17 datasets found
  1. Big Data Technology Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Big Data Technology Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-big-data-technology-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Big Data Technology Market Outlook




    The global big data technology market size was valued at approximately $162 billion in 2023 and is projected to reach around $471 billion by 2032, growing at a Compound Annual Growth Rate (CAGR) of 12.6% during the forecast period. The growth of this market is primarily driven by the increasing demand for data analytics and insights to enhance business operations, coupled with advancements in AI and machine learning technologies.




    One of the principal growth factors of the big data technology market is the rapid digital transformation across various industries. Businesses are increasingly recognizing the value of data-driven decision-making processes, leading to the widespread adoption of big data analytics. Additionally, the proliferation of smart devices and the Internet of Things (IoT) has led to an exponential increase in data generation, necessitating robust big data solutions to analyze and extract meaningful insights. Organizations are leveraging big data to streamline operations, improve customer engagement, and gain a competitive edge.




    Another significant growth driver is the advent of advanced technologies like artificial intelligence (AI) and machine learning (ML). These technologies are being integrated into big data platforms to enhance predictive analytics and real-time decision-making capabilities. AI and ML algorithms excel at identifying patterns within large datasets, which can be invaluable for predictive maintenance in manufacturing, fraud detection in banking, and personalized marketing in retail. The combination of big data with AI and ML is enabling organizations to unlock new revenue streams, optimize resource utilization, and improve operational efficiency.




    Moreover, regulatory requirements and data privacy concerns are pushing organizations to adopt big data technologies. Governments worldwide are implementing stringent data protection regulations, like the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States. These regulations necessitate robust data management and analytics solutions to ensure compliance and avoid hefty fines. As a result, organizations are investing heavily in big data platforms that offer secure and compliant data handling capabilities.



    As organizations continue to navigate the complexities of data management, the role of Big Data Professional Services becomes increasingly critical. These services offer specialized expertise in implementing and managing big data solutions, ensuring that businesses can effectively harness the power of their data. Professional services encompass a range of offerings, including consulting, system integration, and managed services, tailored to meet the unique needs of each organization. By leveraging the knowledge and experience of big data professionals, companies can optimize their data strategies, streamline operations, and achieve their business objectives more efficiently. The demand for these services is driven by the growing complexity of big data ecosystems and the need for seamless integration with existing IT infrastructure.




    Regionally, North America holds a dominant position in the big data technology market, primarily due to the early adoption of advanced technologies and the presence of key market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, driven by increasing digitalization, the rapid growth of industries such as e-commerce and telecommunications, and supportive government initiatives aimed at fostering technological innovation.



    Component Analysis




    The big data technology market is segmented into software, hardware, and services. The software segment encompasses data management software, analytics software, and data visualization tools, among others. This segment is expected to witness substantial growth due to the increasing demand for data analytics solutions that can handle vast amounts of data. Advanced analytics software, in particular, is gaining traction as organizations seek to gain deeper insights and make data-driven decisions. Companies are increasingly adopting sophisticated data visualization tools to present complex data in an easily understandable format, thereby enhancing decision-making processes.


    <br /&

  2. [Superseded] Intellectual Property Government Open Data 2019

    • demo.dev.magda.io
    csv-geo-au, pdf
    Updated Jan 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IP Australia (2022). [Superseded] Intellectual Property Government Open Data 2019 [Dataset]. https://demo.dev.magda.io/dataset/ds-dga-a4210de2-9cbb-4d43-848d-46138fefd271
    Explore at:
    csv-geo-au, pdfAvailable download formats
    Dataset updated
    Jan 26, 2022
    Dataset provided by
    IP Australiahttp://ipaustralia.gov.au/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    What is IPGOD? The Intellectual Property Government Open Data (IPGOD) includes over 100 years of registry data on all intellectual property (IP) rights administered by IP Australia. It also has …Show full descriptionWhat is IPGOD? The Intellectual Property Government Open Data (IPGOD) includes over 100 years of registry data on all intellectual property (IP) rights administered by IP Australia. It also has derived information about the applicants who filed these IP rights, to allow for research and analysis at the regional, business and individual level. This is the 2019 release of IPGOD. How do I use IPGOD? IPGOD is large, with millions of data points across up to 40 tables, making them too large to open with Microsoft Excel. Furthermore, analysis often requires information from separate tables which would need specialised software for merging. We recommend that advanced users interact with the IPGOD data using the right tools with enough memory and compute power. This includes a wide range of programming and statistical software such as Tableau, Power BI, Stata, SAS, R, Python, and Scalar. IP Data Platform IP Australia is also providing free trials to a cloud-based analytics platform with the capabilities to enable working with large intellectual property datasets, such as the IPGOD, through the web browser, without any installation of software. IP Data Platform References The following pages can help you gain the understanding of the intellectual property administration and processes in Australia to help your analysis on the dataset. Patents Trade Marks Designs Plant Breeder’s Rights Updates Tables and columns Due to the changes in our systems, some tables have been affected. We have added IPGOD 225 and IPGOD 325 to the dataset! The IPGOD 206 table is not available this year. Many tables have been re-built, and as a result may have different columns or different possible values. Please check the data dictionary for each table before use. Data quality improvements Data quality has been improved across all tables. Null values are simply empty rather than '31/12/9999'. All date columns are now in ISO format 'yyyy-mm-dd'. All indicator columns have been converted to Boolean data type (True/False) rather than Yes/No, Y/N, or 1/0. All tables are encoded in UTF-8. All tables use the backslash \ as the escape character. The applicant name cleaning and matching algorithms have been updated. We believe that this year's method improves the accuracy of the matches. Please note that the "ipa_id" generated in IPGOD 2019 will not match with those in previous releases of IPGOD.

  3. The global Graph Analytics market size is USD 2522 million in 2024 and will...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, The global Graph Analytics market size is USD 2522 million in 2024 and will expand at a compound annual growth rate (CAGR) of 34.0% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/graph-analytics-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global Graph Analytics market size will be USD 2522 million in 2024 and will expand at a compound annual growth rate (CAGR) of 34.0% from 2024 to 2031. Market Dynamics of Graph Analytics Market

    Key Drivers for Graph Analytics Market

    Increasing Recognition of the Advantages of Graph Databases- One of the main reasons for the Graph Analytics market is the increasing recognition of the advantages of graph databases. Unlike traditional relational databases, graph databases excel at handling complex relationships and interconnected data, making them ideal for use cases such as fraud detection, recommendation engines, and social network analysis. Businesses are leveraging these capabilities to uncover insights and patterns that were previously difficult to detect. The rise of big data and the need for real-time analytics are further driving the adoption of graph databases, as they offer enhanced performance and scalability for large-scale data sets. Additionally, advancements in artificial intelligence and machine learning are amplifying the value of graph databases, enabling more sophisticated data modeling and predictive analytics.
    Growing Uptake of Big Data Tools to Drive the Graph Analytics Market's Expansion in the Years Ahead.
    

    Key Restraints for Graph Analytics Market

    Limited Awareness and Understanding pose a serious threat to the Graph Analytics industry.
    The market also faces significant difficulties related to data security and privacy.
    

    Introduction of the Graph Analytics Market

    The Graph Analytics Market is rapidly expanding, driven by the growing need for advanced data analysis techniques in various sectors. Graph analytics leverages graph structures to represent and analyze relationships and dependencies, providing deeper insights than traditional data analysis methods. Key factors propelling this market include the rise of big data, the increasing adoption of artificial intelligence and machine learning, and the demand for real-time data processing. Industries such as finance, healthcare, telecommunications, and retail are major contributors, utilizing graph analytics for fraud detection, personalized recommendations, network optimization, and more. Leading vendors are continually innovating to offer scalable, efficient solutions, incorporating advanced features like graph databases and visualization tools.

  4. S

    Spreadsheet Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Spreadsheet Software Report [Dataset]. https://www.datainsightsmarket.com/reports/spreadsheet-software-1395935
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Jun 1, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global spreadsheet software market is experiencing robust growth, driven by the increasing adoption of cloud-based solutions and the rising demand for data analysis tools across various industries. The market, estimated at $50 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching approximately $150 billion by the end of the forecast period. This growth is fueled by several key factors. Firstly, the increasing reliance on data-driven decision-making across businesses, irrespective of size, necessitates efficient data management and analysis capabilities provided by spreadsheet software. Secondly, the proliferation of cloud-based spreadsheet applications offers enhanced collaboration, accessibility, and scalability, making them attractive to organizations of all sizes. Finally, continuous advancements in features like advanced analytics, data visualization, and integration with other business applications enhance the overall utility and appeal of these tools. Major players like Microsoft, Google, and Zoho are continuously innovating, adding new features and improving user experience to maintain their market leadership. However, the market also faces challenges. Security concerns related to data storage and access in cloud-based solutions, and the need for continuous training and upskilling to leverage advanced features, pose limitations to wider adoption. Despite these challenges, the long-term outlook for the spreadsheet software market remains positive. The increasing digitization of businesses and the expanding adoption of big data analytics will propel demand for sophisticated spreadsheet tools. The emergence of niche players focusing on specific industry needs and specialized functionalities will also contribute to market expansion. Competition will remain fierce among established players and newcomers, prompting innovation and improvement in the overall product offerings. The market will witness consolidation through mergers and acquisitions, and a shift towards subscription-based models, further driving market growth and shaping the competitive landscape. The geographic distribution of the market will see continued growth in developing economies, driven by increasing internet penetration and smartphone adoption.

  5. d

    Data from: GeoRePORT Input Spreadsheet

    • catalog.data.gov
    • data.openei.org
    • +2more
    Updated Jan 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Renewable Energy Laboratory (2025). GeoRePORT Input Spreadsheet [Dataset]. https://catalog.data.gov/dataset/georeport-input-spreadsheet-7526f
    Explore at:
    Dataset updated
    Jan 20, 2025
    Dataset provided by
    National Renewable Energy Laboratory
    Description

    The Geothermal Resource Portfolio Optimization and Reporting Tool (GeoRePORT) was developed as a way to distill large amounts of geothermal project data into an objective, reportable data set that can be used to communicate with experts and non-experts. GeoRePORT summarizes (1) resource grade and certainty and (2) project readiness. This Excel file allows users to easily navigate through the resource grade attributes, using drop-down menus to pick grades and project readiness, and then easily print and share the summary with others. This spreadsheet is the first draft, for which we are soliciting expert feedback. The spreadsheet will be updated based on this feedback to increase usability of the tool. If you have any comments, please feel free to contact us.

  6. S

    Spreadsheets Software Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Spreadsheets Software Report [Dataset]. https://www.marketresearchforecast.com/reports/spreadsheets-software-42585
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 20, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global spreadsheets software market is experiencing robust growth, driven by increasing digitalization across industries and the rising adoption of cloud-based solutions. The market, estimated at $20 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $35 billion by 2033. This growth is fueled by several factors, including the expanding need for data analysis and visualization across SMEs and large enterprises, the increasing availability of user-friendly and feature-rich spreadsheet software, and the growing preference for collaborative tools that facilitate seamless teamwork. The market is segmented by operating system (Windows, Macintosh, Linux, Others) and user type (SMEs, Large Enterprises). While Microsoft Excel maintains a dominant market share, the rise of cloud-based alternatives like Google Sheets and collaborative platforms is challenging this dominance, fostering competition and innovation. Furthermore, the increasing integration of spreadsheets with other business intelligence tools further enhances their utility and fuels demand. Geographic expansion, particularly in developing economies with rising internet penetration, also contributes significantly to market expansion. However, factors such as the high initial investment in software licenses and the need for specialized training can restrain market growth, particularly for smaller businesses with limited budgets and technical expertise. The increasing complexity of data analysis necessitates enhanced security features and data protection measures, which add cost and require ongoing investment. Moreover, the emergence of advanced analytical tools and specialized data visualization software presents a competitive challenge, demanding continuous innovation and adaptation from existing spreadsheet software providers. Nevertheless, the overall market outlook remains positive, driven by sustained demand from diverse industries and technological advancements within the software landscape.

  7. f

    Additional file 1 of msBiodat analysis tool, big data analysis for...

    • figshare.com
    bin
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pau Muñoz-Torres; Filip Rokć; Robert Belužic; Ivana Grbeša; Oliver Vugrek (2023). Additional file 1 of msBiodat analysis tool, big data analysis for high-throughput experiments [Dataset]. http://doi.org/10.6084/m9.figshare.c.3645041_D1.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    figshare
    Authors
    Pau Muñoz-Torres; Filip Rokć; Robert Belužic; Ivana Grbeša; Oliver Vugrek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Excel spreadsheets. XLSX file containing the data from Sousa Abreu et al. which is used in the example of the article. (XLSX 611 kb)

  8. f

    GHS Safety Fingerprints

    • figshare.com
    xlsx
    Updated Oct 25, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian Murphy (2018). GHS Safety Fingerprints [Dataset]. http://doi.org/10.6084/m9.figshare.7210019.v3
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 25, 2018
    Dataset provided by
    figshare
    Authors
    Brian Murphy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Spreadsheets targeted at the analysis of GHS safety fingerprints.AbstractOver a 20-year period, the UN developed the Globally Harmonized System (GHS) to address international variation in chemical safety information standards. By 2014, the GHS became widely accepted internationally and has become the cornerstone of OSHA’s Hazard Communication Standard. Despite this progress, today we observe that there are inconsistent results when different sources apply the GHS to specific chemicals, in terms of the GHS pictograms, hazard statements, precautionary statements, and signal words assigned to those chemicals. In order to assess the magnitude of this problem, this research uses an extension of the “chemical fingerprints” used in 2D chemical structure similarity analysis to GHS classifications. By generating a chemical safety fingerprint, the consistency of the GHS information for specific chemicals can be assessed. The problem is the sources for GHS information can differ. For example, the SDS for sodium hydroxide pellets found on Fisher Scientific’s website displays two pictograms, while the GHS information for sodium hydroxide pellets on Sigma Aldrich’s website has only one pictogram. A chemical information tool, which identifies such discrepancies within a specific chemical inventory, can assist in maintaining the quality of the safety information needed to support safe work in the laboratory. The tools for this analysis will be scaled to the size of a moderate large research lab or small chemistry department as a whole (between 1000 and 3000 chemical entities) so that labelling expectations within these universes can be established as consistently as possible.Most chemists are familiar with programs such as excel and google sheets which are spreadsheet programs that are used by many chemists daily. Though a monadal programming approach with these tools, the analysis of GHS information can be made possible for non-programmers. This monadal approach employs single spreadsheet functions to analyze the data collected rather than long programs, which can be difficult to debug and maintain. Another advantage of this approach is that the single monadal functions can be mixed and matched to meet new goals as information needs about the chemical inventory evolve over time. These monadal functions will be used to converts GHS information into binary strings of data called “bitstrings”. This approach is also used when comparing chemical structures. The binary approach make data analysis more manageable, as GHS information comes in a variety of formats such as pictures or alphanumeric strings which are difficult to compare on their face. Bitstrings generated using the GHS information can be compared using an operator such as the tanimoto coefficent to yield values from 0 for strings that have no similarity to 1 for strings that are the same. Once a particular set of information is analyzed the hope is the same techniques could be extended to more information. For example, if GHS hazard statements are analyzed through a spreadsheet approach the same techniques with minor modifications could be used to tackle more GHS information such as pictograms.Intellectual Merit. This research indicates that the use of the cheminformatic technique of structural fingerprints can be used to create safety fingerprints. Structural fingerprints are binary bit strings that are obtained from the non-numeric entity of 2D structure. This structural fingerprint allows comparison of 2D structure through the use of the tanimoto coefficient. The use of this structural fingerprint can be extended to safety fingerprints, which can be created by converting a non-numeric entity such as GHS information into a binary bit string and comparing data through the use of the tanimoto coefficient.Broader Impact. Extension of this research can be applied to many aspects of GHS information. This research focused on comparing GHS hazard statements, but could be further applied to other bits of GHS information such as pictograms and GHS precautionary statements. Another facet of this research is allowing the chemist who uses the data to be able to compare large dataset using spreadsheet programs such as excel and not need a large programming background. Development of this technique will also benefit the Chemical Health and Safety community and Chemical Information communities by better defining the quality of GHS information available and providing a scalable and transferable tool to manipulate this information to meet a variety of other organizational needs.

  9. A

    AI Analytics Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). AI Analytics Software Report [Dataset]. https://www.datainsightsmarket.com/reports/ai-analytics-software-1442050
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The AI Analytics Software market is experiencing robust growth, driven by the increasing adoption of artificial intelligence across various sectors. The market, estimated at $15 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 20% from 2025 to 2033, reaching approximately $60 billion by 2033. This expansion is fueled by several key factors. Firstly, the proliferation of big data necessitates sophisticated analytical tools to extract meaningful insights, and AI-powered solutions excel in this area. Secondly, advancements in AI algorithms and processing power continue to enhance the accuracy, speed, and efficiency of analytics, making them accessible to a broader range of businesses. Thirdly, the rising demand for automation across industries, from customer service to risk management, is driving the adoption of AI analytics software for improved operational efficiency and decision-making. The market segments are diverse, with applications spanning SMEs and large enterprises, and analytic types including text, speech, and image/video analysis. North America currently holds a significant market share, reflecting the region's early adoption of AI technologies and a mature technological infrastructure. However, rapid growth is anticipated in Asia-Pacific regions like China and India, driven by increasing digitalization and government initiatives supporting AI adoption. While challenges remain, such as data security concerns and the need for skilled professionals, the overall market trajectory remains positive, indicating substantial opportunities for innovation and expansion in the coming years. The competitive landscape is highly dynamic, with established players like SAS and OpenText competing with emerging innovative companies. The success of individual vendors depends on factors such as the breadth and depth of their AI analytics capabilities, the ease of integration with existing business systems, the level of customer support provided, and their ability to adapt to the evolving needs of different market segments. Companies are focusing on developing user-friendly interfaces, enhancing the accuracy and speed of their analytical algorithms, and expanding their product portfolios to address a wider range of industry-specific needs. Furthermore, strategic partnerships and acquisitions are expected to continue shaping the market landscape, fostering innovation and accelerating the adoption of AI analytics software across various industries. The growth in cloud-based solutions and the increasing importance of data visualization tools are also key trends influencing market evolution.

  10. w

    Data from: New Data Reduction Tools and their Application to The Geysers...

    • data.wu.ac.at
    pdf
    Updated Dec 5, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). New Data Reduction Tools and their Application to The Geysers Geothermal Field [Dataset]. https://data.wu.ac.at/schema/geothermaldata_org/NjNiMTc2MzQtOWQ5Mi00MjE5LWEwOWQtZDFjMmE5YjcwZWM0
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Dec 5, 2017
    Area covered
    3296a5bce23af293dbb49a144dfc986f894e7756, The Geysers
    Description

    Microsoft Excel based (using Visual Basic for Applications) data-reduction and visualization tools have been developed that allow to numerically reduce large sets of geothermal data to any size. The data can be quickly sifted through and graphed to allow their study. The ability to analyze large data sets can yield responses to field management procedures that would otherwise be undetectable. Field-wide trends such as decline rates, response to injection, evolution of superheat, recording instrumentation problems and data inconsistencies can be quickly queried and graphed. The application of these newly developed tools to data from The Geysers geothermal field is illustrated. A copy of these tools may be requested by contacting the authors.

  11. [Superseded] Intellectual Property Government Open Data 2019

    • data.gov.au
    • researchdata.edu.au
    csv-geo-au, pdf
    Updated Jan 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IP Australia (2022). [Superseded] Intellectual Property Government Open Data 2019 [Dataset]. https://data.gov.au/data/dataset/activity/intellectual-property-government-open-data-2019
    Explore at:
    csv-geo-au(59281977), csv-geo-au(680030), csv-geo-au(39873883), csv-geo-au(37247273), csv-geo-au(25433945), csv-geo-au(92768371), pdf(702054), csv-geo-au(208449), csv-geo-au(166844), csv-geo-au(517357734), csv-geo-au(32100526), csv-geo-au(33981694), csv-geo-au(21315), csv-geo-au(6828919), csv-geo-au(86824299), csv-geo-au(359763), csv-geo-au(567412), csv-geo-au(153175), csv-geo-au(165051861), csv-geo-au(115749297), csv-geo-au(79743393), csv-geo-au(55504675), csv-geo-au(221026), csv-geo-au(50760305), csv-geo-au(2867571), csv-geo-au(212907250), csv-geo-au(4352457), csv-geo-au(4843670), csv-geo-au(1032589), csv-geo-au(1163830), csv-geo-au(278689420), csv-geo-au(28585330), csv-geo-au(130674), csv-geo-au(13968748), csv-geo-au(11926959), csv-geo-au(4802733), csv-geo-au(243729054), csv-geo-au(64511181), csv-geo-au(592774239), csv-geo-au(149948862)Available download formats
    Dataset updated
    Jan 26, 2022
    Dataset authored and provided by
    IP Australiahttp://ipaustralia.gov.au/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    What is IPGOD?

    The Intellectual Property Government Open Data (IPGOD) includes over 100 years of registry data on all intellectual property (IP) rights administered by IP Australia. It also has derived information about the applicants who filed these IP rights, to allow for research and analysis at the regional, business and individual level. This is the 2019 release of IPGOD.

    How do I use IPGOD?

    IPGOD is large, with millions of data points across up to 40 tables, making them too large to open with Microsoft Excel. Furthermore, analysis often requires information from separate tables which would need specialised software for merging. We recommend that advanced users interact with the IPGOD data using the right tools with enough memory and compute power. This includes a wide range of programming and statistical software such as Tableau, Power BI, Stata, SAS, R, Python, and Scalar.

    IP Data Platform

    IP Australia is also providing free trials to a cloud-based analytics platform with the capabilities to enable working with large intellectual property datasets, such as the IPGOD, through the web browser, without any installation of software. IP Data Platform

    References

    The following pages can help you gain the understanding of the intellectual property administration and processes in Australia to help your analysis on the dataset.

    Updates

    Tables and columns

    Due to the changes in our systems, some tables have been affected.

    • We have added IPGOD 225 and IPGOD 325 to the dataset!
    • The IPGOD 206 table is not available this year.
    • Many tables have been re-built, and as a result may have different columns or different possible values. Please check the data dictionary for each table before use.

    Data quality improvements

    Data quality has been improved across all tables.

    • Null values are simply empty rather than '31/12/9999'.
    • All date columns are now in ISO format 'yyyy-mm-dd'.
    • All indicator columns have been converted to Boolean data type (True/False) rather than Yes/No, Y/N, or 1/0.
    • All tables are encoded in UTF-8.
    • All tables use the backslash \ as the escape character.
    • The applicant name cleaning and matching algorithms have been updated. We believe that this year's method improves the accuracy of the matches. Please note that the "ipa_id" generated in IPGOD 2019 will not match with those in previous releases of IPGOD.
  12. g

    IP Australia - [Superseded] Intellectual Property Government Open Data 2019...

    • gimi9.com
    Updated Jul 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). IP Australia - [Superseded] Intellectual Property Government Open Data 2019 | gimi9.com [Dataset]. https://gimi9.com/dataset/au_intellectual-property-government-open-data-2019
    Explore at:
    Dataset updated
    Jul 21, 2018
    Area covered
    Australia
    Description

    What is IPGOD? The Intellectual Property Government Open Data (IPGOD) includes over 100 years of registry data on all intellectual property (IP) rights administered by IP Australia. It also has derived information about the applicants who filed these IP rights, to allow for research and analysis at the regional, business and individual level. This is the 2019 release of IPGOD. # How do I use IPGOD? IPGOD is large, with millions of data points across up to 40 tables, making them too large to open with Microsoft Excel. Furthermore, analysis often requires information from separate tables which would need specialised software for merging. We recommend that advanced users interact with the IPGOD data using the right tools with enough memory and compute power. This includes a wide range of programming and statistical software such as Tableau, Power BI, Stata, SAS, R, Python, and Scalar. # IP Data Platform IP Australia is also providing free trials to a cloud-based analytics platform with the capabilities to enable working with large intellectual property datasets, such as the IPGOD, through the web browser, without any installation of software. IP Data Platform # References The following pages can help you gain the understanding of the intellectual property administration and processes in Australia to help your analysis on the dataset. * Patents * Trade Marks * Designs * Plant Breeder’s Rights # Updates ### Tables and columns Due to the changes in our systems, some tables have been affected. * We have added IPGOD 225 and IPGOD 325 to the dataset! * The IPGOD 206 table is not available this year. * Many tables have been re-built, and as a result may have different columns or different possible values. Please check the data dictionary for each table before use. ### Data quality improvements Data quality has been improved across all tables. * Null values are simply empty rather than '31/12/9999'. * All date columns are now in ISO format 'yyyy-mm-dd'. * All indicator columns have been converted to Boolean data type (True/False) rather than Yes/No, Y/N, or 1/0. * All tables are encoded in UTF-8. * All tables use the backslash \ as the escape character. * The applicant name cleaning and matching algorithms have been updated. We believe that this year's method improves the accuracy of the matches. Please note that the "ipa_id" generated in IPGOD 2019 will not match with those in previous releases of IPGOD.

  13. Individuals and Households Program - Valid Registrations

    • catalog.data.gov
    Updated Jun 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FEMA/Response and Recovery/Recovery Directorate (2025). Individuals and Households Program - Valid Registrations [Dataset]. https://catalog.data.gov/dataset/individuals-and-households-program-valid-registrations-nemis
    Explore at:
    Dataset updated
    Jun 7, 2025
    Dataset provided by
    Federal Emergency Management Agencyhttp://www.fema.gov/
    Description

    This dataset contains FEMA applicant-level data for the Individuals and Households Program (IHP). All PII information has been removed. The location is represented by county, city, and zip code. This dataset contains Individual Assistance (IA) applications from DR1439 (declared in 2002) to those declared over 30 days ago. The full data set is refreshed on an annual basis and refreshed weekly to update disasters declared in the last 18 months. This dataset includes all major disasters and includes only valid registrants (applied in a declared county, within the registration period, having damage due to the incident and damage within the incident period). Information about individual data elements and descriptions are listed in the metadata information within the dataset.rnValid registrants may be eligible for IA assistance, which is intended to meet basic needs and supplement disaster recovery efforts. IA assistance is not intended to return disaster-damaged property to its pre-disaster condition. Disaster damage to secondary or vacation homes does not qualify for IHP assistance.rnData comes from FEMA's National Emergency Management Information System (NEMIS) with raw, unedited, self-reported content and subject to a small percentage of human error.rnAny financial information is derived from NEMIS and not FEMA's official financial systems. Due to differences in reporting periods, status of obligations and application of business rules, this financial information may differ slightly from official publication on public websites such as usaspending.gov. This dataset is not intended to be used for any official federal reporting. rnCitation: The Agency’s preferred citation for datasets (API usage or file downloads) can be found on the OpenFEMA Terms and Conditions page, Citing Data section: https://www.fema.gov/about/openfema/terms-conditions.rnDue to the size of this file, tools other than a spreadsheet may be required to analyze, visualize, and manipulate the data. MS Excel will not be able to process files this large without data loss. It is recommended that a database (e.g., MS Access, MySQL, PostgreSQL, etc.) be used to store and manipulate data. Other programming tools such as R, Apache Spark, and Python can also be used to analyze and visualize data. Further, basic Linux/Unix tools can be used to manipulate, search, and modify large files.rnIf you have media inquiries about this dataset, please email the FEMA News Desk at FEMA-News-Desk@fema.dhs.gov or call (202) 646-3272. For inquiries about FEMA's data and Open Government program, please email the OpenFEMA team at OpenFEMA@fema.dhs.gov.rnThis dataset is scheduled to be superceded by Valid Registrations Version 2 by early CY 2024.

  14. f

    CSV Data Dump for 31 Day Model Run

    • brunel.figshare.com
    xlsx
    Updated Jul 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ioana Pisica; Alex Gray (2023). CSV Data Dump for 31 Day Model Run [Dataset]. http://doi.org/10.17633/rd.brunel.23545038.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 14, 2023
    Dataset provided by
    Brunel University London
    Authors
    Ioana Pisica; Alex Gray
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The target company's hydraulic modelling package uses Innovyze InfoworksTM. This product enables third party integration through API’s and Ruby scripts when the ICM Exchange service is enabled. As a result, the research looked at opportunities to exploit scripting in order to run the chosen optimisation strategy. The first approach initially investigated the use of a CS-script tool that would export the results tables directly from the Innovyze InfoworksTM environment into CSV format workbooks. From here the data could then be inspected, with the application of mathematical tooling to optimise the pump start parameters before returning these back into the model and rerunning. Note, the computational resource the research obtained to deploy the modelling and analysis tools comprised the following specification. Hardware

    Dell Poweredge R720

    Intel Xeon Processor E5-2600 v2

    2x Processor Sockets

    32GB Memory random access memory (RAM) – 1866MT/s Virtual Machine

    Hosted on VMWare Hypervisor v6.0.

    Windows Server 2012R2.

    Microsoft Excel 64bit.

    16 virtual-central-processing-units (V-CPU’s).

    Full provision of 32GB RAM – 1866MT/s.

    were highlighted in the first round of data exports as, even with a dedicated

    Issues server offering 16-V-CPUs, and the specification as shown above, the Excel frontend environment was unable to process the very large data matrices being generated. There were regular failings of the Excel executable which led to an overall inability to inspect the data let alone run calculations on the matrices. When considering the five- second sample over 31 days this resulted in matrices in the order of [44x535682] per model run, with the calculations in (14-19) needing to be applied on a per cell basis.

  15. f

    Table1_EasySSR: a user-friendly web application with full command-line...

    • figshare.com
    xlsx
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sandy Ingrid Aguiar Alves; Victor Benedito Costa Ferreira; Carlos Willian Dias Dantas; Artur Luiz da Costa da Silva; Rommel Thiago Jucá Ramos (2023). Table1_EasySSR: a user-friendly web application with full command-line features for large-scale batch microsatellite mining and samples comparison.XLSX [Dataset]. http://doi.org/10.3389/fgene.2023.1228552.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Frontiers
    Authors
    Sandy Ingrid Aguiar Alves; Victor Benedito Costa Ferreira; Carlos Willian Dias Dantas; Artur Luiz da Costa da Silva; Rommel Thiago Jucá Ramos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Microsatellites, also known as SSRs or STRs, are polymorphic DNA regions with tandem repetitions of a nucleotide motif of size 1–6 base pairs with a broad range of applications in many fields, such as comparative genomics, molecular biology, and forensics. However, the majority of researchers do not have computational training and struggle while running command-line tools or very limited web tools for their SSR research, spending a considerable amount of time learning how to execute the software and conducting the post-processing data tabulation in other tools or manually—time that could be used directly in data analysis. We present EasySSR, a user-friendly web tool with command-line full functionality, designed for practical use in batch identifying and comparing SSRs in sequences, draft, or complete genomes, not requiring previous bioinformatic skills to run. EasySSR requires only a FASTA and an optional GENBANK file of one or more genomes to identify and compare STRs. The tool can automatically analyze and compare SSRs in whole genomes, convert GenBank to PTT files, identify perfect and imperfect SSRs and coding and non-coding regions, compare their frequencies, abundancy, motifs, flanking sequences, and iterations, producing many outputs ready for download such as PTT files, interactive charts, and Excel tables, giving the user the data ready for further analysis in minutes. EasySSR was implemented as a web application, which can be executed from any browser and is available for free at https://computationalbiology.ufpa.br/easyssr/. Tutorials, usage notes, and download links to the source code can be found at https://github.com/engbiopct/EasySSR.

  16. d

    Data from: GeoRePORT Input Spreadsheet.

    • datadiscoverystudio.org
    xlsb
    Updated Aug 29, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). GeoRePORT Input Spreadsheet. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/650d7ac3017d4209a9badc2f29391aed/html
    Explore at:
    xlsbAvailable download formats
    Dataset updated
    Aug 29, 2017
    Description

    description: The Geothermal Resource Portfolio Optimization and Reporting Tool (GeoRePORT) was developed as a way to distill large amounts of geothermal project data into an objective, reportable data set that can be used to communicate with experts and non-experts. GeoRePORT summarizes (1) resource grade and certainty and (2) project readiness. This Excel file allows users to easily navigate through the resource grade attributes, using drop-down menus to pick grades and project readiness, and then easily print and share the summary with others. This spreadsheet is the first draft, for which we are soliciting expert feedback. The spreadsheet will be updated based on this feedback to increase usability of the tool. If you have any comments, please feel free to contact us.; abstract: The Geothermal Resource Portfolio Optimization and Reporting Tool (GeoRePORT) was developed as a way to distill large amounts of geothermal project data into an objective, reportable data set that can be used to communicate with experts and non-experts. GeoRePORT summarizes (1) resource grade and certainty and (2) project readiness. This Excel file allows users to easily navigate through the resource grade attributes, using drop-down menus to pick grades and project readiness, and then easily print and share the summary with others. This spreadsheet is the first draft, for which we are soliciting expert feedback. The spreadsheet will be updated based on this feedback to increase usability of the tool. If you have any comments, please feel free to contact us.

  17. Number of Office 365 enterprise subscribers worldwide 2025, by country

    • statista.com
    • ai-chatbox.pro
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of Office 365 enterprise subscribers worldwide 2025, by country [Dataset]. https://www.statista.com/statistics/983321/worldwide-office-365-user-numbers-by-country/
    Explore at:
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Microsoft 365 is used by over two million companies worldwide, with over one million customers in the United States alone using the office suite software. Office 365 is the brand name previously used by Microsoft for a group of software applications providing productivity related services to its subscribers. Office 365 applications include Outlook, OneDrive, Word, Excel, PowerPoint, OneNote, SharePoint and Microsoft Teams. The consumer and small business plans of Office 365 were renamed as Microsoft 365 on 21 April, 2020. Global office suite market share  An office suite is a collection of software applications (word processing, spreadsheets, database etc.) designed to be used for tasks within an organization. Worldwide market share of office suite technologies is split between Google’s G Suite and Microsoft’s Office 365, with G Suite controlling around 45 percent of the global market and Office 365 holding around 26 percent. This trend is similar across most worldwide regions.

  18. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dataintelo (2025). Big Data Technology Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-big-data-technology-market
Organization logo

Big Data Technology Market Report | Global Forecast From 2025 To 2033

Explore at:
csv, pptx, pdfAvailable download formats
Dataset updated
Jan 7, 2025
Dataset authored and provided by
Dataintelo
License

https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

Time period covered
2024 - 2032
Area covered
Global
Description

Big Data Technology Market Outlook




The global big data technology market size was valued at approximately $162 billion in 2023 and is projected to reach around $471 billion by 2032, growing at a Compound Annual Growth Rate (CAGR) of 12.6% during the forecast period. The growth of this market is primarily driven by the increasing demand for data analytics and insights to enhance business operations, coupled with advancements in AI and machine learning technologies.




One of the principal growth factors of the big data technology market is the rapid digital transformation across various industries. Businesses are increasingly recognizing the value of data-driven decision-making processes, leading to the widespread adoption of big data analytics. Additionally, the proliferation of smart devices and the Internet of Things (IoT) has led to an exponential increase in data generation, necessitating robust big data solutions to analyze and extract meaningful insights. Organizations are leveraging big data to streamline operations, improve customer engagement, and gain a competitive edge.




Another significant growth driver is the advent of advanced technologies like artificial intelligence (AI) and machine learning (ML). These technologies are being integrated into big data platforms to enhance predictive analytics and real-time decision-making capabilities. AI and ML algorithms excel at identifying patterns within large datasets, which can be invaluable for predictive maintenance in manufacturing, fraud detection in banking, and personalized marketing in retail. The combination of big data with AI and ML is enabling organizations to unlock new revenue streams, optimize resource utilization, and improve operational efficiency.




Moreover, regulatory requirements and data privacy concerns are pushing organizations to adopt big data technologies. Governments worldwide are implementing stringent data protection regulations, like the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States. These regulations necessitate robust data management and analytics solutions to ensure compliance and avoid hefty fines. As a result, organizations are investing heavily in big data platforms that offer secure and compliant data handling capabilities.



As organizations continue to navigate the complexities of data management, the role of Big Data Professional Services becomes increasingly critical. These services offer specialized expertise in implementing and managing big data solutions, ensuring that businesses can effectively harness the power of their data. Professional services encompass a range of offerings, including consulting, system integration, and managed services, tailored to meet the unique needs of each organization. By leveraging the knowledge and experience of big data professionals, companies can optimize their data strategies, streamline operations, and achieve their business objectives more efficiently. The demand for these services is driven by the growing complexity of big data ecosystems and the need for seamless integration with existing IT infrastructure.




Regionally, North America holds a dominant position in the big data technology market, primarily due to the early adoption of advanced technologies and the presence of key market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, driven by increasing digitalization, the rapid growth of industries such as e-commerce and telecommunications, and supportive government initiatives aimed at fostering technological innovation.



Component Analysis




The big data technology market is segmented into software, hardware, and services. The software segment encompasses data management software, analytics software, and data visualization tools, among others. This segment is expected to witness substantial growth due to the increasing demand for data analytics solutions that can handle vast amounts of data. Advanced analytics software, in particular, is gaining traction as organizations seek to gain deeper insights and make data-driven decisions. Companies are increasingly adopting sophisticated data visualization tools to present complex data in an easily understandable format, thereby enhancing decision-making processes.


<br /&

Search
Clear search
Close search
Google apps
Main menu