100+ datasets found
  1. Global Demographic data | Census Data for Marketing & Retail Analytics |...

    • datarade.ai
    .csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Global Demographic data | Census Data for Marketing & Retail Analytics | Consumer Demographic Data [Dataset]. https://datarade.ai/data-products/geopostcodes-population-data-demographic-data-55-year-spa-geopostcodes
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Oct 17, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Luxembourg, Romania, South Georgia and the South Sandwich Islands, Kosovo, Saint Martin (French part), Ecuador, Sint Maarten (Dutch part), Tokelau, Western Sahara, Rwanda
    Description

    A global database of Census Data that provides an understanding of population distribution at administrative and zip code levels over 55 years, past, present, and future.

    Leverage up-to-date census data with population trends for real estate, market research, audience targeting, and sales territory mapping.

    Self-hosted commercial demographic dataset curated based on trusted sources such as the United Nations or the European Commission, with a 99% match accuracy. The global Census Data is standardized, unified, and ready to use.

    Use cases for the Global Census Database (Consumer Demographic Data)

    • Ad targeting

    • B2B Market Intelligence

    • Customer analytics

    • Real Estate Data Estimations

    • Marketing campaign analysis

    • Demand forecasting

    • Sales territory mapping

    • Retail site selection

    • Reporting

    • Audience targeting

    Census data export methodology

    Our consumer demographic data packages are offered in CSV format. All Demographic data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Product Features

    • Historical population data (55 years)

    • Changes in population density

    • Urbanization Patterns

    • Accurate at zip code and administrative level

    • Optimized for easy integration

    • Easy customization

    • Global coverage

    • Updated yearly

    • Standardized and reliable

    • Self-hosted delivery

    • Fully aggregated (ready to use)

    • Rich attributes

    Why do companies choose our demographic databases

    • Standardized and unified demographic data structure

    • Seamless integration in your system

    • Dedicated location data expert

    Note: Custom population data packages are available. Please submit a request via the above contact button for more details.

  2. g

    Data from: Longitudinal Analysis of Historical Demographic Data

    • search.gesis.org
    • openicpsr.org
    • +1more
    Updated May 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GESIS search (2021). Longitudinal Analysis of Historical Demographic Data [Dataset]. http://doi.org/10.3886/E34554V1
    Explore at:
    Dataset updated
    May 1, 2021
    Dataset provided by
    ICPSR - Interuniversity Consortium for Political and Social Research
    GESIS search
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de452467https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de452467

    Description

    Abstract (en): This study contains teaching materials developed over a period of years for a four-week workshop, Longitudinal Analysis of Historical Demographic Data (LAHDD), offered through the ICPSR Summer Program in 2006, 2007, 2009, 2011 and 2013, with one-day alumni workshops in 2010, 2012, and 2014. Instructors in the workshops are listed below. Funding was provided by The Eunice Kennedy Shriver National Institute of Child Health and Human Development, grants R25-HD040525 and R25-HD-049479, the ICPSR Summer Program and the ICPSR Director. The course was designed to teach students the theories, methods, and practices of historical demography and to give them first-hand experience working with historical data. This training is valuable not only to those interested in the analysis historical data. The techniques of historical demography rest on methodological insights that can be applied to many problems in population studies and other social sciences. While historical demography remains a flourishing research area with publications in key journals like Demography, Population Studies, and Population, practitioners were dispersed, and training was not available at any of the population research centers in the U.S. or elsewhere. One hundred and ten participants from around the globe took part in the workshops, and have gone on to establish courses of their own or teach in other workshops. We offer these materials here in the hopes that others will find them useful in developing courses on historical demography and/or longitudinal data analysis. The workshop was organized in three tracks: A brief tour of historical demography, event-history analysis, and data management for longitudinal data using Stata and Microsoft Access. The data management track includes 13 exercises designed for hands-on learning and reinforcement. Included in this project are the syllabii and reading lists for the three tracks, datasets used in the exercises, documents setting out each exercise, a file with the expected results, and for many of the exercises, an explanation. Video tutorials helpful with the Access exercises are accessible from ICPSR's YouTube channel https://www.youtube.com/playlist?list=PLqC9lrhW1Vvb9M1QpQH23z9UlPYxHbUMF. Users are encouraged to use these materials to develop their own courses and workshops in any of the topics covered. Please acknowledge NICHD R25-HD040525 and R25-HD-049479 whenever appropriate. Historical demography instructors: Myron P. Gutmann, University of Colorado Boulder Cameron Campbell, Hong Kong University of Science and Technology J. David Hacker, University of Minnesota Satomi Kurosu, Reitaku University Katherine A. Lynch, Carnegie Mellon University Event history instructors: Cameron Campbell, Hong Kong University of Science and Technology Glenn Deane, State University of New York at Albany Ken R. Smith, Huntsman Cancer Institute and University of Utah Database management instructors: George Alter, University of Michigan Susan Hautaniemi Leonard, University of Michigan Teaching Assistants: Mathew Creighton, University of Massachusetts Boston Emily Merchant, University of Michigan Luciana Quaranta, Lund University Kristine Witkowski, University of Michigan Project Manager: Susan Hautaniemi Leonard, University of Michigan Funding insitution(s): United States Department of Health and Human Services. National Institutes of Health. Eunice Kennedy Shriver National Institute of Child Health and Human Development (R25 HD040525).

  3. D

    Data Analytics in L & H Insurance Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Analytics in L & H Insurance Report [Dataset]. https://www.datainsightsmarket.com/reports/data-analytics-in-l-h-insurance-1430368
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    May 2, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Life & Health Insurance Data Analytics market is booming, projected to reach [estimated 2033 market size based on CAGR] by 2033. Learn about key trends, drivers, and leading companies shaping this $2647.3 million (2025) market. Explore predictive analytics, demographic profiling, and more.

  4. Demographics

    • hub.arcgis.com
    Updated Jun 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Agriculture and Consumer Services (2017). Demographics [Dataset]. https://hub.arcgis.com/maps/FDACS::demographics/about
    Explore at:
    Dataset updated
    Jun 27, 2017
    Dataset authored and provided by
    Florida Department of Agriculture and Consumer Serviceshttps://www.fdacs.gov/
    Area covered
    Description

    The demographic data displayed in this theme of Florida’s Roadmap to Living Healthy are quantitative measures that exhibit the socioeconomic state of Florida’s communities. The data sets comprising this themed map include topics such as population, race, income level, age, education, housing, and lifestyle data for all of Florida’s 67 counties, and other basic demographic characteristics. The Florida Department of Agriculture and Consumer Services has utilized the most current demographic statistical data from trusted sources such as the U.S. Census Bureau, U.S. Department of Housing and Urban Development, U.S. Department of Labor Bureau of Labor Statistics, Florida Department of Children and Families, and Esri to craft this custom visualization. Demographics provide profound perspective to your data analytics and will help you recognize the distinctive characteristics of a population based on its location. This demographic-themed mapping tool will simplify your ability to identify the specific socioeconomic needs of every community in Florida.

  5. Medical_Insurance cost Dataset

    • kaggle.com
    zip
    Updated Sep 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    varisha batool (2025). Medical_Insurance cost Dataset [Dataset]. https://www.kaggle.com/datasets/varishabatool/data-set
    Explore at:
    zip(16425 bytes)Available download formats
    Dataset updated
    Sep 10, 2025
    Authors
    varisha batool
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Description

    Context

    This dataset contains medical insurance cost information for 1338 individuals. It includes demographic and health-related variables such as age, sex, BMI, number of children, smoking status, and residential region in the US. The target variable is charges, which represents the medical insurance cost billed to the individual. This data set might have some missing values.

    Uses Of Data Set

    • The dataset is commonly used for:

    • Regression modeling

    • Health economics research

    • Insurance pricing analysis

    • Machine learning education and tutorials

    Columns

    Age: Age of primary beneficiary (int)

    sex: Gender of beneficiary (male, female)

    Bmi: Body Mass Index

    children: Number of children covered by health insurance (int)

    smoker: Smoking status of the beneficiary (yes, no)

    Region: Residential region in the US (northeast, northwest, southeast, southwest)

    charges: Medical insurance cost billed to the beneficiary (float)

    Potential Uses

    • Build predictive models for medical costs
    • Explore how smoking and BMI impact charges
    • Teach students about regression and feature engineering
    • Analyze healthcare affordability trends
  6. Demographic data

    • figshare.com
    txt
    Updated Aug 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pooja Ramamurthi (2022). Demographic data [Dataset]. http://doi.org/10.6084/m9.figshare.20629854.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 25, 2022
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Pooja Ramamurthi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the data without the conjoint answers attached that is used for demographic data analysis for respondents

  7. d

    Data analysis from: Demographic consequences of changing body size in a...

    • search.dataone.org
    • datadryad.org
    Updated Nov 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raisa Hernández-Pacheco; Floriane Plard; Kristine L. Grayson; Ulrich K. Steiner (2023). Data analysis from: Demographic consequences of changing body size in a terrestrial salamander [Dataset]. http://doi.org/10.5061/dryad.r7sqv9s9r
    Explore at:
    Dataset updated
    Nov 29, 2023
    Dataset provided by
    Dryad Digital Repository
    Authors
    Raisa Hernández-Pacheco; Floriane Plard; Kristine L. Grayson; Ulrich K. Steiner
    Time period covered
    Oct 20, 2021
    Description

    Changes in climate can alter individual body size, and the resulting shifts in reproduction and survival are expected to impact population dynamics and viability. However, appropriate methods to account for size-dependent demographic changes are needed, especially in understudied yet threatened groups such as amphibians. We investigated individual and population-level demographic effects of changes in body size for a terrestrial salamander using capture-mark-recapture data. For our analysis, we implemented an integral projection model parameterized with capture-recapture likelihood estimates from a Bayesian framework. Our study combines survival and growth data from a single dataset to quantify the influence of size on survival while including different sources of uncertainty around these parameters, demonstrating how selective forces can be studied in populations with limited data and incomplete recaptures. We found a strong dependency of the population growth rate on changes in indivi..., ,

  8. D

    Shopper Demographics Analytics Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Shopper Demographics Analytics Market Research Report 2033 [Dataset]. https://dataintelo.com/report/shopper-demographics-analytics-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Shopper Demographics Analytics Market Outlook



    As per our latest research, the global shopper demographics analytics market size in 2024 is valued at USD 5.3 billion, with a robust CAGR of 14.7% projected through the forecast period. By 2033, the market is expected to reach USD 17.2 billion, reflecting the accelerating adoption of advanced analytics solutions in retail and related sectors. The primary growth driver is the increasing need for retailers and brands to understand and predict consumer behavior in an era characterized by omnichannel shopping and intense competition.




    The growth of the shopper demographics analytics market is significantly propelled by the retail sector’s digital transformation. Retailers are increasingly leveraging analytics to gain granular insights into customer demographics, preferences, and purchasing behavior. The integration of artificial intelligence (AI) and machine learning (ML) into analytics platforms has enabled businesses to process vast amounts of data in real time, offering actionable insights that drive personalized marketing and operational efficiency. As consumer expectations for tailored experiences continue to rise, retailers are investing heavily in shopper analytics to enhance customer engagement, improve inventory management, and optimize store layouts, further fueling market expansion.




    Another key growth factor is the proliferation of e-commerce and the corresponding surge in online data generation. E-commerce platforms are uniquely positioned to collect detailed demographic and behavioral data, which can be analyzed to segment customers, predict purchasing trends, and personalize marketing campaigns. The adoption of cloud-based analytics solutions has further democratized access to advanced analytics, allowing even small and medium-sized enterprises (SMEs) to harness the power of shopper demographics analytics. Moreover, the integration of analytics with customer relationship management (CRM) and point-of-sale (POS) systems has streamlined data collection and analysis, enabling businesses to respond swiftly to changing consumer preferences.




    The increasing focus on omnichannel retail strategies is also driving demand for shopper demographics analytics. Retailers are striving to provide a seamless shopping experience across physical stores, online platforms, and mobile applications. Analytics solutions help bridge the gap between different channels by offering a unified view of customer behavior, enabling businesses to deliver consistent and personalized experiences. The rise of smart stores and the deployment of Internet of Things (IoT) devices have further enriched the data ecosystem, providing real-time insights into foot traffic, dwell times, and purchase patterns. These advancements are expected to sustain the market’s high growth trajectory over the coming years.




    From a regional perspective, North America currently dominates the shopper demographics analytics market, owing to the presence of major technology providers and early adoption by leading retailers. However, the Asia Pacific region is witnessing the fastest growth, driven by rapid urbanization, expanding retail infrastructure, and increasing digital adoption among consumers. Europe also holds a significant market share, supported by strong regulatory frameworks and a mature retail sector. The Middle East & Africa and Latin America are emerging as promising markets, as retailers in these regions invest in analytics to stay competitive and cater to evolving consumer demands. These regional dynamics underscore the global relevance and growth potential of shopper demographics analytics.



    Component Analysis



    The shopper demographics analytics market by component is bifurcated into software and services, with software solutions representing the larger share in 2024. The software segment encompasses a wide range of analytics platforms, including proprietary and open-source solutions designed to collect, process, and visualize demographic data. These platforms leverage advanced technologies such as AI, ML, and big data analytics to deliver actionable insights in real time. The growing adoption of cloud-based analytics software has further accelerated market growth, enabling retailers to scale their analytics capabilities without significant upfront investment in IT infrastructure. The continuous evolution of analytics software, with features such as predictive modeling, data v

  9. Synthetic Demographic Dataset

    • kaggle.com
    zip
    Updated Dec 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AnthonyTherrien (2023). Synthetic Demographic Dataset [Dataset]. https://www.kaggle.com/datasets/anthonytherrien/synthetic-population-demographics-dataset/discussion?sort=undefined
    Explore at:
    zip(204018419 bytes)Available download formats
    Dataset updated
    Dec 30, 2023
    Authors
    AnthonyTherrien
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Description:

    Introducing the Synthetic Demographic Dataset, a large-scale, simulated dataset encompassing 5,000,000 rows. This dataset is a fictional yet intricate assembly of individual profiles, each characterized by various demographic and lifestyle attributes such as name, gender, country, age, income, education level, occupation, and more. It is designed to illustrate the potential of the data generation script, available in the 'Code' section.

    Purpose and Use:

    The dataset's primary purpose is to display the versatility and depth of the data generation script. It exemplifies how diverse demographic data can be synthesized. This dataset is ideal for understanding the structure and potential of synthetic data but is not intended for predictive modeling or statistical analysis due to the lack of a target variable or real-world correlation.

    Key Note:

    This dataset does not correlate with any real-world data or target values. It is artificially generated for demonstration purposes only and should not be employed for machine learning models or statistical analyses intending to derive real-world insights or predictions.

    Data Format and Attributes:

    Each of the 5,000,000 rows represents an individual with attributes including:

    • Name
    • Gender
    • Country
    • Age
    • Income
    • Education Level
    • Occupation
    • Marital Status
    • Number of Children
    • Location Type (Urban/Suburban/Rural)
    • Health Index
    • Exercise Frequency
    • Diet Quality Score
    • Credit Score
    • Car Ownership Status

    Dataset Size:

    5,000,000 Rows

    Code Availability:

    Access the code used for generating this dataset in the 'Code' section. It offers insight into synthetic data generation techniques, valuable for educational and demonstration purposes.

  10. i

    Demographic and Health Survey 1987 - Thailand

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute of Population Studies (IPS) (2019). Demographic and Health Survey 1987 - Thailand [Dataset]. https://catalog.ihsn.org/catalog/2489
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Institute of Population Studies (IPS)
    Time period covered
    1987
    Area covered
    Thailand
    Description

    Abstract

    The Thai Demographic and Health Survey (TDHS) was a nationally representative sample survey conducted from March through June 1988 to collect data on fertility, family planning, and child and maternal health. A total of 9,045 households and 6,775 ever-married women aged 15 to 49 were interviewed. Thai Demographic and Health Survey (TDHS) is carried out by the Institute of Population Studies (IPS) of Chulalongkorn University with the financial support from USAID through the Institute for Resource Development (IRD) at Westinghouse. The Institute of Population Studies was responsible for the overall implementation of the survey including sample design, preparation of field work, data collection and processing, and analysis of data. IPS has made available its personnel and office facilities to the project throughout the project duration. It serves as the headquarters for the survey.

    The Thai Demographic and Health Survey (TDHS) was undertaken for the main purpose of providing data concerning fertility, family planning and maternal and child health to program managers and policy makers to facilitate their evaluation and planning of programs, and to population and health researchers to assist in their efforts to document and analyze the demographic and health situation. It is intended to provide information both on topics for which comparable data is not available from previous nationally representative surveys as well as to update trends with respect to a number of indicators available from previous surveys, in particular the Longitudinal Study of Social Economic and Demographic Change in 1969-73, the Survey of Fertility in Thailand in 1975, the National Survey of Family Planning Practices, Fertility and Mortality in 1979, and the three Contraceptive Prevalence Surveys in 1978/79, 1981 and 1984.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Women age 15-49

    Universe

    The population covered by the 1987 THADHS is defined as the universe of all women Ever-married women in the reproductive ages (i.e., women 15-49). This covered women in private households on the basis of a de facto coverage definition. Visitors and usual residents who were in the household the night before the first visit or before any subsequent visit during the few days the interviewing team was in the area were eligible. Excluded were the small number of married women aged under 15 and women not present in private households.

    Kind of data

    Sample survey data

    Sampling procedure

    SAMPLE SIZE AND ALLOCATION

    The objective of the survey was to provide reliable estimates for major domains of the country. This consisted of two overlapping sets of reporting domains: (a) Five regions of the country namely Bangkok, north, northeast, central region (excluding Bangkok), and south; (b) Bangkok versus all provincial urban and all rural areas of the country. These requirements could be met by defining six non-overlapping sampling domains (Bangkok, provincial urban, and rural areas of each of the remaining 4 regions), and allocating approximately equal sample sizes to them. On the basis of past experience, available budget and overall reporting requirement, the target sample size was fixed at 7,000 interviews of ever-married women aged 15-49, expected to be found in around 9,000 households. Table A.I shows the actual number of households as well as eligible women selected and interviewed, by sampling domain (see Table i.I for reporting domains).

    THE FRAME AND SAMPLE SELECTION

    The frame for selecting the sample for urban areas, was provided by the National Statistical Office of Thailand and by the Ministry of the Interior for rural areas. It consisted of information on population size of various levels of administrative and census units, down to blocks in urban areas and villages in rural areas. The frame also included adequate maps and descriptions to identify these units. The extent to which the data were up-to-date as well as the quality of the data varied somewhat in different parts of the frame. Basically, the multi-stage stratified sampling design involved the following procedure. A specified number of sample areas were selected systematically from geographically/administratively ordered lists with probabilities proportional to the best available measure of size (PPS). Within selected areas (blocks or villages) new lists of households were prepared and systematic samples of households were selected. In principle, the sampling interval for the selection of households from lists was determined so as to yield a self weighting sample of households within each domain. However, in the absence of good measures of population size for all areas, these sampling intervals often required adjustments in the interest of controlling the size of the resulting sample. Variations in selection probabilities introduced due to such adjustment, where required, were compensated for by appropriate weighting of sample cases at the tabulation stage.

    SAMPLE OUTCOME

    The final sample of households was selected from lists prepared in the sample areas. The time interval between household listing and enumeration was generally very short, except to some extent in Bangkok where the listing itself took more time. In principle, the units of listing were the same as the ultimate units of sampling, namely households. However in a small proportion of cases, the former differed from the latter in several respects, identified at the stage of final enumeration: a) Some units listed actually contained more than one household each b) Some units were "blanks", that is, were demolished or not found to contain any eligible households at the time of enumeration. c) Some units were doubtful cases in as much as the household was reported as "not found" by the interviewer, but may in fact have existed.

    Mode of data collection

    Face-to-face

    Research instrument

    The DHS core questionnaires (Household, Eligible Women Respondent, and Community) were translated into Thai. A number of modifications were made largely to adapt them for use with an ever- married woman sample and to add a number of questions in areas that are of special interest to the Thai investigators but which were not covered in the standard core. Examples of such modifications included adding marital status and educational attainment to the household schedule, elaboration on questions in the individual questionnaire on educational attainment to take account of changes in the educational system during recent years, elaboration on questions on postnuptial residence, and adaptation of the questionnaire to take into account that only ever-married women are being interviewed rather than all women. More generally, attention was given to the wording of questions in Thai to ensure that the intent of the original English-language version was preserved.

    a) Household questionnaire

    The household questionnaire was used to list every member of the household who usually lives in the household and as well as visitors who slept in the household the night before the interviewer's visit. Information contained in the household questionnaire are age, sex, marital status, and education for each member (the last two items were asked only to members aged 13 and over). The head of the household or the spouse of the head of the household was the preferred respondent for the household questionnaire. However, if neither was available for interview, any adult member of the household was accepted as the respondent. Information from the household questionnaire was used to identify eligible women for the individual interview. To be eligible, a respondent had to be an ever-married woman aged 15-49 years old who had slept in the household 'the previous night'.

    Prior evidence has indicated that when asked about current age, Thais are as likely to report age at next birthday as age at last birthday (the usual demographic definition of age). Since the birth date of each household number was not asked in the household questionnaire, it was not possible to calculate age at last birthday from the birthdate. Therefore a special procedure was followed to ensure that eligible women just under the higher boundary for eligible ages (i.e. 49 years old) were not mistakenly excluded from the eligible woman sample because of an overstated age. Ever-married women whose reported age was between 50-52 years old and who slept in the household the night before birthdate of the woman, it was discovered that these women (or any others being interviewed) were not actually within the eligible age range of 15-49, the interview was terminated and the case disqualified. This attempt recovered 69 eligible women who otherwise would have been missed because their reported age was over 50 years old or over.

    b) Individual questionnaire

    The questionnaire administered to eligible women was based on the DHS Model A Questionnaire for high contraceptive prevalence countries. The individual questionnaire has 8 sections: - Respondent's background - Reproduction - Contraception - Health and breastfeeding - Marriage - Fertility preference - Husband's background and woman's work - Heights and weights of children and mothers

    The questionnaire was modified to suit the Thai context. As noted above, several questions were added to the standard DHS core questionnaire not only to meet the interest of IPS researchers hut also because of their relevance to the current demographic situation in Thailand. The supplemental questions are marked with an asterisk in the individual questionnaire. Questions concerning the following items were added in the individual questionnaire: - Did the respondent ever

  11. D

    Data from: Improving assessments of data-limited populations using...

    • datasetcatalog.nlm.nih.gov
    • data.niaid.nih.gov
    • +3more
    Updated Mar 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Horswill, Cat; Newell, Mark; Daunt, Francis; Wanless, Sarah; Matthiopoulos, Jason; Manica, Andrea; Wood, Matthew (2021). Improving assessments of data-limited populations using life-history theory [Dataset]. http://doi.org/10.5061/dryad.qnk98sfg0
    Explore at:
    Dataset updated
    Mar 22, 2021
    Authors
    Horswill, Cat; Newell, Mark; Daunt, Francis; Wanless, Sarah; Matthiopoulos, Jason; Manica, Andrea; Wood, Matthew
    Description
    1. Predicting how populations may respond to climate change and anthropogenic pressures requires detailed knowledge of demographic traits, such as survival and reproduction. However, the availability of these data varies greatly across space and taxa. Therefore, it is common practice to conduct population assessments by filling in missing values from surrogate species or other populations of the same species. Using these independent surrogate values concurrently with observed data neglects the life‐history trade‐offs that connect the different aspects of a population's demography. Consequently, this approach introduces biases that could ultimately lead to erroneous management decisions. 2. We use a Bayesian hierarchical framework to combine fragmented multi‐population data with established life‐history theory and reconstruct population‐specific demographic data across a substantial part of a species breeding range. We apply our analysis to a long‐lived colonial species, the black‐legged kittiwake Rissa tridactyla, that is classified as globally Vulnerable and is highly threatened by increasing anthropogenic pressures, including offshore renewable energy development. We then use a projection analysis to examine how the reconstructed demographic parameters may improve population assessments, compared to models that combine observed data with independent surrogate values. 3. Demographic parameters reconstructed using a hierarchical framework can be utilised in a range of population modelling approaches. They can also be used as reference estimates to assess whether independent surrogate values are likely to over or underestimate missing demographic parameters. We show that surrogate values from independent sources are often used to fill in missing parameters that have large potential demographic impact, and that resulting biases are driven in unpredictable directions thus precluding assessments from being consistently precautionary. 4. Synthesis and applications. Our study dramatically increases the spatial coverage of population‐specific demographic data for black‐legged kittiwakes. The reconstructed demographic parameters presented can also be used immediately to reduce uncertainty in the consenting process for offshore wind development in the United Kingdom and Ireland. More broadly, we show that the reconstruction approach used here provides a new avenue for improving evidence‐based management and policy action for animal and plant populations with fragmented and error prone demographic data. 22-Mar-2021
  12. Demography of American black bears (Ursus americanus) in a semiarid...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Jan 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brenden M. Orocu; Cambria Armstrong; Janene Auger; Hal L. Black; Randy T. Larsen; Brock R. McMillan; Mark C. Belk (2025). Demography of American black bears (Ursus americanus) in a semiarid environment [Dataset]. http://doi.org/10.5061/dryad.98sf7m0t8
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 2, 2025
    Dataset provided by
    Brigham Young University
    Authors
    Brenden M. Orocu; Cambria Armstrong; Janene Auger; Hal L. Black; Randy T. Larsen; Brock R. McMillan; Mark C. Belk
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    United States
    Description

    The American black bear (Ursus americanus) has one of the broadest geographic distributions of any mammalian carnivore in North America. Populations occur from high to low elevations and from mesic to arid environments, and their demographic traits have been documented in a wide variety of environments. However, the demography of American black bears in semiarid environments, which comprise a significant portion of the geographic range, is poorly documented. To fill this gap in understanding, we used data from a long-term mark-recapture study of black bears in the semiarid environment of eastern Utah, USA. Cub and yearling survival were low and adult survival was high relative to other populations. Adult life stages had the highest reproductive value, comprised the largest proportion of the population, and exhibited the highest elasticity contribution to the population growth rate (i.e., λ). Vital rates of black bears in this semiarid environment are skewed toward higher survival of adults, and lower survival of cubs compared to other populations. Methods Mark-Recapture study We estimated survival rates from long-term mark-recapture data gathered as part of a 27-year study on American black bears of the East Tavaputs Plateau. During the first 12 years of the study (June to August 1991-2003) female bears were captured and radio-collared, and all bears were tagged in the ear, except for cubs and yearlings. For the entire study (1992 – 2019), collared females were visited in their dens annually during their winter hibernation to count newborn cubs and surviving yearlings. Age of individual bears was determined by 2 methods: (1) direct observation of cubs or yearlings (i.e., year of birth was known) or (2) cementum annuli analysis of a cross-section of the root of an extracted premolar (Palochak, 2004; Willey, 1974). The data we used to derive survival and fecundity rates consisted of the ID_number, cohort (cub, yearling, subadult, prime-aged adult, and old adult), age in years, sex (female, male, unknown), number of cubs, number of yearlings, first observation of individual, last observation of individual, days from last observation, and survival status. We did not include subadult and adult male bears in the analysis. Survival rates To determine the average survival rates for each life stage, we used a Cox proportional hazards model in program R (Team, 2022). This model accommodates staggered entries, where individuals enter the study at different times, and censoring, where the event of interest (e.g., mortality) is not observed for all individuals due to the inability to follow-up or the study ending before the event occurs. These features allow for a more accurate representation of survival over time, even with incomplete data (Cox, 1972). The Cox model is a semi-parametric approach that examines how covariates, such as age and environmental factors, influence the risk of death at any given point in time. Unlike fully parametric models, which require defining the baseline hazard function (the risk of death when all covariates are at baseline levels), the Cox model does not require this step, making it highly flexible and suitable for diverse data and applications (Zhang, 2016). The hazard function in this context refers to the rate or likelihood of an event (e.g., death) occurring at a specific moment, given that the individual has survived up to that time. The Cox model is expressed as follows: h(t|X) = h0(t) exp(β1X1 + β2X2 +...+ βpXp) where h(t|X) is the hazard function at time t given covariates X, h0(t) is the baseline hazard function β1, β2, …, βp are the coefficients for the predictor variables X1, X2, …, Xp. The model assumes proportional hazards, meaning the relative risk of death (the hazard ratio) between two groups remains constant over time (Zhang, 2016). The advantage of the Cox model is its ability to handle censored data, common in survival analysis. Censoring occurs when some individuals have not experienced mortality by the end of the study, so we only know that they survived up to that point. Moreover, the Cox model can incorporate time-dependent covariates, enabling a dynamic analysis of how risk factors influence survival over time (Therneau & Grambsch, 2000). For our analysis, we formulated four Cox proportional hazards models as follows: 1) constant survival, 2) a model with the effect of maternal age, 3) a model with the effect of cohort, and 4) a model with the combined effect of age and cohort. We compared these models using Akaike’s Information Criterion (AIC) to identify the best fit and then evaluate the effect sizes of covariates based on the β coefficients from the top-performing model (Burnham et al., 2011; Symonds & Moussalli, 2011). When there was uncertainty in model selection, we used model averaging to estimate effect sizes and β coefficients. Each model was also checked for uninformative parameters (Arnold, 2010). We reviewed the model summaries to assess the estimated effects of covariates (constant survival, maternal age, cohort, and the combination of age and cohort) on survival outcomes. Fecundity rates To determine fecundity rates, we used females monitored through the use of radio-collars. All females that were ≥ four years old were counted in the breeding pool. We removed any female ≥ 25 years of age from the breeding pool (Noyce, 2010). We classified old adults as ≥ 15 years old and prime-aged adults as 4-14 years of age. We visited dens of females to observe whether they were alone or accompanied by cubs or yearlings as well as the sexes of their offspring. At the height of the study, we had 15 prime-aged adult females, along with a few old-adult females. There was variation in the number of adult females and old-adult females throughout the study period and we had at least two old-adult females in each year for 12 years during the study. Matrix Transition Model and Analysis We developed a transition matrix model based on adult females and their offspring to estimate population growth and additional demographic parameters. In the model, we assumed every cub was born on January 1st and survived through the full year if they were alive through the 15th of October. We assumed density of males does not affect breeding success (Lewis et al., 2014). We divided the population into five age-based stages: cub (0–1 year-old); yearling (1–2 years old), subadult (2–4 years old), prime-aged adult (4–14 years old), and old adult (15+). We used the term sm to indicate the probability of surviving and transitioning to a new stage (matrix sub diagonal), and the term ss indicated the probability of surviving and staying in the same stage (matrix diagonal). We used f to indicate fecundity or reproduction (matrix upper right corner; Fig. 1A, 1B). We used the software Unified Life Models (ULM; (Legendre & Clobert, 1995) to evaluate the matrix model and to calculate population growth rate, stable age distribution, reproductive value, and sensitivity and elasticity matrices. We summed elasticity values across all stages for the three demographic processes: fecundity (f), growth (sm, transition from one age stage to another), and stasis (ss, survival without transitioning). Our matrix transition model differed from the matrix transition model generated by Beston (2011), which used nine life stages. To ensure an accurate comparison between the two models, we combined the nine life stages from the matrix transition model in the meta-analysis (Beston, 2011) into five broader stages: cub, yearling, subadult, adult, and old adult. We selected five life stages due to the assumption that age might influence reproductive output, a pattern supported by research on other mammals (Hilderbrand et al., 2019; Nussey et al., 2008; Promislow & Harvey, 1990).

  13. d

    Synthetic: National Population Health Survey, 2000-2001 [Canada]: Cycle 4

    • search.dataone.org
    Updated Dec 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Synthetic: National Population Health Survey, 2000-2001 [Canada]: Cycle 4 [Dataset]. http://doi.org/10.5683/SP3/V48E1K
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Statistics Canada
    Time period covered
    Jan 1, 2000 - Jan 1, 2001
    Area covered
    Canada
    Description

    Please note: This is a Synthetic data file, also known as a Dummy file - it is not real data. This synthetic file should not be used for purposes other than to develop an test computer programs that are to be submitted by remote access. Each record in the synthetic file matches the format and content parameters of the real Statistics Canada Master File with which it is associated, but the data themselves have been 'made up'. They do NOT represent responses from real individuals and should NOT be used for actual analysis. These data are provided solely for the purpose of testing statistical package 'code' (e.g. SPSS syntax, SAS programs, etc.) in preperation for analysis using the associated Master File in a Research Data Centre, by Remote Job Submission, or by some other means of secure access. If statistical analysis 'code' works with the synthetic data, researchers can have some confidence that the same code will run successfully against the Master File data in the Resource Data Centres. In the fall of 1991, the National Health Information Council recommended that an ongoing national survey of population health be conducted. This recommendation was based on consideration of the economic and fiscal pressures on the health care systems and the requirement for information with which to improve the health status of the population in Canada. Commencing in April 1992, Statistics Canada received funding for development of a National Population Health Survey (NPHS). The NPHS collects information related to the health of the Canadian population and related socio-demographic information to: aid in the development of public policy by providing measures of the level, trend and distribution of the health status of the population, provide data for analytic studies that will assist in understanding the determinants of health, and collect data on the economic, social, demographic, occupational and environmental correlates of health. In addition the NPHS seeks to increase the understanding of the relationship between health status and health care utilization, including alternative as well as traditional services, and also to allow the possibility of linking survey data to routinely collected administrative data such as vital statistics, environmental measures, community variables, and health services utilization. The NPHS collects information related to the health of the Canadian population and related socio-demographic information. It is composed of three components: the Households, the Health Institutions, and the North components. The Household component started in 1994/1995 and is conducted every two years. The first three cycles (1994/1995, 1996/1997, 1997/1998) were both cross-sectional and longitudinal. The NPHS longitudinal sample includes 17,276 persons from all ages in 1994/1995 and these same persons are to be interviewed every two years. Beginning in Cycle 4 (2000/2001) the survey became strictly longitudinal (collecting health information from the same individuals each cycle). The cross-sectional and longitudinal documentation of the Household component is presented separately as well as the documentation for the Health Institutions and North components. The cross-sectional component of the Population Health Survey Program has been taken over by the Canadian Community Health Survey (CCHS). With the introduction of the Canadian Community Health Survey (CCHS), there were many changes to the 2000-2001 National Population Health Survey - Household questionnaire. Since NPHS is strictly a longitudinal survey, some content was migrated to the CCHS (such as the two-week disability section and certain questions on place where health care was provided) or was dropped (e.g. certain chronic conditions), while the order of the questionnaire changed. As only the longitudinal respondent is now surveyed, it was no longer necessary to distinguish between the General questionnaire and the Health component. Health Canada, Public Health Agency of Canada and provincial ministries of health use NPHS longitudinal data to plan, implement and evaluate programs and health policies to improve health and the efficiency of health services. Non-profit health organizations and researchers in the academic fields use the information to move research ahead and to improve health.

  14. Demographic and Health Survey 1993-1994 - Bangladesh

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Jul 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mitra & Associates/ NIPORT (2017). Demographic and Health Survey 1993-1994 - Bangladesh [Dataset]. https://catalog.ihsn.org/catalog/117
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset provided by
    National Institute of Population Research and Traininghttp://niport.gov.bd/
    Authors
    Mitra & Associates/ NIPORT
    Time period covered
    1993 - 1994
    Area covered
    Bangladesh
    Description

    Abstract

    The Bangladesh Demographic and Health Survey (BDHS) is the first of this kind of study conducted in Bangladesh. It provides rapid feedback on key demographic and programmatic indicators to monitor the strength and weaknesses of the national family planning/MCH program. The wealth of information collected through the 1993-94 BDHS will be of immense value to the policymakers and program managers in order to strengthen future program policies and strategies.

    The BDHS is intended to serve as a source of population and health data for policymakers and the research community. In general, the objectives of the BDHS are to: - asses the overall demographic situation in Bangladesh, - assist in the evaluation of the population and health programs in Bangladesh, and - advance survey methodology.

    More specifically, the BDHS was designed to: - provide data on the family planning and fertility behavior of the Bangladesh population to evaluate the national family planning programs, - measure changes in fertility and contraceptive prevalence and, at the same time, study the factors which affect these changes, such as marriage patterns, urban/rural residence, availability of contraception, breastfeeding patterns, and other socioeconomic factors, and - examine the basic indicators of maternal and child health in Bangladesh.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 10-49
    • Men

    Kind of data

    Sample survey data

    Sampling procedure

    Bangladesh is divided into five administrative divisions, 64 districts (zillas), and 489 thanas. In rural areas, thanas are divided into unions and then mauzas, an administrative land unit. Urban areas are divided into wards and then mahallas. The 1993-94 BDHS employed a nationally-representative, two-stage sample. It was selected from the Integrated Multi-Purpose Master Sample (IMPS), newly created by the Bangladesh Bureau of Statistics. The IMPS is based on 1991 census data. Each of the five divisions was stratified into three groups: 1) statistical metropolitan areas (SMAs) 2) municipalities (other urban areas), and 3) rural areas. In rural areas, the primary sampling unit was the mauza, while in urban areas, it was the mahalla. Because the primary sampling units in the IMPS were selected with probability proportional to size from the 1991 census frame, the units for the BDHS were sub-selected from the IMPS with equal probability to make the BDHS selection equivalent to selection with probability proportional to size. A total of 304 primary sampling units were selected for the BDHS (30 in SMAs, 40 in municipalities, and 234 in rural areas), out of the 372 in the IMPS. Fieldwork in three sample points was not possible, so a total of 301 points were covered in the survey.

    Since one objective of the BDHS is to provide separate survey estimates for each division as well as for urban and rural areas separately, it was necessary to increase the sampling rate for Barisal Division und for municipalities relative to the other divisions, SMAs, and rural areas. Thus, the BDHS sample is not self-weighting and weighting factors have been applied to the data in this report.

    After the selection of the BDHS sample points, field staffs were trained by Mitra and Associates and conducted a household listing operation in September and October 1993. A systematic sample of households was then selected from these lists, with an average "take" of 25 households in the urban clusters and 37 households in rural clusters. Every second household was identified as selected for the husband's survey, meaning that, in addition to interviewing all ever-married women age 10-49, interviewers also interviewed the husband of any woman who was successfully interviewed. It was expected that the sample would yield interviews with approximately 10,000 ever-married women age 10-49 and 4,200 of their husbands.

    Note: See detailed in APPENDIX A of the survey final report.

    Sampling deviation

    Data collected for women 10-49, indicators calculated for women 15-49. A total of 304 primary sampling units were selected, but fieldwork in 3 sample points was not possible.

    Mode of data collection

    Face-to-face

    Research instrument

    Four types of questionnaires were used for the BDHS: a Household Questionnaire, a Women's Questionnaire, a Husbands' Questionnaire, and a Service Availability Questionnaire. The contents of these questionnaires were based on the DHS Model A Questionnaire, which is designed for use in countries with relatively high levels of contraceptive use. Additions and modifications to the model questionnaires were made during a series of meetings with representatives of various organizations, including the Asia Foundation, the Bangladesh Bureau of Statistics, the Cambridge Consulting Corporation, the Family Planning Association of Bangladesh, GTZ, the International Centre for Diarrhoeal Disease Research (ICDDR,B), Pathfinder International, Population Communications Services, the Population Council, the Social Marketing Company, UNFPA, UNICEF, University Research Corporation/Bangladesh, and the World Bank. The questionnaires were developed in English and then translated into and printed in Bangla.

    The Household Questionnaire was used to list all the usual members and visitors of selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for individual interview. In addition, information was collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, and ownership of various consumer goods.

    The Women's Questionnaire was used to collect information from ever-married women age 10-49. These women were asked questions on the following topics: - Background characteristics (age, education, religion, etc.), - Reproductive history, - Knowledge and use of family planning methods, - Antenatal and delivery care, - Breastfeeding and weaning practices, - Vaccinations and health of children under age three, - Marriage, - Fertility preferences, and - Husband's background and respondent's work.

    The Husbands' Questionnaire was used to interview the husbands of a subsample of women who were interviewed. The questionnaire included many of the same questions as the Women's Questionnaire, except that it omitted the detailed birth history, as well as the sections on maternal care, breastfeeding and child health.

    The Service Availability Questionnaire was used to collect information on the family planning and health services available in and near the sampled areas. It consisted of a set of three questionnaires: one to collect data on characteristics of the community, one for interviewing family welfare visitors and one for interviewing family planning field workers, whether government or non-governent supported. One set of service availability questionnaires was to be completed in each cluster (sample point).

    Cleaning operations

    All questionnaires for the BDHS were returned to Dhaka for data processing at Mitra and Associates. The processing operation consisted of office editing, coding of open-ended questions, data entry, and editing inconsistencies found by the computer programs. One senior staff member, 1 data processing supervisor, questionnaire administrator, 2 office editors, and 5 data entry operators were responsible for the data processing operation. The data were processed on five microcomputers. The DHS data entry and editing programs were written in ISSA (Integrated System for Survey Analysis). Data processing commenced in early February and was completed by late April 1994.

    Response rate

    A total of 9,681 households were selected for the sample, of which 9,174 were successfully interviewed. The shortfall is primarily due to dwellings that were vacant, or in which the inhabitants had left for an extended period at the time they were visited by the interviewing teams. Of the 9,255 households that were occupied, 99 percent were successfully interviewed. In these households, 9,900 women were identified as eligible for the individual interview and interviews were completed for 9,640 or 97 percent of these. In one-half of the households that were selected for inclusion in the husbands' survey, 3,874 eligible husbands were identified, of which 3,284 or 85 percent were interviewed.

    The principal reason for non-response among eligible women and men was failure to find them at home despite repeated visits to the household. The refusal rate was very low (less than one-tenth of one percent among women and husbands). Since the main reason for interviewing husbands was to match the information with that from their wives, survey procedures called for interviewers not to interview husbands of women who were not interviewed. Such cases account for about one-third of the non-response among husbands. Where husbands and wives were both interviewed, they were interviewed simultaneously but separately.

    Note: See summarized response rates by residence (urban/rural) in Table 1.1 of the survey final report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions

  15. f

    Table 1_The development and evaluation of a quality assessment framework for...

    • figshare.com
    • frontiersin.figshare.com
    docx
    Updated Jun 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laura A. Bardon; Grace Bennett; Michelle Weech; Faustina Hwang; Eve F. A. Kelly; Julie A. Lovegrove; Panče Panov; Siân Astley; Paul Finglas; Eileen R. Gibney (2025). Table 1_The development and evaluation of a quality assessment framework for reuse of dietary intake data: an FNS-Cloud study.docx [Dataset]. http://doi.org/10.3389/fnut.2025.1519401.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 6, 2025
    Dataset provided by
    Frontiers
    Authors
    Laura A. Bardon; Grace Bennett; Michelle Weech; Faustina Hwang; Eve F. A. Kelly; Julie A. Lovegrove; Panče Panov; Siân Astley; Paul Finglas; Eileen R. Gibney
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A key aim of the FNS-Cloud project (grant agreement no. 863059) was to overcome fragmentation within food, nutrition and health data through development of tools and services facilitating matching and merging of data to promote increased reuse. However, in an era of increasing data reuse, it is imperative that the scientific quality of data analysis is maintained. Whilst it is true that many datasets can be reused, questions remain regarding whether they should be, thus, there is a need to support researchers making such a decision. This paper describes the development and evaluation of the FNS-Cloud data quality assessment tool for dietary intake datasets. Markers of quality were identified from the literature for dietary intake, lifestyle, demographic, anthropometric, and consumer behavior data at all levels of data generation (data collection, underlying data sources used, dataset management and data analysis). These markers informed the development of a quality assessment framework, which comprised of decision trees and feedback messages relating to each quality parameter. These fed into a report provided to the researcher on completion of the assessment, with considerations to support them in deciding whether the dataset is appropriate for reuse. This quality assessment framework was transformed into an online tool and a user evaluation study undertaken. Participants recruited from three centres (N = 13) were observed and interviewed while using the tool to assess the quality of a dataset they were familiar with. Participants positively rated the assessment format and feedback messages in helping them assess the quality of a dataset. Several participants quoted the tool as being potentially useful in training students and inexperienced researchers in the use of secondary datasets. This quality assessment tool, deployed within FNS-Cloud, is openly accessible to users as one of the first steps in identifying datasets suitable for use in their specific analyses. It is intended to support researchers in their decision-making process of whether previously collected datasets under consideration for reuse are fit their new intended research purposes. While it has been developed and evaluated, further testing and refinement of this resource would improve its applicability to a broader range of users.

  16. World Populations Dataset(1950-2100)

    • kaggle.com
    zip
    Updated Nov 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhadra Mohit (2024). World Populations Dataset(1950-2100) [Dataset]. https://www.kaggle.com/datasets/bhadramohit/world-populations-dataset1950-2100
    Explore at:
    zip(18541207 bytes)Available download formats
    Dataset updated
    Nov 11, 2024
    Authors
    Bhadra Mohit
    License

    https://cdla.io/permissive-1-0/https://cdla.io/permissive-1-0/

    Area covered
    World
    Description

    Context

    This dataset provides comprehensive global demographic and socioeconomic indicators for each country, compiled for the year 2024. It includes data on population sizes, growth rates, fertility rates, migration, urbanization, and other critical factors that influence global social and economic trends.

    Key Features:

    Country Name: The name of each country or region included in the dataset.

    Population (2024): Estimated total population of each country for the year 2024, measured in millions or billions.

    Population Growth Rate: The annual percentage change in population from one year to the next. It highlights whether the population is growing or declining.

    Urbanization Percentage: The proportion of the population living in urban areas, indicating trends in urban migration and the shift from rural to urban living.

    Fertility Rate: The average number of children born per woman of childbearing age, a key indicator of population reproduction levels.

    Median Age: The median age of the population, reflecting the age distribution and helping to assess population aging or youthfulness.

    Life Expectancy at Birth: The average number of years a newborn is expected to live, assuming current mortality rates persist.

    Infant Mortality Rate: The number of deaths of infants under one year of age per 1,000 live births, a key indicator of healthcare quality and access.

    GDP (Gross Domestic Product): The total monetary or market value of all the goods and services produced within a country’s borders in a given time period (usually measured annually in USD).

    GDP per Capita: GDP divided by the total population, reflecting the average economic output per person and serving as a measure of the average income or economic standard of living.

    Human Development Index (HDI): A composite index that considers life expectancy, education, and income per capita to provide an overall measure of human development.

    Applications of the Dataset: Policy and Development Analysis: Governments, international organizations, and think tanks can use this data to craft development policies, allocate resources, and address issues such as urbanization, aging populations, and fertility rates.

    Economic Forecasting and Analysis: Economists and financial institutions can leverage this data for macroeconomic analysis, forecasting, and investment decisions, especially using indicators like GDP, GDP per capita, and HDI.

    Social and Health Research: Public health organizations can track health indicators like life expectancy, infant mortality rates, and fertility rates to guide public health interventions and strategies.

    Education and Demography: Educators and researchers in the fields of demography, sociology, and global studies can use this dataset to analyze population trends, migration patterns, and social changes across the globe.

    Sources of Data:

    The data is sourced from reputable international organizations including the United Nations, the World Bank, the World Health Organization (WHO), the International Monetary Fund (IMF), and other national statistical agencies.

    Data Use & Limitations:

    Use: This dataset is intended for general research, educational, and analytical purposes. It provides a snapshot of global demographic trends and socioeconomic conditions as of 2024. Limitations: While the data is collected from reliable sources, estimates for certain countries may vary slightly due to differing methods of data collection or reporting across regions. Additionally, as some countries may not have updated data for 2024, projections or estimates have been used where necessary.

  17. Survey Data of the socio-demographic, economic and water source types that...

    • zenodo.org
    • datadryad.org
    bin, csv
    Updated Jun 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shewayiref Geremew Gebremichael; Shewayiref Geremew Gebremichael (2022). Survey Data of the socio-demographic, economic and water source types that influences HHs drinking water supply [Dataset]. http://doi.org/10.5061/dryad.mw6m905w8
    Explore at:
    bin, csvAvailable download formats
    Dataset updated
    Jun 4, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Shewayiref Geremew Gebremichael; Shewayiref Geremew Gebremichael
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Background: Clean water is an essential part of human healthy life and wellbeing. More recently, rapid population growth, high illiteracy rate, lack of sustainable development, and climate change; faces a global challenge in developing countries. The discontinuity of drinking water supply forces households either to use unsafe water storage materials or to use water from unsafe sources. The present study aimed to identify the determinants of water source types, use, quality of water, and sanitation perception of physical parameters among urban households in North-West Ethiopia.

    Methods: A community-based cross-sectional study was conducted among households from February to March 2019. An interview-based a pretested and structured questionnaire was used to collect the data. Data collection samples were selected randomly and proportional to each of the kebeles' households. MS Excel and R Version 3.6.2 were used to enter and analyze the data; respectively. Descriptive statistics using frequencies and percentages were used to explain the sample data concerning the predictor variable. Both bivariate and multivariate logistic regressions were used to assess the association between independent and response variables.

    Results: Four hundred eighteen (418) households have participated. Based on the study undertaken,78.95% of households used improved and 21.05% of households used unimproved drinking water sources. Households drinking water sources were significantly associated with the age of the participant (x2 = 20.392, df=3), educational status(x2 = 19.358, df=4), source of income (x2 = 21.777, df=3), monthly income (x2 = 13.322, df=3), availability of additional facilities (x2 = 98.144, df=7), cleanness status (x2 =42.979, df=4), scarcity of water (x2 = 5.1388, df=1) and family size (x2 = 9.934, df=2). The logistic regression analysis also indicated that those factors are significantly determining the water source types used by the households. Factors such as availability of toilet facility, household member type, and sex of the head of the household were not significantly associated with drinking water sources.

    Conclusion: The uses of drinking water from improved sources were determined by different demographic, socio-economic, sanitation, and hygiene-related factors. Therefore, ; the local, regional, and national governments and other supporting organizations shall improve the accessibility and adequacy of drinking water from improved sources in the area.

  18. f

    Participant demographics for IDIs and PGDs.

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jan 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mamakiri Mulaudzi; Gugulethu Tshabalala; Stefanie Hornschuh; Kofi Ebenezer Okyere-dede; Minjue Wu; Oluwatobi Ifeloluwa Ariyo; Janan J. Dietrich (2025). Participant demographics for IDIs and PGDs. [Dataset]. http://doi.org/10.1371/journal.pdig.0000672.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    PLOS Digital Health
    Authors
    Mamakiri Mulaudzi; Gugulethu Tshabalala; Stefanie Hornschuh; Kofi Ebenezer Okyere-dede; Minjue Wu; Oluwatobi Ifeloluwa Ariyo; Janan J. Dietrich
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Although South Africa is the global epicenter of the HIV epidemic, the uptake of HIV testing and treatment among young people remains low. Concerns about confidentiality impede the utilization of HIV prevention services, which signals the need for discrete HIV prevention measures that leverage youth-friendly platforms. This paper describes the process of developing a youth-friendly internet-enabled HIV risk calculator in collaboration with young people, including young key populations aged between 18 and 24 years old. Using qualitative research, we conducted an exploratory study with 40 young people including young key population (lesbian, gay, bisexual, transgender (LGBT) individuals, men who have sex with men (MSM), and female sex workers). Eligible participants were young people aged between 18–24 years old and living in Soweto. Data was collected through two peer group discussions with young people aged 18–24 years, a once-off group discussion with the [Name of clinic removed for confidentiality] adolescent community advisory board members and once off face-to-face in-depth interviews with young key population groups: LGBT individuals, MSM, and female sex workers. LGBT individuals are identified as key populations because they face increased vulnerability to HIV/AIDS and other health risks due to societal stigma, discrimination, and obstacles in accessing healthcare and support services. The measures used to collect data included a socio-demographic questionnaire, a questionnaire on mobile phone usage, an HIV and STI risk assessment questionnaire, and a semi-structured interview guide. Framework analysis was used to analyse qualitative data through a qualitative data analysis software called NVivo. Descriptive statistics were summarized using SPSS for participant socio-demographics and mobile phone usage. Of the 40 enrolled participants, 58% were male, the median age was 20 (interquartile range 19–22.75), and 86% had access to the internet. Participants’ recommendations were considered in developing the HIV risk calculator. They indicated a preference for an easy-to-use, interactive, real-time assessment offering discrete and private means to self-assess HIV risk. In addition to providing feedback on the language and wording of the risk assessment tool, participants recommended creating a colorful, interactive and informational app. A collaborative and user-driven process is crucial for designing and developing HIV prevention tools for targeted groups. Participants emphasized that privacy, confidentiality, and ease of use contribute to the acceptability and willingness to use internet-enabled HIV prevention methods.

  19. Demographic variables.

    • plos.figshare.com
    xls
    Updated Dec 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roya Anvari; Vilmantė Kumpikaitė-Valiūnienė; Rokhsareh Mobarhan; Mariam Janjaria; Siavash Hosseinpour Chermahini (2023). Demographic variables. [Dataset]. http://doi.org/10.1371/journal.pone.0295084.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Dec 22, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Roya Anvari; Vilmantė Kumpikaitė-Valiūnienė; Rokhsareh Mobarhan; Mariam Janjaria; Siavash Hosseinpour Chermahini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The COVID-19 pandemic has significantly affected the global workforce, presenting unprecedented challenges to managers and practitioners of strategic human resource management. Pandemic-influenced changes in the employment relationship highlighting the need for adaptation in order to facilitate a return to pre-pandemic conditions. Crises such as this can have a detrimental effect on employees’ psychological contract, which in turn can hinder the organization’s ability to thrive in the post-COVID-19 era and impede the development of high commitment levels in the aftermath of the crisis. Emotional intelligence plays an increasingly vital role in effectively navigating the crisis and providing support to employees, while also facilitating the reconstruction of the psychological contract. Therefore, this study aims to explain the role of emotional intelligence of strategic human resource management practitioners on affective organizational commitment and the possible mediating effect of the psychological contract in that relationship. A quantitative study took place in February 2023 among 286 HR directors, HR managers, and HR officers in higher education institutions in Georgia. Partial Least Squares for Structural Equation Modelling was applied for data analysis. The results revealed that the emotional intelligence of strategic human resource management practitioners has a positive impact on the psychological contract and the affective organizational commitment. This study supports the idea that emotional intelligence can transform strategic human resource management practitioners into individuals who engage in people-orientated activities. These activities aim to effectively acquire, utilize, and retain employees within an organization. The study also suggests that emotional intelligence can provide solutions to maintain high employee commitment during times of crisis and in the aftermath of unprecedented situations.

  20. N

    Harlem, GA Population Pyramid Dataset: Age Groups, Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Harlem, GA Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/harlem-ga-population-by-age/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Harlem, Georgia
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Harlem, GA population pyramid, which represents the Harlem population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Harlem, GA, is 41.7.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Harlem, GA, is 28.9.
    • Total dependency ratio for Harlem, GA is 70.6.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Harlem, GA is 3.5.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Harlem population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Harlem for the selected age group is shown in the following column.
    • Population (Female): The female population in the Harlem for the selected age group is shown in the following column.
    • Total Population: The total population of the Harlem for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Harlem Population by Age. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
GeoPostcodes (2024). Global Demographic data | Census Data for Marketing & Retail Analytics | Consumer Demographic Data [Dataset]. https://datarade.ai/data-products/geopostcodes-population-data-demographic-data-55-year-spa-geopostcodes
Organization logo

Global Demographic data | Census Data for Marketing & Retail Analytics | Consumer Demographic Data

Explore at:
.csvAvailable download formats
Dataset updated
Oct 17, 2024
Dataset authored and provided by
GeoPostcodes
Area covered
Luxembourg, Romania, South Georgia and the South Sandwich Islands, Kosovo, Saint Martin (French part), Ecuador, Sint Maarten (Dutch part), Tokelau, Western Sahara, Rwanda
Description

A global database of Census Data that provides an understanding of population distribution at administrative and zip code levels over 55 years, past, present, and future.

Leverage up-to-date census data with population trends for real estate, market research, audience targeting, and sales territory mapping.

Self-hosted commercial demographic dataset curated based on trusted sources such as the United Nations or the European Commission, with a 99% match accuracy. The global Census Data is standardized, unified, and ready to use.

Use cases for the Global Census Database (Consumer Demographic Data)

  • Ad targeting

  • B2B Market Intelligence

  • Customer analytics

  • Real Estate Data Estimations

  • Marketing campaign analysis

  • Demand forecasting

  • Sales territory mapping

  • Retail site selection

  • Reporting

  • Audience targeting

Census data export methodology

Our consumer demographic data packages are offered in CSV format. All Demographic data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

Product Features

  • Historical population data (55 years)

  • Changes in population density

  • Urbanization Patterns

  • Accurate at zip code and administrative level

  • Optimized for easy integration

  • Easy customization

  • Global coverage

  • Updated yearly

  • Standardized and reliable

  • Self-hosted delivery

  • Fully aggregated (ready to use)

  • Rich attributes

Why do companies choose our demographic databases

  • Standardized and unified demographic data structure

  • Seamless integration in your system

  • Dedicated location data expert

Note: Custom population data packages are available. Please submit a request via the above contact button for more details.

Search
Clear search
Close search
Google apps
Main menu