https://www.geopostcodes.com/privacy-policy/https://www.geopostcodes.com/privacy-policy/
Comprehensive, annually-updated population datasets at ZIP code and administrative levels for 247 countries, spanning from 1975 to 2030, including historical, current, and projected population figures, enriched with attributes like area size, multilingual support, UNLOCODEs, IATA codes, and time zones.
The Demographic Reports are produced by the Economic, Demographic and Statistical Research unit within the Countywide Service Integration and Planning Management (CSIPM) Division of the Fairfax County Department of Neighborhood and Community Services. Information produced by the Economic, Demographic and Statistical Research unit is used by every county department, board, authority and the Fairfax County Public Schools.
Our zip code Database offers comprehensive postal code data for spatial analysis, including postal and administrative areas. This dataset contains accurate and up-to-date information on all administrative divisions, cities, and zip codes, making it an invaluable resource for various applications such as address capture and validation, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including CSV, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Product features include fully and accurately geocoded data, multi-language support with address names in local and foreign languages, comprehensive city definitions, and the option to combine map data with UNLOCODE and IATA codes, time zones, and daylight saving times. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
This dataset provides a Demographic breakdown of only DYCD-funded participants within a Zip Code of NYC. The data displays the counts, and percentages of the participants in each of the following categories: ● Gender (Male, Female, Unknown) ● Ethnicity (Hispanic/Latino, non-Hispanic/non-Latino) ● Race (Pacific Islander, American Indian, Asian, White, Black, Other, Unknown) This data is used to measure the numbers of the different population groups that are served by DYCD for a Borough, and Community.
This data package has the purpose to offer data for demographic indicators, part of 5-years American Community Census, that could be needed in the analysis made along with health-related data or as stand-alone. The American Community Survey based on 5-years estimates is, according to U.S Census Bureau, the most reliable, because the samples used are the largest and the data collected cover all country areas, regardless of the population number.
This data comes from the 2010 Census Profile of General Population and Housing Characteristics. Zip codes are limited to those that fall at least partially within LA city boundaries. The dataset will be updated after the next census in 2020. To view all possible columns and access the data directly, visit http://factfinder.census.gov/faces/affhelp/jsf/pages/metadata.xhtml?lang=en&type=table&id=table.en.DEC_10_SF1_SF1DP1#main_content.
A crosswalk matching US ZIP codes to corresponding CBSA (core-based statistical area)
The denominators used to calculate the address ratios are the ZIP code totals. When a ZIP is split by any of the other geographies, that ZIP code is duplicated in the crosswalk file.
**Example: **ZIP code 03870 is split by two different Census tracts, 33015066000 and 33015071000, which appear in the tract column. The ratio of residential addresses in the first ZIP-Tract record to the total number of residential addresses in the ZIP code is .0042 (.42%). The remaining residential addresses in that ZIP (99.58%) fall into the second ZIP-Tract record.
So, for example, if one wanted to allocate data from ZIP code 03870 to each Census tract located in that ZIP code, one would multiply the number of observations in the ZIP code by the residential ratio for each tract associated with that ZIP code.
https://redivis.com/fileUploads/4ecb405e-f533-4a5b-8286-11e56bb93368%3E" alt="">(Note that the sum of each ratio column for each distinct ZIP code may not always equal 1.00 (or 100%) due to rounding issues.)
CBSA definition
A core-based statistical area (CBSA) is a U.S. geographic area defined by the Office of Management and Budget (OMB) that consists of one or more counties (or equivalents) anchored by an urban center of at least 10,000 people plus adjacent counties that are socioeconomically tied to the urban center by commuting. Areas defined on the basis of these standards applied to Census 2000 data were announced by OMB in June 2003. These standards are used to replace the definitions of metropolitan areas that were defined in 1990. The OMB released new standards based on the 2010 Census on July 15, 2015.
Further reading
The following article demonstrates how to more effectively use the U.S. Department of Housing and Urban Development (HUD) United States Postal Service ZIP Code Crosswalk Files when working with disparate geographies.
Wilson, Ron and Din, Alexander, 2018. “Understanding and Enhancing the U.S. Department of Housing and Urban Development’s ZIP Code Crosswalk Files,” Cityscape: A Journal of Policy Development and Research, Volume 20 Number 2, 277 – 294. URL: https://www.huduser.gov/portal/periodicals/cityscpe/vol20num2/ch16.pdf
Contact authors
Questions regarding these crosswalk files can be directed to Alex Din with the subject line HUD-Crosswalks.
Acknowledgement
This dataset is taken from the U.S. Department of Housing and Urban Development (HUD) office: https://www.huduser.gov/portal/datasets/usps_crosswalk.html#codebook
This annual study provides selected income and tax items classified by State, ZIP Code, and the size of adjusted gross income. These data include the number of returns, which approximates the number of households; the number of personal exemptions, which approximates the population; adjusted gross income; wages and salaries; dividends before exclusion; and interest received. Data are based who reported on U.S. Individual Income Tax Returns (Forms 1040) filed with the IRS. SOI collects these data as part of its Individual Income Tax Return (Form 1040) Statistics program, Data by Geographic Areas, ZIP Code Data.
https://www.icpsr.umich.edu/web/ICPSR/studies/38528/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38528/terms
These datasets contain measures of socioeconomic and demographic characteristics by U.S. census tract for the years 1990-2022 and ZIP code tabulation area (ZCTA) for the years 2008-2022. Example measures include population density; population distribution by race, ethnicity, age, and income; income inequality by race and ethnicity; and proportion of population living below the poverty level, receiving public assistance, and female-headed or single parent families with kids. The datasets also contain a set of theoretically derived measures capturing neighborhood socioeconomic disadvantage and affluence, as well as a neighborhood index of Hispanic, foreign born, and limited English.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset is part of the Geographical repository maintained by Opendatasoft.This dataset contains data for zip codes 5 digits in United States of America.ZIP Code Tabulation Areas (ZCTAs) are approximate area representations of U.S. Postal Service (USPS) ZIP Code service areas that the Census Bureau creates to present statistical data for each decennial census. The Census Bureau delineates ZCTA boundaries for the United States, Puerto Rico, American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands once each decade following the decennial census. Data users should not use ZCTAs to identify the official USPS ZIP Code for mail delivery. The USPS makes periodic changes to ZIP Codes to support more efficient mail delivery.Processors and tools are using this data.EnhancementsAdd ISO 3166-3 codes.Simplify geometries to provide better performance across the services.Add administrative hierarchy.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Zip Code; Population Size; African American; Asian/Pacific Islander; Latino; White; Foreign-born; Speaks a language other than English at home; Single parent households; Households with children; Average household size; 0-5 years; 6-11 years; 12-17 years; 18-24 years; 25-34 years; 35-44 years; 45-54 years; 55-64 years; Ages 65 and older; Ages 17 and younger. Percentages unless otherwise noted. Source information provided at: https://www.sccgov.org/sites/phd/hi/hd/Documents/City%20Profiles/Methodology/Neighborhood%20profile%20methodology_082914%20final%20for%20web.pdf
This dataset denotes ZIP Code centroid locations weighted by population. Population weighted centroids are a common tool for spatial analysis, particularly when more granular data is unavailable or researchers lack sophisticated geocoding tools. The ZIP Code Population Weighted Centroids allows researchers and analysts to estimate the center of population in a given geography rather than the geometric center.
A crosswalk dataset matching US ZIP codes to corresponding census tracts
The denominators used to calculate the address ratios are the ZIP code totals. When a ZIP is split by any of the other geographies, that ZIP code is duplicated in the crosswalk file.
**Example: **ZIP code 03870 is split by two different Census tracts, 33015066000 and 33015071000, which appear in the tract column. The ratio of residential addresses in the first ZIP-Tract record to the total number of residential addresses in the ZIP code is .0042 (.42%). The remaining residential addresses in that ZIP (99.58%) fall into the second ZIP-Tract record.
So, for example, if one wanted to allocate data from ZIP code 03870 to each Census tract located in that ZIP code, one would multiply the number of observations in the ZIP code by the residential ratio for each tract associated with that ZIP code.
https://redivis.com/fileUploads/4ecb405e-f533-4a5b-8286-11e56bb93368%3E" alt="">(Note that the sum of each ratio column for each distinct ZIP code may not always equal 1.00 (or 100%) due to rounding issues.)
Census tract definition
A census tract, census area, census district or meshblock is a geographic region defined for the purpose of taking a census. Sometimes these coincide with the limits of cities, towns or other administrative areas and several tracts commonly exist within a county. In unincorporated areas of the United States these are often arbitrary, except for coinciding with political lines.
Further reading
The following article demonstrates how to more effectively use the U.S. Department of Housing and Urban Development (HUD) United States Postal Service ZIP Code Crosswalk Files when working with disparate geographies.
Wilson, Ron and Din, Alexander, 2018. “Understanding and Enhancing the U.S. Department of Housing and Urban Development’s ZIP Code Crosswalk Files,” Cityscape: A Journal of Policy Development and Research, Volume 20 Number 2, 277 – 294. URL: https://www.huduser.gov/portal/periodicals/cityscpe/vol20num2/ch16.pdf
Contact information
Questions regarding these crosswalk files can be directed to Alex Din with the subject line HUD-Crosswalks.
Acknowledgement
This dataset is taken from the U.S. Department of Housing and Urban Development (HUD) office: https://www.huduser.gov/portal/datasets/usps_crosswalk.html#codebook
Data SourcesAmerican Community Survey (ACS):Conducted by: U.S. Census BureauDescription: The ACS is an ongoing survey that provides detailed demographic and socio-economic data on the population and housing characteristics of the United States.Content: The survey collects information on various topics such as income, education, employment, health insurance coverage, and housing costs and conditions.Frequency: The ACS offers more frequent and up-to-date information compared to the decennial census, with annual estimates produced based on a rolling sample of households.Purpose: ACS data is essential for policymakers, researchers, and communities to make informed decisions and address the evolving needs of the population.CDC/ATSDR Social Vulnerability Index (SVI):Created by: ATSDR’s Geospatial Research, Analysis & Services Program (GRASP)Utilized by: CDCDescription: The SVI is designed to identify and map communities that are most likely to need support before, during, and after hazardous events.Content: SVI ranks U.S. Census tracts based on 15 social factors, including unemployment, minority status, and disability, and groups them into four related themes. Each tract receives rankings for each Census variable and for each theme, as well as an overall ranking, indicating its relative vulnerability.Purpose: SVI data provides insights into the social vulnerability of communities at both the tract and zip code levels, helping public health officials and emergency response planners allocate resources effectively.Utilization and IntegrationBy integrating data from both the ACS and the SVI, this dataset enables an in-depth analysis and understanding of various socio-economic and demographic indicators at the census tract level. This integrated data is valuable for research, policymaking, and community planning purposes, allowing for a comprehensive understanding of social and economic dynamics across different geographical areas in the United States.ApplicationsTargeted Interventions: Facilitates the development of targeted interventions to address the needs of vulnerable populations within specific zip codes.Resource Allocation: Assists emergency response planners in allocating resources more effectively based on community vulnerability at the zip code level.Research: Provides a rich dataset for academic and applied research in socio-economic and demographic studies at a granular zip code level.Community Planning: Supports the planning and development of community programs and initiatives aimed at improving living conditions and reducing vulnerabilities within specific zip code areas.Note: Due to limitations in the data environment, variable names may be truncated. Refer to the provided table for a clear understanding of the variables. CSV Variable NameShapefile Variable NameDescriptionStateNameStateNameName of the stateStateFipsStateFipsState-level FIPS codeState nameStateNameName of the stateCountyNameCountyNameName of the countyCensusFipsCensusFipsCounty-level FIPS codeState abbreviationStateFipsState abbreviationCountyFipsCountyFipsCounty-level FIPS codeCensusFipsCensusFipsCounty-level FIPS codeCounty nameCountyNameName of the countyAREA_SQMIAREA_SQMITract area in square milesE_TOTPOPE_TOTPOPPopulation estimates, 2013-2017 ACSEP_POVEP_POVPercentage of persons below poverty estimateEP_UNEMPEP_UNEMPUnemployment Rate estimateEP_HBURDEP_HBURDHousing cost burdened occupied housing units with annual income less than $75,000EP_UNINSUREP_UNINSURUninsured in the total civilian noninstitutionalized population estimate, 2013-2017 ACSEP_PCIEP_PCIPer capita income estimate, 2013-2017 ACSEP_DISABLEP_DISABLPercentage of civilian noninstitutionalized population with a disability estimate, 2013-2017 ACSEP_SNGPNTEP_SNGPNTPercentage of single parent households with children under 18 estimate, 2013-2017 ACSEP_MINRTYEP_MINRTYPercentage minority (all persons except white, non-Hispanic) estimate, 2013-2017 ACSEP_LIMENGEP_LIMENGPercentage of persons (age 5+) who speak English "less than well" estimate, 2013-2017 ACSEP_MUNITEP_MUNITPercentage of housing in structures with 10 or more units estimateEP_MOBILEEP_MOBILEPercentage of mobile homes estimateEP_CROWDEP_CROWDPercentage of occupied housing units with more people than rooms estimateEP_NOVEHEP_NOVEHPercentage of households with no vehicle available estimateEP_GROUPQEP_GROUPQPercentage of persons in group quarters estimate, 2014-2018 ACSBelow_5_yrBelow_5_yrUnder 5 years: Percentage of Total populationBelow_18_yrBelow_18_yrUnder 18 years: Percentage of Total population18-39_yr18_39_yr18-39 years: Percentage of Total population40-64_yr40_64_yr40-64 years: Percentage of Total populationAbove_65_yrAbove_65_yrAbove 65 years: Percentage of Total populationPop_malePop_malePercentage of total population malePop_femalePop_femalePercentage of total population femaleWhitewhitePercentage population of white aloneBlackblackPercentage population of black or African American aloneAmerican_indianamerican_iPercentage population of American Indian and Alaska native aloneAsianasianPercentage population of Asian aloneHawaiian_pacific_islanderhawaiian_pPercentage population of Native Hawaiian and Other Pacific Islander aloneSome_othersome_otherPercentage population of some other race aloneMedian_tot_householdsmedian_totMedian household income in the past 12 months (in 2019 inflation-adjusted dollars) by household size – total householdsLess_than_high_schoolLess_than_Percentage of Educational attainment for the population less than 9th grades and 9th to 12th grade, no diploma estimateHigh_schoolHigh_schooPercentage of Educational attainment for the population of High school graduate (includes equivalency)Some_collegeSome_collePercentage of Educational attainment for the population of Some college, no degreeAssociates_degreeAssociatesPercentage of Educational attainment for the population of associate degreeBachelor’s_degreeBachelor_sPercentage of Educational attainment for the population of Bachelor’s degreeMaster’s_degreeMaster_s_dPercentage of Educational attainment for the population of Graduate or professional degreecomp_devicescomp_devicPercentage of Household having one or more types of computing devicesInternetInternetPercentage of Household with an Internet subscriptionBroadbandBroadbandPercentage of Household having Broadband of any typeSatelite_internetSatelite_iPercentage of Household having Satellite Internet serviceNo_internetNo_internePercentage of Household having No Internet accessNo_computerNo_computePercentage of Household having No computerThis table provides a mapping between the CSV variable names and the shapefile variable names, along with a brief description of each variable.
The Postal Code Population Weight File has been created as a supplementary product to the Postal Code Conversion File (PCCF). It provides users with a population ‘weight’ for postal codes with multiple links on the PCCF. The weight associated with each record on the Postal Code Population Weight File represents the proportion of the population reporting the postal code within a specific enumeration area. Only a small percentage of postal codes are linked to more than one enumeration area on the PCCF (4%). However, these postal codes tend to serve relatively large areas and large populations. The weights will allow users to allocate their data proportionally to the population distribution reported in the 1996 Census. This file can also be used in combination with the PCCF to identify those postal code-to-enumeration area links confirmed by census reported postal code data.
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset was created by Shaswot Joshi
Released under Database: Open Database, Contents: Database Contents
This is a MD iMAP hosted service. Find more information at http://imap.maryland.gov. The units of geography used for the 2010 Census maps displayed here are the Zip Code Tabulation Area (ZCTA). ZCTAs are statistical geographic areas produced by the Census Bureau by aggregating census blocks to create generalized areas closely resembling the U.S. Postal Service's postal zip codes. The data collected on the short form survey are general demographic characteristics such as age - race - ethnicity - household relationship - housing vacancy and tenure (owner/renter).Feature Service Link:https://mdgeodata.md.gov/imap/rest/services/Demographics/MD_CensusData/FeatureServer ADDITIONAL LICENSE TERMS: The Spatial Data and the information therein (collectively "the Data") is provided "as is" without warranty of any kind either expressed implied or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct indirect incidental consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains figures for the Dutch population per four-digit postal code on 1 January 1999.
In this table, the data can be broken down into the following characteristics: — Population by gender, age and postcode. — Immigrants by origin grouping and postal code. — Private households by composition and postal code.
Data as of 1 January 1999.
Status of the figures All figures included in the table are final figures. For reasons of statistical confidentiality, the numbers per 4-digit postal code are randomly rounded to multiples of 5. Random rounding determines whether a number is rounded up or down. The opportunities used are inversely proportional to the final differences. On average, a number is rounded by itself. However, the average rounding difference per number is greater than when rounded to the nearest multiple of 5. Due to rounding differences, the sum of rounded numbers is not always equal to the rounded sum.
Change as of 23 August 2019: None, this table has been discontinued.
When will there be new figures? No longer applicable. This table is followed by: Population; gender, age and four-digit postal code, 1 January; Population; gender, migration background, four-digit postcode, 1 January; Population; gender, household position, four-digit postal code, 1 January; Households; household composition and four-digit postal code, January 1. (see paragraph 3).
Population by Age, Sex and Ethnicity by U.S. Postal ZIP Code from the 2020 Decennial Census
demographic_statistics_zipcode
https://www.geopostcodes.com/privacy-policy/https://www.geopostcodes.com/privacy-policy/
Comprehensive, annually-updated population datasets at ZIP code and administrative levels for 247 countries, spanning from 1975 to 2030, including historical, current, and projected population figures, enriched with attributes like area size, multilingual support, UNLOCODEs, IATA codes, and time zones.