imputed dataset by MEAN,c) Imputed dataset by MEDIAN,d) Imputed dataset by Most Frequent,
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Opal is Australia's national gemstone, however most significant opal discoveries were made in the early 1900's - more than 100 years ago - until recently. Currently there is no formal exploration model for opal, meaning there are no widely accepted concepts or methodologies available to suggest where new opal fields may be found. As a consequence opal mining in Australia is a cottage industry with the majority of opal exploration focused around old opal fields. The EarthByte Group has developed a new opal exploration methodology for the Great Artesian Basin. The work is based on the concept of applying “big data mining” approaches to data sets relevant for identifying regions that are prospective for opal. The group combined a multitude of geological and geophysical data sets that were jointly analysed to establish associations between particular features in the data with known opal mining sites. A “training set” of known opal localities (1036 opal mines) was assembled, using those localities, which were featured in published reports and on maps. The data used include rock types, soil type, regolith type, topography, radiometric data and a stack of digital palaeogeographic maps. The different data layers were analysed via spatio-temporal data mining combining the GPlates PaleoGIS software (www.gplates.org) with the Orange data mining software (orange.biolab.si) to produce the first opal prospectivity map for the Great Artesian Basin. One of the main results of the study is that the geological conditions favourable for opal were found to be related to a particular sequence of surface environments over geological time. These conditions involved alternating shallow seas and river systems followed by uplift and erosion. The approach reduces the entire area of the Great Artesian Basin to a mere 6% that is deemed to be prospective for opal exploration. The work is described in two companion papers in the Australian Journal of Earth Sciences and Computers and Geosciences.
Age-coded multi-layered geological datasets are becoming increasingly prevalent with the surge in open-access geodata, yet there are few methodologies for extracting geological information and knowledge from these data. We present a novel methodology, based on the open-source GPlates software in which age-coded digital palaeogeographic maps are used to “data-mine” spatio-temporal patterns related to the occurrence of Australian opal. Our aim is to test the concept that only a particular sequence of depositional/erosional environments may lead to conditions suitable for the formation of gem quality sedimentary opal. Time-varying geographic environment properties are extracted from a digital palaeogeographic dataset of the eastern Australian Great Artesian Basin (GAB) at 1036 opal localities. We obtain a total of 52 independent ordinal sequences sampling 19 time slices from the Early Cretaceous to the present-day. We find that 95% of the known opal deposits are tied to only 27 sequences all comprising fluvial and shallow marine depositional sequences followed by a prolonged phase of erosion. We then map the total area of the GAB that matches these 27 opal-specific sequences, resulting in an opal-prospective region of only about 10% of the total area of the basin. The key patterns underlying this association involve only a small number of key environmental transitions. We demonstrate that these key associations are generally absent at arbitrary locations in the basin. This new methodology allows for the simplification of a complex time-varying geological dataset into a single map view, enabling straightforward application for opal exploration and for future co-assessment with other datasets/geological criteria. This approach may help unravel the poorly understood opal formation process using an empirical spatio-temporal data-mining methodology and readily available datasets to aid hypothesis testing.
Andrew Merdith - EarthByte Research Group, School of Geosciences, The University of Sydney, Australia. ORCID: 0000-0002-7564-8149
Thomas Landgrebe - EarthByte Research Group, School of Geosciences, The University of Sydney, Australia
Adriana Dutkiewicz - EarthByte Research Group, School of Geosciences, The University of Sydney, Australia
R. Dietmar Müller - EarthByte Research Group, School of Geosciences, The University of Sydney, Australia. ORCID: 0000-0002-3334-5764
This collection contains geological data from Australia used for data mining in the publications Merdith et al. (2013) and Landgrebe et al. (2013). The resulting maps of opal prospectivity are also included.
Note: For details on the files included in this data collection, see “Description_of_Resources.txt”.
Note: For information on file formats and what programs to use to interact with various file formats, see “File_Formats_and_Recommended_Programs.txt”.
For more information on this data collection, and links to other datasets from the EarthByte Research Group please visit EarthByte
For more information about using GPlates, including tutorials and a user manual please visit GPlates or EarthByte
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set belongs to the paper "Video-to-Model: Unsupervised Trace Extraction from Videos for Process Discovery and Conformance Checking in Manual Assembly", submitted on March 24, 2020, to the 18th International Conference on Business Process Management (BPM).
Abstract: Manual activities are often hidden deep down in discrete manufacturing processes. For the elicitation and optimization of process behavior, complete information about the execution of Manual activities are required. Thus, an approach is presented on how execution level information can be extracted from videos in manual assembly. The goal is the generation of a log that can be used in state-of-the-art process mining tools. The test bed for the system was lightweight and scalable consisting of an assembly workstation equipped with a single RGB camera recording only the hand movements of the worker from top. A neural network based real-time object classifier was trained to detect the worker’s hands. The hand detector delivers the input for an algorithm, which generates trajectories reflecting the movement paths of the hands. Those trajectories are automatically assigned to work steps using the position of material boxes on the assembly shelf as reference points and hierarchical clustering of similar behaviors with dynamic time warping. The system has been evaluated in a task-based study with ten participants in a laboratory, but under realistic conditions. The generated logs have been loaded into the process mining toolkit ProM to discover the underlying process model and to detect deviations from both, instructions and ground truth, using conformance checking. The results show that process mining delivers insights about the assembly process and the system’s precision.
The data set contains the generated and the annotated logs based on the video material gathered during the user study. In addition, the petri nets from the process discovery and conformance checking conducted with ProM (http://www.promtools.org) and the reference nets modeled with Yasper (http://www.yasper.org/) are provided.
https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
This is the source code for the paper "Efficient search of the best warping window for Dynamic Time Warping".This work focused on fast learning/searching for the best warping window for Dynamic Time Warping and Time Series Classification.For more info, visit https://github.com/ChangWeiTan/FastWWSearch
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The purpose of data mining analysis is always to find patterns of the data using certain kind of techiques such as classification or regression. It is not always feasible to apply classification algorithms directly to dataset. Before doing any work on the data, the data has to be pre-processed and this process normally involves feature selection and dimensionality reduction. We tried to use clustering as a way to reduce the dimension of the data and create new features. Based on our project, after using clustering prior to classification, the performance has not improved much. The reason why it has not improved could be the features we selected to perform clustering are not well suited for it. Because of the nature of the data, classification tasks are going to provide more information to work with in terms of improving knowledge and overall performance metrics. From the dimensionality reduction perspective: It is different from Principle Component Analysis which guarantees finding the best linear transformation that reduces the number of dimensions with a minimum loss of information. Using clusters as a technique of reducing the data dimension will lose a lot of information since clustering techniques are based a metric of 'distance'. At high dimensions euclidean distance loses pretty much all meaning. Therefore using clustering as a "Reducing" dimensionality by mapping data points to cluster numbers is not always good since you may lose almost all the information. From the creating new features perspective: Clustering analysis creates labels based on the patterns of the data, it brings uncertainties into the data. By using clustering prior to classification, the decision on the number of clusters will highly affect the performance of the clustering, then affect the performance of classification. If the part of features we use clustering techniques on is very suited for it, it might increase the overall performance on classification. For example, if the features we use k-means on are numerical and the dimension is small, the overall classification performance may be better. We did not lock in the clustering outputs using a random_state in the effort to see if they were stable. Our assumption was that if the results vary highly from run to run which they definitely did, maybe the data just does not cluster well with the methods selected at all. Basically, the ramification we saw was that our results are not much better than random when applying clustering to the data preprocessing. Finally, it is important to ensure a feedback loop is in place to continuously collect the same data in the same format from which the models were created. This feedback loop can be used to measure the model real world effectiveness and also to continue to revise the models from time to time as things change.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In this research, we have generated student retention alerts. The alerts are classified into two types: preventive and corrective. This classification varies according to the level of maturity of the data systematization process. Therefore, to systematize the data, data mining techniques have been applied. The experimental analytical method has been used, with a population of 13,715 students with 62 sociological, academic, family, personal, economic, psychological, and institutional variables, and factors such as academic follow-up and performance, financial situation, and personal information. In particular, information is collected on each of the problems or a combination of problems that could affect dropout rates. Following the methodology, the information has been generated through an abstract data model to reflect the profile of the dropout student. As advancement from previous research, this proposal will create preventive and corrective alternatives to avoid dropout higher education. Also, in contrast to previous work, we generated corrective warnings with the application of data mining techniques such as neural networks until reaching a precision of 97% and losses of 0.1052. In conclusion, this study pretends to analyze the behavior of students who drop out the university through the evaluation of predictive patterns. The overall objective is to predict the profile of student dropout, considering reasons such as admission to higher education and career changes. Consequently, using a data systematization process promotes the permanence of students in higher education. Once the profile of the dropout has been identified, student retention strategies have been approached, according to the time of its appearance and the point of view of the institution.
https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
Feature selection is an important technique for data mining before a machine learning algorithm is applied. Despite its importance, most studies of feature selection are restricted to batch learning. Unlike traditional batch learning methods, online learning represents a promising family of efficient and scalable machine learning algorithms for large-scale applications. Most existing studies of online learning require accessing all the attributes/features of training instances. Such a classical setting is not always appropriate for real-world applications when data instances are of high dimensionality or it is expensive to acquire the full set of attributes/features. To address this limitation, we investigate the problem of Online Feature Selection (OFS) in which an online learner is only allowed to maintain a classifier involved only a small and fixed number of features. The key challenge of Online Feature Selection is how to make accurate prediction using a small and fixed number of active features. This is in contrast to the classical setup of online learning where all the features can be used for prediction. We attempt to tackle this challenge by studying sparsity regularization and truncation techniques. Specifically, this article addresses two different tasks of online feature selection: (1) learning with full input where an learner is allowed to access all the features to decide the subset of active features, and (2) learning with partial input where only a limited number of features is allowed to be accessed for each instance by the learner. We present novel algorithms to solve each of the two problems and give their performance analysis. We evaluate the performance of the proposed algorithms for online feature selection on several public datasets, and demonstrate their applications to real-world problems including image classification in computer vision and microarray gene expression analysis in bioinformatics. The encouraging results of our experiments validate the efficacy and efficiency of the proposed techniques.Related Publication: Hoi, S. C., Wang, J., Zhao, P., & Jin, R. (2012). Online feature selection for mining big data. In Proceedings of the 1st International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications (pp. 93-100). ACM. http://dx.doi.org/10.1145/2351316.2351329 Full text available in InK: http://ink.library.smu.edu.sg/sis_research/2402/ Wang, J., Zhao, P., Hoi, S. C., & Jin, R. (2014). Online feature selection and its applications. IEEE Transactions on Knowledge and Data Engineering, 26(3), 698-710. http://dx.doi.org/10.1109/TKDE.2013.32 Full text available in InK: http://ink.library.smu.edu.sg/sis_research/2277/
A review paper on different pattern classification techniques based on web usage mining with neural network Area of data mining includes data preprocessing data classification cluster analysis Association etc The traffic on World Wide Web is increasing day by day and large amount of data generated due to user s interaction with web sites Web mining is the application of data mining techniques which includes web usage mining web content mining and the third one is web structure min
https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
Companies in this industry develop software for data mining. Data mining is the process of extracting patterns from large data sets.
International Journal of Engineering and Advanced Technology Publication fee - ResearchHelpDesk - International Journal of Engineering and Advanced Technology (IJEAT) is having Online-ISSN 2249-8958, bi-monthly international journal, being published in the months of February, April, June, August, October, and December by Blue Eyes Intelligence Engineering & Sciences Publication (BEIESP) Bhopal (M.P.), India since the year 2011. It is academic, online, open access, double-blind, peer-reviewed international journal. It aims to publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. All submitted papers will be reviewed by the board of committee of IJEAT. Aim of IJEAT Journal disseminate original, scientific, theoretical or applied research in the field of Engineering and allied fields. dispense a platform for publishing results and research with a strong empirical component. aqueduct the significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. seek original and unpublished research papers based on theoretical or experimental works for the publication globally. publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. impart a platform for publishing results and research with a strong empirical component. create a bridge for a significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. solicit original and unpublished research papers, based on theoretical or experimental works. Scope of IJEAT International Journal of Engineering and Advanced Technology (IJEAT) covers all topics of all engineering branches. Some of them are Computer Science & Engineering, Information Technology, Electronics & Communication, Electrical and Electronics, Electronics and Telecommunication, Civil Engineering, Mechanical Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. The main topic includes but not limited to: 1. Smart Computing and Information Processing Signal and Speech Processing Image Processing and Pattern Recognition WSN Artificial Intelligence and machine learning Data mining and warehousing Data Analytics Deep learning Bioinformatics High Performance computing Advanced Computer networking Cloud Computing IoT Parallel Computing on GPU Human Computer Interactions 2. Recent Trends in Microelectronics and VLSI Design Process & Device Technologies Low-power design Nanometer-scale integrated circuits Application specific ICs (ASICs) FPGAs Nanotechnology Nano electronics and Quantum Computing 3. Challenges of Industry and their Solutions, Communications Advanced Manufacturing Technologies Artificial Intelligence Autonomous Robots Augmented Reality Big Data Analytics and Business Intelligence Cyber Physical Systems (CPS) Digital Clone or Simulation Industrial Internet of Things (IIoT) Manufacturing IOT Plant Cyber security Smart Solutions – Wearable Sensors and Smart Glasses System Integration Small Batch Manufacturing Visual Analytics Virtual Reality 3D Printing 4. Internet of Things (IoT) Internet of Things (IoT) & IoE & Edge Computing Distributed Mobile Applications Utilizing IoT Security, Privacy and Trust in IoT & IoE Standards for IoT Applications Ubiquitous Computing Block Chain-enabled IoT Device and Data Security and Privacy Application of WSN in IoT Cloud Resources Utilization in IoT Wireless Access Technologies for IoT Mobile Applications and Services for IoT Machine/ Deep Learning with IoT & IoE Smart Sensors and Internet of Things for Smart City Logic, Functional programming and Microcontrollers for IoT Sensor Networks, Actuators for Internet of Things Data Visualization using IoT IoT Application and Communication Protocol Big Data Analytics for Social Networking using IoT IoT Applications for Smart Cities Emulation and Simulation Methodologies for IoT IoT Applied for Digital Contents 5. Microwaves and Photonics Microwave filter Micro Strip antenna Microwave Link design Microwave oscillator Frequency selective surface Microwave Antenna Microwave Photonics Radio over fiber Optical communication Optical oscillator Optical Link design Optical phase lock loop Optical devices 6. Computation Intelligence and Analytics Soft Computing Advance Ubiquitous Computing Parallel Computing Distributed Computing Machine Learning Information Retrieval Expert Systems Data Mining Text Mining Data Warehousing Predictive Analysis Data Management Big Data Analytics Big Data Security 7. Energy Harvesting and Wireless Power Transmission Energy harvesting and transfer for wireless sensor networks Economics of energy harvesting communications Waveform optimization for wireless power transfer RF Energy Harvesting Wireless Power Transmission Microstrip Antenna design and application Wearable Textile Antenna Luminescence Rectenna 8. Advance Concept of Networking and Database Computer Network Mobile Adhoc Network Image Security Application Artificial Intelligence and machine learning in the Field of Network and Database Data Analytic High performance computing Pattern Recognition 9. Machine Learning (ML) and Knowledge Mining (KM) Regression and prediction Problem solving and planning Clustering Classification Neural information processing Vision and speech perception Heterogeneous and streaming data Natural language processing Probabilistic Models and Methods Reasoning and inference Marketing and social sciences Data mining Knowledge Discovery Web mining Information retrieval Design and diagnosis Game playing Streaming data Music Modelling and Analysis Robotics and control Multi-agent systems Bioinformatics Social sciences Industrial, financial and scientific applications of all kind 10. Advanced Computer networking Computational Intelligence Data Management, Exploration, and Mining Robotics Artificial Intelligence and Machine Learning Computer Architecture and VLSI Computer Graphics, Simulation, and Modelling Digital System and Logic Design Natural Language Processing and Machine Translation Parallel and Distributed Algorithms Pattern Recognition and Analysis Systems and Software Engineering Nature Inspired Computing Signal and Image Processing Reconfigurable Computing Cloud, Cluster, Grid and P2P Computing Biomedical Computing Advanced Bioinformatics Green Computing Mobile Computing Nano Ubiquitous Computing Context Awareness and Personalization, Autonomic and Trusted Computing Cryptography and Applied Mathematics Security, Trust and Privacy Digital Rights Management Networked-Driven Multicourse Chips Internet Computing Agricultural Informatics and Communication Community Information Systems Computational Economics, Digital Photogrammetric Remote Sensing, GIS and GPS Disaster Management e-governance, e-Commerce, e-business, e-Learning Forest Genomics and Informatics Healthcare Informatics Information Ecology and Knowledge Management Irrigation Informatics Neuro-Informatics Open Source: Challenges and opportunities Web-Based Learning: Innovation and Challenges Soft computing Signal and Speech Processing Natural Language Processing 11. Communications Microstrip Antenna Microwave Radar and Satellite Smart Antenna MIMO Antenna Wireless Communication RFID Network and Applications 5G Communication 6G Communication 12. Algorithms and Complexity Sequential, Parallel And Distributed Algorithms And Data Structures Approximation And Randomized Algorithms Graph Algorithms And Graph Drawing On-Line And Streaming Algorithms Analysis Of Algorithms And Computational Complexity Algorithm Engineering Web Algorithms Exact And Parameterized Computation Algorithmic Game Theory Computational Biology Foundations Of Communication Networks Computational Geometry Discrete Optimization 13. Software Engineering and Knowledge Engineering Software Engineering Methodologies Agent-based software engineering Artificial intelligence approaches to software engineering Component-based software engineering Embedded and ubiquitous software engineering Aspect-based software engineering Empirical software engineering Search-Based Software engineering Automated software design and synthesis Computer-supported cooperative work Automated software specification Reverse engineering Software Engineering Techniques and Production Perspectives Requirements engineering Software analysis, design and modelling Software maintenance and evolution Software engineering tools and environments Software engineering decision support Software design patterns Software product lines Process and workflow management Reflection and metadata approaches Program understanding and system maintenance Software domain modelling and analysis Software economics Multimedia and hypermedia software engineering Software engineering case study and experience reports Enterprise software, middleware, and tools Artificial intelligent methods, models, techniques Artificial life and societies Swarm intelligence Smart Spaces Autonomic computing and agent-based systems Autonomic computing Adaptive Systems Agent architectures, ontologies, languages and protocols Multi-agent systems Agent-based learning and knowledge discovery Interface agents Agent-based auctions and marketplaces Secure mobile and multi-agent systems Mobile agents SOA and Service-Oriented Systems Service-centric software engineering Service oriented requirements engineering Service oriented architectures Middleware for service based systems Service discovery and composition Service level
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data, programs, results, and analysis software for the paper "Comparison of 14 different families of classification algorithms on 115 binary data sets" https://arxiv.org/abs/1606.00930
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These are the data used for the development of the investigation. This file was extracted from our mongoDB database. The data set contains real news of violence against women, which were organized with their date, the title and the body of the news.
Market basket analysis with Apriori algorithm
The retailer wants to target customers with suggestions on itemset that a customer is most likely to purchase .I was given dataset contains data of a retailer; the transaction data provides data around all the transactions that have happened over a period of time. Retailer will use result to grove in his industry and provide for customer suggestions on itemset, we be able increase customer engagement and improve customer experience and identify customer behavior. I will solve this problem with use Association Rules type of unsupervised learning technique that checks for the dependency of one data item on another data item.
Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.
Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them. - bought Computer Mouth => bought Mat for Mouse - support = P(Mouth & Mat) = 8/100 = 0.08 - confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89 - lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9 This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.
Number of Attributes: 7
https://user-images.githubusercontent.com/91852182/145270162-fc53e5a3-4ad1-4d06-b0e0-228aabcf6b70.png">
First, we need to load required libraries. Shortly I describe all libraries.
https://user-images.githubusercontent.com/91852182/145270210-49c8e1aa-9753-431b-a8d5-99601bc76cb5.png">
Next, we need to upload Assignment-1_Data. xlsx to R to read the dataset.Now we can see our data in R.
https://user-images.githubusercontent.com/91852182/145270229-514f0983-3bbb-4cd3-be64-980e92656a02.png">
https://user-images.githubusercontent.com/91852182/145270251-6f6f6472-8817-435c-a995-9bc4bfef10d1.png">
After we will clear our data frame, will remove missing values.
https://user-images.githubusercontent.com/91852182/145270286-05854e1a-2b6c-490e-ab30-9e99e731eacb.png">
To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The LSC (Leicester Scientific Corpus)
April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk) Supervised by Prof Alexander Gorban and Dr Evgeny MirkesThe data are extracted from the Web of Science [1]. You may not copy or distribute these data in whole or in part without the written consent of Clarivate Analytics.[Version 2] A further cleaning is applied in Data Processing for LSC Abstracts in Version 1*. Details of cleaning procedure are explained in Step 6.* Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v1.Getting StartedThis text provides the information on the LSC (Leicester Scientific Corpus) and pre-processing steps on abstracts, and describes the structure of files to organise the corpus. This corpus is created to be used in future work on the quantification of the meaning of research texts and make it available for use in Natural Language Processing projects.LSC is a collection of abstracts of articles and proceeding papers published in 2014, and indexed by the Web of Science (WoS) database [1]. The corpus contains only documents in English. Each document in the corpus contains the following parts:1. Authors: The list of authors of the paper2. Title: The title of the paper 3. Abstract: The abstract of the paper 4. Categories: One or more category from the list of categories [2]. Full list of categories is presented in file ‘List_of _Categories.txt’. 5. Research Areas: One or more research area from the list of research areas [3]. Full list of research areas is presented in file ‘List_of_Research_Areas.txt’. 6. Total Times cited: The number of times the paper was cited by other items from all databases within Web of Science platform [4] 7. Times cited in Core Collection: The total number of times the paper was cited by other papers within the WoS Core Collection [4]The corpus was collected in July 2018 online and contains the number of citations from publication date to July 2018. We describe a document as the collection of information (about a paper) listed above. The total number of documents in LSC is 1,673,350.Data ProcessingStep 1: Downloading of the Data Online
The dataset is collected manually by exporting documents as Tab-delimitated files online. All documents are available online.Step 2: Importing the Dataset to R
The LSC was collected as TXT files. All documents are extracted to R.Step 3: Cleaning the Data from Documents with Empty Abstract or without CategoryAs our research is based on the analysis of abstracts and categories, all documents with empty abstracts and documents without categories are removed.Step 4: Identification and Correction of Concatenate Words in AbstractsEspecially medicine-related publications use ‘structured abstracts’. Such type of abstracts are divided into sections with distinct headings such as introduction, aim, objective, method, result, conclusion etc. Used tool for extracting abstracts leads concatenate words of section headings with the first word of the section. For instance, we observe words such as ConclusionHigher and ConclusionsRT etc. The detection and identification of such words is done by sampling of medicine-related publications with human intervention. Detected concatenate words are split into two words. For instance, the word ‘ConclusionHigher’ is split into ‘Conclusion’ and ‘Higher’.The section headings in such abstracts are listed below:
Background Method(s) Design Theoretical Measurement(s) Location Aim(s) Methodology Process Abstract Population Approach Objective(s) Purpose(s) Subject(s) Introduction Implication(s) Patient(s) Procedure(s) Hypothesis Measure(s) Setting(s) Limitation(s) Discussion Conclusion(s) Result(s) Finding(s) Material (s) Rationale(s) Implications for health and nursing policyStep 5: Extracting (Sub-setting) the Data Based on Lengths of AbstractsAfter correction, the lengths of abstracts are calculated. ‘Length’ indicates the total number of words in the text, calculated by the same rule as for Microsoft Word ‘word count’ [5].According to APA style manual [6], an abstract should contain between 150 to 250 words. In LSC, we decided to limit length of abstracts from 30 to 500 words in order to study documents with abstracts of typical length ranges and to avoid the effect of the length to the analysis.
Step 6: [Version 2] Cleaning Copyright Notices, Permission polices, Journal Names and Conference Names from LSC Abstracts in Version 1Publications can include a footer of copyright notice, permission policy, journal name, licence, author’s right or conference name below the text of abstract by conferences and journals. Used tool for extracting and processing abstracts in WoS database leads to attached such footers to the text. For example, our casual observation yields that copyright notices such as ‘Published by Elsevier ltd.’ is placed in many texts. To avoid abnormal appearances of words in further analysis of words such as bias in frequency calculation, we performed a cleaning procedure on such sentences and phrases in abstracts of LSC version 1. We removed copyright notices, names of conferences, names of journals, authors’ rights, licenses and permission policies identified by sampling of abstracts.Step 7: [Version 2] Re-extracting (Sub-setting) the Data Based on Lengths of AbstractsThe cleaning procedure described in previous step leaded to some abstracts having less than our minimum length criteria (30 words). 474 texts were removed.Step 8: Saving the Dataset into CSV FormatDocuments are saved into 34 CSV files. In CSV files, the information is organised with one record on each line and parts of abstract, title, list of authors, list of categories, list of research areas, and times cited is recorded in fields.To access the LSC for research purposes, please email to ns433@le.ac.uk.References[1]Web of Science. (15 July). Available: https://apps.webofknowledge.com/ [2]WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [3]Research Areas in WoS. Available: https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html [4]Times Cited in WoS Core Collection. (15 July). Available: https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-Times-Cited-accessibility-and-variation?language=en_US [5]Word Count. Available: https://support.office.com/en-us/article/show-word-count-3c9e6a11-a04d-43b4-977c-563a0e0d5da3 [6]A. P. Association, Publication manual. American Psychological Association Washington, DC, 1983.
Data and algorithmsData and algorithms for analysis associated with manuscript. See 'readme.txt' for further detail.alldata.zip
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global data mining software market size was valued at USD 7.2 billion in 2023 and is projected to reach USD 15.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 8.7% during the forecast period. This growth is driven primarily by the increasing adoption of big data analytics and the rising demand for business intelligence across various industries. As businesses increasingly recognize the value of data-driven decision-making, the market is expected to witness substantial growth.
One of the significant growth factors for the data mining software market is the exponential increase in data generation. With the proliferation of internet-enabled devices and the rapid advancement of technologies such as the Internet of Things (IoT), there is a massive influx of data. Organizations are now more focused than ever on harnessing this data to gain insights, improve operations, and create a competitive advantage. This has led to a surge in demand for advanced data mining tools that can process and analyze large datasets efficiently.
Another driving force is the growing need for personalized customer experiences. In industries such as retail, healthcare, and BFSI, understanding customer behavior and preferences is crucial. Data mining software enables organizations to analyze customer data, segment their audience, and deliver personalized offerings, ultimately enhancing customer satisfaction and loyalty. This drive towards personalization is further fueling the adoption of data mining solutions, contributing significantly to market growth.
The integration of artificial intelligence (AI) and machine learning (ML) technologies with data mining software is also a key growth factor. These advanced technologies enhance the capabilities of data mining tools by enabling them to learn from data patterns and make more accurate predictions. The convergence of AI and data mining is opening new avenues for businesses, allowing them to automate complex tasks, predict market trends, and make informed decisions more swiftly. The continuous advancements in AI and ML are expected to propel the data mining software market over the forecast period.
Regionally, North America holds a significant share of the data mining software market, driven by the presence of major technology companies and the early adoption of advanced analytics solutions. The Asia Pacific region is also expected to witness substantial growth due to the rapid digital transformation across various industries and the increasing investments in data infrastructure. Additionally, the growing awareness and implementation of data-driven strategies in emerging economies are contributing to the market expansion in this region.
Text Mining Software is becoming an integral part of the data mining landscape, offering unique capabilities to analyze unstructured data. As organizations generate vast amounts of textual data from various sources such as social media, emails, and customer feedback, the need for specialized tools to extract meaningful insights is growing. Text Mining Software enables businesses to process and analyze this data, uncovering patterns and trends that were previously hidden. This capability is particularly valuable in industries like marketing, customer service, and research, where understanding the nuances of language can lead to more informed decision-making. The integration of text mining with traditional data mining processes is enhancing the overall analytical capabilities of organizations, allowing them to derive comprehensive insights from both structured and unstructured data.
The data mining software market is segmented by components, which primarily include software and services. The software segment encompasses various types of data mining tools that are used for analyzing and extracting valuable insights from raw data. These tools are designed to handle large volumes of data and provide advanced functionalities such as predictive analytics, data visualization, and pattern recognition. The increasing demand for sophisticated data analysis tools is driving the growth of the software segment. Enterprises are investing in these tools to enhance their data processing capabilities and derive actionable insights.
Within the software segment, the emergence of cloud-based data mining solutions is a notable trend. Cloud-based solutions offer several advantages, including s