https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This project focuses on analyzing human body movements during common exercises by capturing and processing angles of key body joints. We utilized video data to extract frame-by-frame angles of the following body parts during various exercises such as push-ups, jumping jacks, pull-ups, squats, and Russian twists. For pose estimation, MediaPipe was used to detect body landmarks, while YOLOv6 was employed for object detection to enhance accuracy.
Methodology
Applications This dataset can be used for multiple applications: - Form Correction: By comparing these angles with standard benchmarks, feedback can be provided to improve exercise form. - Performance Tracking: Over time, users can monitor their improvement by analyzing the changes in their joint angles during exercises. - Pose Classification: Machine learning models can be trained to classify correct vs. incorrect form, enabling the development of smart fitness assistants. - Real-time Feedback Systems: Using pose estimation in conjunction with live video, real-time systems can be developed to guide users during workouts.
Exercises Analyzed The following exercises were captured and analyzed for this dataset:
Potential Analysis - Time-Series Analysis: The data can be treated as a time-series, allowing for the identification of trends in joint movement over the duration of an exercise. - Pose Optimization: Optimization models can be used to suggest improvements in form based on angle analysis. - Machine Learning Integration: The dataset can serve as input for machine learning algorithms to automate form correction and workout optimization.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Stanford Data Set is a dataset for object detection tasks - it contains Cars Models annotations for 16,272 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Portuguese Chain of Thought prompt-response dataset, a meticulously curated collection containing 3000 comprehensive prompt and response pairs. This dataset is an invaluable resource for training Language Models (LMs) to generate well-reasoned answers and minimize inaccuracies. Its primary utility lies in enhancing LLMs' reasoning skills for solving arithmetic, common sense, symbolic reasoning, and complex problems.
This COT dataset comprises a diverse set of instructions and questions paired with corresponding answers and rationales in the Portuguese language. These prompts and completions cover a broad range of topics and questions, including mathematical concepts, common sense reasoning, complex problem-solving, scientific inquiries, puzzles, and more.
Each prompt is meticulously accompanied by a response and rationale, providing essential information and insights to enhance the language model training process. These prompts, completions, and rationales were manually curated by native Portuguese people, drawing references from various sources, including open-source datasets, news articles, websites, and other reliable references.
Our chain-of-thought prompt-completion dataset includes various prompt types, such as instructional prompts, continuations, and in-context learning (zero-shot, few-shot) prompts. Additionally, the dataset contains prompts and completions enriched with various forms of rich text, such as lists, tables, code snippets, JSON, and more, with proper markdown format.
To ensure a wide-ranging dataset, we have included prompts from a plethora of topics related to mathematics, common sense reasoning, and symbolic reasoning. These topics encompass arithmetic, percentages, ratios, geometry, analogies, spatial reasoning, temporal reasoning, logic puzzles, patterns, and sequences, among others.
These prompts vary in complexity, spanning easy, medium, and hard levels. Various question types are included, such as multiple-choice, direct queries, and true/false assessments.
To accommodate diverse learning experiences, our dataset incorporates different types of answers depending on the prompt and provides step-by-step rationales. The detailed rationale aids the language model in building reasoning process for complex questions.
These responses encompass text strings, numerical values, and date and time formats, enhancing the language model's ability to generate reliable, coherent, and contextually appropriate answers.
This fully labeled Portuguese Chain of Thought Prompt Completion Dataset is available in JSON and CSV formats. It includes annotation details such as a unique ID, prompt, prompt type, prompt complexity, prompt category, domain, response, rationale, response type, and rich text presence.
Quality and Accuracy
Our dataset upholds the highest standards of quality and accuracy. Each prompt undergoes meticulous validation, and the corresponding responses and rationales are thoroughly verified. We prioritize inclusivity, ensuring that the dataset incorporates prompts and completions representing diverse perspectives and writing styles, maintaining an unbiased and discrimination-free stance.
The Portuguese version is grammatically accurate without any spelling or grammatical errors. No copyrighted, toxic, or harmful content is used during the construction of this dataset.
Continuous Updates and Customization
The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Ongoing efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to gather custom chain of thought prompt completion data tailored to specific needs, providing flexibility and customization options.
License
The dataset, created by FutureBeeAI, is now available for commercial use. Researchers, data scientists, and developers can leverage this fully labeled and ready-to-deploy Portuguese Chain of Thought Prompt Completion Dataset to enhance the rationale and accurate response generation capabilities of their generative AI models and explore new approaches to NLP tasks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Coups d'Ètat are important events in the life of a country. They constitute an important subset of irregular transfers of political power that can have significant and enduring consequences for national well-being. There are only a limited number of datasets available to study these events (Powell and Thyne 2011, Marshall and Marshall 2019). Seeking to facilitate research on post-WWII coups by compiling a more comprehensive list and categorization of these events, the Cline Center for Advanced Social Research (previously the Cline Center for Democracy) initiated the Coup d’État Project as part of its Societal Infrastructures and Development (SID) project. More specifically, this dataset identifies the outcomes of coup events (i.e., realized, unrealized, or conspiracy) the type of actor(s) who initiated the coup (i.e., military, rebels, etc.), as well as the fate of the deposed leader. Version 2.1.3 adds 19 additional coup events to the data set, corrects the date of a coup in Tunisia, and reclassifies an attempted coup in Brazil in December 2022 to a conspiracy. Version 2.1.2 added 6 additional coup events that occurred in 2022 and updated the coding of an attempted coup event in Kazakhstan in January 2022. Version 2.1.1 corrected a mistake in version 2.1.0, where the designation of “dissident coup” had been dropped in error for coup_id: 00201062021. Version 2.1.1 fixed this omission by marking the case as both a dissident coup and an auto-coup. Version 2.1.0 added 36 cases to the data set and removed two cases from the v2.0.0 data. This update also added actor coding for 46 coup events and added executive outcomes to 18 events from version 2.0.0. A few other changes were made to correct inconsistencies in the coup ID variable and the date of the event. Version 2.0.0 improved several aspects of the previous version (v1.0.0) and incorporated additional source material to include: • Reconciling missing event data • Removing events with irreconcilable event dates • Removing events with insufficient sourcing (each event needs at least two sources) • Removing events that were inaccurately coded as coup events • Removing variables that fell below the threshold of inter-coder reliability required by the project • Removing the spreadsheet ‘CoupInventory.xls’ because of inadequate attribution and citations in the event summaries • Extending the period covered from 1945-2005 to 1945-2019 • Adding events from Powell and Thyne’s Coup Data (Powell and Thyne, 2011)
Items in this Dataset 1. Cline Center Coup d'État Codebook v.2.1.3 Codebook.pdf - This 15-page document describes the Cline Center Coup d’État Project dataset. The first section of this codebook provides a summary of the different versions of the data. The second section provides a succinct definition of a coup d’état used by the Coup d'État Project and an overview of the categories used to differentiate the wide array of events that meet the project's definition. It also defines coup outcomes. The third section describes the methodology used to produce the data. Revised February 2024 2. Coup Data v2.1.3.csv - This CSV (Comma Separated Values) file contains all of the coup event data from the Cline Center Coup d’État Project. It contains 29 variables and 1000 observations. Revised February 2024 3. Source Document v2.1.3.pdf - This 325-page document provides the sources used for each of the coup events identified in this dataset. Please use the value in the coup_id variable to identify the sources used to identify that particular event. Revised February 2024 4. README.md - This file contains useful information for the user about the dataset. It is a text file written in markdown language. Revised February 2024
Citation Guidelines 1. To cite the codebook (or any other documentation associated with the Cline Center Coup d’État Project Dataset) please use the following citation: Peyton, Buddy, Joseph Bajjalieh, Dan Shalmon, Michael Martin, Jonathan Bonaguro, and Scott Althaus. 2024. “Cline Center Coup d’État Project Dataset Codebook”. Cline Center Coup d’État Project Dataset. Cline Center for Advanced Social Research. V.2.1.3. February 27. University of Illinois Urbana-Champaign. doi: 10.13012/B2IDB-9651987_V7 2. To cite data from the Cline Center Coup d’État Project Dataset please use the following citation (filling in the correct date of access): Peyton, Buddy, Joseph Bajjalieh, Dan Shalmon, Michael Martin, Jonathan Bonaguro, and Emilio Soto. 2024. Cline Center Coup d’État Project Dataset. Cline Center for Advanced Social Research. V.2.1.3. February 27. University of Illinois Urbana-Champaign. doi: 10.13012/B2IDB-9651987_V7
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
The English Open-Ended Question Answering Dataset is a meticulously curated collection of comprehensive Question-Answer pairs. It serves as a valuable resource for training Large Language Models (LLMs) and Question-answering models in the English language, advancing the field of artificial intelligence.
This QA dataset comprises a diverse set of open-ended questions paired with corresponding answers in English. There is no context paragraph given to choose an answer from, and each question is answered without any predefined context content. The questions cover a broad range of topics, including science, history, technology, geography, literature, current affairs, and more.
Each question is accompanied by an answer, providing valuable information and insights to enhance the language model training process. Both the questions and answers were manually curated by native English people, and references were taken from diverse sources like books, news articles, websites, and other reliable references.
This question-answer prompt completion dataset contains different types of prompts, including instruction type, continuation type, and in-context learning (zero-shot, few-shot) type. The dataset also contains questions and answers with different types of rich text, including tables, code, JSON, etc., with proper markdown.
To ensure diversity, this Q&A dataset includes questions with varying complexity levels, ranging from easy to medium and hard. Different types of questions, such as multiple-choice, direct, and true/false, are included. Additionally, questions are further classified into fact-based and opinion-based categories, creating a comprehensive variety. The QA dataset also contains the question with constraints and persona restrictions, which makes it even more useful for LLM training.
To accommodate varied learning experiences, the dataset incorporates different types of answer formats. These formats include single-word, short phrases, single sentences, and paragraph types of answers. The answer contains text strings, numerical values, date and time formats as well. Such diversity strengthens the Language model's ability to generate coherent and contextually appropriate answers.
This fully labeled English Open Ended Question Answer Dataset is available in JSON and CSV formats. It includes annotation details such as id, language, domain, question_length, prompt_type, question_category, question_type, complexity, answer_type, rich_text.
The dataset upholds the highest standards of quality and accuracy. Each question undergoes careful validation, and the corresponding answers are thoroughly verified. To prioritize inclusivity, the dataset incorporates questions and answers representing diverse perspectives and writing styles, ensuring it remains unbiased and avoids perpetuating discrimination.
Both the question and answers in English are grammatically accurate without any word or grammatical errors. No copyrighted, toxic, or harmful content is used while building this dataset.
The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Continuous efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to collect custom question-answer data tailored to specific needs, providing flexibility and customization options.
The dataset, created by FutureBeeAI, is now ready for commercial use. Researchers, data scientists, and developers can utilize this fully labeled and ready-to-deploy English Open Ended Question Answer Dataset to enhance the language understanding capabilities of their generative ai models, improve response generation, and explore new approaches to NLP question-answering tasks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Replication Package of the paper "From Reports to Bug-Fix Commits: A 10 Years Dataset of Bug-Fixing Activity from 55 Apache's Open Source Projects"ABSTRACT:Bugs appear in almost any software development. Solving all or at least a large part of them requires a great deal of time, effort, and budget. Software projects typically use issue tracking systems as a way to report and monitor bug-fixing tasks. In recent years, several researchers have been conducting bug tracking analysis to better understand the problem and thus provide means to reduce costs and improve the efficiency of the bug-fixing task. In this paper, we introduce a new dataset composed of more than 70,000 bug-fix reports from 10 years of bug-fixing activity of 55 projects from the Apache Software Foundation, distributed in 9 categories. We have mined this information from Jira issue track system concerning two different perspectives of reports with closed/resolved status: static (the latest version of reports) and dynamic (the changes that have occurred in reports over time). We also extract information from the commits (if they exist) that fix such bugs from their respective version-control system (Git).We also provide a change analysis that occurs in the reports as a way of illustrating and characterizing the proposed dataset. Once the data extraction process is an error-prone nontrivial task, we believe such initiatives like this could be useful to support researchers in further more detailed investigations.You can find the full paper at: https://doi.org/10.1145/3345629.3345639If you use this dataset for your research, please reference the following paper:@inproceedings{Vieira:2019:RBC:3345629.3345639, author = {Vieira, Renan and da Silva, Ant^{o}nio and Rocha, Lincoln and Gomes, Jo~{a}o Paulo}, title = {From Reports to Bug-Fix Commits: A 10 Years Dataset of Bug-Fixing Activity from 55 Apache's Open Source Projects}, booktitle = {Proceedings of the Fifteenth International Conference on Predictive Models and Data Analytics in Software Engineering}, series = {PROMISE'19}, year = {2019}, isbn = {978-1-4503-7233-6}, location = {Recife, Brazil}, pages = {80--89}, numpages = {10}, url = {http://doi.acm.org/10.1145/3345629.3345639}, doi = {10.1145/3345629.3345639}, acmid = {3345639}, publisher = {ACM}, address = {New York, NY, USA}, keywords = {Bug-Fix Dataset, Mining Software Repositories, Software Traceability}, } P.S: We added a new dataset version (v1.0.1). In this version, we fix the git commit features that track the src and test files. More info can be found in the fix-script.py file.
The Food Insecurity Hotspots Data Set consists of grids at 250 meter (~7.2 arc-seconds) resolution that identify the level of intensity and frequency of food insecurity over the 10 years between 2009 and 2019, as well as hotspot areas that have experienced consecutive food insecurity events. The gridded data are based on subnational food security analysis provided by FEWS NET (Famine Early Warning Systems Network) in five (5) regions, including Central America and the Caribbean, Central Asia, East Africa, Southern Africa, and West Africa. Based on the Integrated Food Security Phase Classification (IPC), food insecurity is defined as Minimal, Stressed, Crisis, Emergency, and Famine.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The AI Training Dataset In Healthcare Market size was valued at USD 341.8 million in 2023 and is projected to reach USD 1464.13 million by 2032, exhibiting a CAGR of 23.1 % during the forecasts period. The growth is attributed to the rising adoption of AI in healthcare, increasing demand for accurate and reliable training datasets, government initiatives to promote AI in healthcare, and technological advancements in data collection and annotation. These factors are contributing to the expansion of the AI Training Dataset In Healthcare Market. Healthcare AI training data sets are vital for building effective algorithms, and enhancing patient care and diagnosis in the industry. These datasets include large volumes of Electronic Health Records, images such as X-ray and MRI scans, and genomics data which are thoroughly labeled. They help the AI systems to identify trends, forecast and even help in developing unique approaches to treating the disease. However, patient privacy and ethical use of a patient’s information is of the utmost importance, thus requiring high levels of anonymization and compliance with laws such as HIPAA. Ongoing expansion and variety of datasets are crucial to address existing bias and improve the efficiency of AI for different populations and diseases to provide safer solutions for global people’s health.
## Overview
Head Data Set 2 is a dataset for object detection tasks - it contains Heads QiDz annotations for 2,342 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
This dataset is associated with the manuscript "Evaluating fit-for-purpose cell viability assays that are sensitive to proliferative capacity". This dataset consists of 12 individual studies containing Jurkat cell proliferation data and viability assay data. A README file describes the data sets.
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Discover the Walmart Products Free Dataset, featuring 2,000 records in CSV format. This dataset includes detailed information about various Walmart products, such as names, prices, categories, and descriptions.
It’s perfect for data analysis, e-commerce research, and machine learning projects. Download now and kickstart your insights with accurate, real-world data.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Dataset of Bulgarian Grammar Mistakes
Dataset Summary
This is a dataset of sentences in Bulgarian with grammar mistakes created by automatically inducing errors in correct sentences.
Supported Tasks
text2text-generation: The dataset can be used to train a model for grammar error correction, which consists in correction of grammatical errors. in a source sentence, resulting in a correct version.
Languages
bg: Only Bulgarian is supported by this… See the full description on the dataset page: https://huggingface.co/datasets/thebogko/bulgarian-grammar-mistakes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Validation Data Set is a dataset for object detection tasks - it contains Microscopic Eggs annotations for 300 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Gloves Data Set is a dataset for object detection tasks - it contains Gloves annotations for 685 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Tree Data Set is a dataset for object detection tasks - it contains Tree annotations for 519 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
this data set is presented to explore the relationship of learning models to the development of 21st century citizenship skills. the variables are the level of understanding of learning models, ability in developing learning models, the relevance of learning models to the development of 21st century citizenship skills, the contribution of learning models to the development of critical thinking skills, contributions learning models to develop collaborative skills, the contribution of learning models to the development of communication skills, the contribution of learning models to the development of creative skills, the relevance of learning models to the development of aspects of spiritual attitudes, the relevance of learning models to the development of aspects of social attitudes, the relevance of learning models to the development of aspects of knowledge, relevance learning model for the development of aspects of factual knowledge, the relevance of the following learning models for development aspects of knowledge, the relevance of learning models to the development of aspects of procedural knowledge, the relevance of learning models to the development of aspects of metacognition knowledge.
This comprehensive dataset contains a wide range of theoretical questions related to computer science, covering various domains such as operating systems, machine learning, software engineering, computer architecture and design, data structures, and algorithms. The questions are carefully curated to encompass a diverse set of topics, including hardware and software concepts, and are designed to challenge and enhance the knowledge of individuals interested in the computer science field.
The dataset is specifically tailored for training a chatbot or a question-answering system, with a focus on providing accurate and informative answers to technical questions. The questions cover a broad spectrum of complexity, ranging from basic to advanced, and are aimed at assisting users in gaining a deeper understanding of computer science concepts. Whether it's preparing for technical interviews or exams, or simply seeking guidance in the computer science field, this dataset can be a valuable resource for users looking to improve their knowledge and expertise.
This dataset consists of imagery, imagery footprints, associated ice seal detections and homography files associated with the KAMERA Test Flights conducted in 2019. This dataset was subset to include relevant data for detection algorithm development. This dataset is limited to data collected during flights 4, 5, 6 and 7 from our 2019 surveys.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Dataset comprises 338 hours of telephone dialogues in Russian, collected from 460 native speakers across various topics and domains, with an impressive 98% Word Accuracy Rate. It is designed for research in speech recognition, focusing on various recognition models, primarily aimed at meeting the requirements for automatic speech recognition (ASR) systems.
By utilizing this dataset, researchers and developers can advance their understanding and capabilities in automatic speech recognition (ASR) systems, transcribing audio, and natural language processing (NLP). - Get the data
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22059654%2Fa3f375fb273dcad3fe17403bdfccb63b%2Fssssssssss.PNG?generation=1739884059328284&alt=media" alt="">
- Audio files: High-quality recordings in WAV format
- Text transcriptions: Accurate and detailed transcripts for each audio segment
- Speaker information: Metadata on native speakers, including gender and etc
- Topics: Diverse domains such as general conversations, business and etc
The native speakers and various topics and domains covered in the dataset make it an ideal resource for research community, allowing researchers to study spoken languages, dialects, and language patterns.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Dataset Card for H4 Stack Exchange Preferences Dataset
Dataset Summary
This dataset contains questions and answers from the Stack Overflow Data Dump for the purpose of preference model training. Importantly, the questions have been filtered to fit the following criteria for preference models (following closely from Askell et al. 2021): have >=2 answers. This data could also be used for instruction fine-tuning and language model training. The questions are grouped with… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceH4/stack-exchange-preferences.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This project focuses on analyzing human body movements during common exercises by capturing and processing angles of key body joints. We utilized video data to extract frame-by-frame angles of the following body parts during various exercises such as push-ups, jumping jacks, pull-ups, squats, and Russian twists. For pose estimation, MediaPipe was used to detect body landmarks, while YOLOv6 was employed for object detection to enhance accuracy.
Methodology
Applications This dataset can be used for multiple applications: - Form Correction: By comparing these angles with standard benchmarks, feedback can be provided to improve exercise form. - Performance Tracking: Over time, users can monitor their improvement by analyzing the changes in their joint angles during exercises. - Pose Classification: Machine learning models can be trained to classify correct vs. incorrect form, enabling the development of smart fitness assistants. - Real-time Feedback Systems: Using pose estimation in conjunction with live video, real-time systems can be developed to guide users during workouts.
Exercises Analyzed The following exercises were captured and analyzed for this dataset:
Potential Analysis - Time-Series Analysis: The data can be treated as a time-series, allowing for the identification of trends in joint movement over the duration of an exercise. - Pose Optimization: Optimization models can be used to suggest improvements in form based on angle analysis. - Machine Learning Integration: The dataset can serve as input for machine learning algorithms to automate form correction and workout optimization.