The region of present-day China has historically been the most populous region in the world; however, its population development has fluctuated throughout history. In 2022, China was overtaken as the most populous country in the world, and current projections suggest its population is heading for a rapid decline in the coming decades. Transitions of power lead to mortality The source suggests that conflict, and the diseases brought with it, were the major obstacles to population growth throughout most of the Common Era, particularly during transitions of power between various dynasties and rulers. It estimates that the total population fell by approximately 30 million people during the 14th century due to the impact of Mongol invasions, which inflicted heavy losses on the northern population through conflict, enslavement, food instability, and the introduction of bubonic plague. Between 1850 and 1870, the total population fell once more, by more than 50 million people, through further conflict, famine and disease; the most notable of these was the Taiping Rebellion, although the Miao an Panthay Rebellions, and the Dungan Revolt, also had large death tolls. The third plague pandemic also originated in Yunnan in 1855, which killed approximately two million people in China. 20th and 21st centuries There were additional conflicts at the turn of the 20th century, which had significant geopolitical consequences for China, but did not result in the same high levels of mortality seen previously. It was not until the overlapping Chinese Civil War (1927-1949) and Second World War (1937-1945) where the death tolls reached approximately 10 and 20 million respectively. Additionally, as China attempted to industrialize during the Great Leap Forward (1958-1962), economic and agricultural mismanagement resulted in the deaths of tens of millions (possibly as many as 55 million) in less than four years, during the Great Chinese Famine. This mortality is not observable on the given dataset, due to the rapidity of China's demographic transition over the entire period; this saw improvements in healthcare, sanitation, and infrastructure result in sweeping changes across the population. The early 2020s marked some significant milestones in China's demographics, where it was overtaken by India as the world's most populous country, and its population also went into decline. Current projections suggest that China is heading for a "demographic disaster", as its rapidly aging population is placing significant burdens on China's economy, government, and society. In stark contrast to the restrictive "one-child policy" of the past, the government has introduced a series of pro-fertility incentives for couples to have larger families, although the impact of these policies are yet to materialize. If these current projections come true, then China's population may be around half its current size by the end of the century.
The authors propose a unified growth theory to explain demographic empirical regularities. They calibrate the model to match data moments for Sweden in 2000 and around 1800. The simulated data generated by the calibrated model are then compared to the historical time series for Sweden over the period 1750-2000 in order to investigate the fit of long-term development dynamics, as well as to cross-country panel data for the period 1960-2000 to analyze the relevance for cross-sectional patterns of comparative development. For the calibration, data was used from the OECD webpage, ERS Dataset, historical statistics from the Bank of Sweden, micro data from the ECHP dataset, Data from the Human Mortality Data Base, UN Population Statistics, or data from existing papers. For the time-series and cross section analysis, data was taken from the Human Mortality Database, World Development Indicators, Swedish Central Statistical Office, UN Population Statistics and existing literature.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tuberculosis (TB) incidence has been in steady decline in China over the last few decades. However, ongoing demographic transition, fueled by aging, and massive internal migration could have important implications for TB control in the future. We collated data on TB notification, demography, and drug resistance between 2004 and 2017 across seven cities in Shandong, the second most populous province in China. Using these data, and age-period-cohort models, we (i) quantified heterogeneities in TB incidence across cities, by age, sex, resident status, and occupation and (ii) projected future trends in TB incidence, including drug-resistant TB (DR-TB). Between 2006 and 2017, we observed (i) substantial variability in the rates of annual change in TB incidence across cities, from -4.84 to 1.52%; (ii) heterogeneities in the increments in the proportion of patients over 60 among reported TB cases differs from 2 to 13%, and from 0 to 17% for women; (iii) huge differences across cities in the annual growths in TB notification rates among migrant population between 2007 and 2017, from 2.81 cases per 100K migrants per year in Jinan to 22.11 cases per 100K migrants per year in Liaocheng, with drastically increasing burden of TB cases from farmers; and (iv) moderate and stable increase in the notification rates of DR-TB in the province. All of these trends were projected to continue over the next decade, increasing heterogeneities in TB incidence across cities and between populations. To sustain declines in TB incidence and to prevent an increase in Multiple DR-TB (MDR-TB) in the future in China, future TB control strategies may (i) need to be tailored to local demography, (ii) prioritize key populations, such as elderly and internal migrants, and (iii) enhance DR-TB surveillance.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The recent demographic transitions to lower mortality and fertility rates in most human societies have led to changes and even quick reversals in phenotypic selection pressures. This can only result in evolutionary change if the affected traits are heritable, but changes in environmental conditions may also lead to subsequent changes in the genetic variance and covariance (the G matrix) of traits. It currently remains unclear if there have been concomitant changes in the G matrix of life history traits following the demographic transition. Using 300 years of genealogical data from Finland, we found that four key life history traits were heritable both before and after the demographic transition. The estimated heritabilities allow a quantifiable genetic response to selection during both time periods, thus facilitating continued evolutionary change. Further, the G matrices remained largely stable but revealed a trend for an increased additive genetic variance and thus evolutionary potential of the population after the transition. Our results demonstrate the validity of predictions of evolutionary change in human populations even after the recent dramatic environmental change, and facilitate predictions of how our biology interacts with changing environments, with implications for global public health and demography.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
In a time of global change, having an understanding of the nature of biotic and abiotic factors that drive a species’ range may be the sharpest tool in the arsenal of conservation and management of threatened species. However, such information is lacking for most tropical and epiphytic species due to the complexity of life history, the roles of stochastic events, and the diversity of habitat across the span of a distribution. In this study, we conducted repeated censuses across the core and peripheral range of Trichocentrum undulatum, a threatened orchid that is found throughout the island of Cuba (species core range) and southern Florida (the northern peripheral range). We used demographic matrix modeling as well as stochastic simulations to investigate the impacts of herbivory, hurricanes, and logging (in Cuba) on projected population growth rates (? and ?s) among sites. Methods Field methods Censuses took place between 2013 and 2021. The longest census period was that of the Peripheral population with a total of nine years (2013–2021). All four populations in Cuba used in demographic modeling that were censused more than once: Core 1 site (2016–2019, four years), Core 2 site (2018–2019, two years), Core 3 (2016 and 2018 two years), and Core 4 (2018–2019, two years) (Appendix S1: Table S1). In November 2017, Hurricane Irma hit parts of Cuba and southern Florida, impacting the Peripheral population. The Core 5 population (censused on 2016 and 2018) was small (N=17) with low survival on the second census due to logging. Three additional populations in Cuba were visited only once, Core 6, Core 7, and Core 8 (Table 1). Sites with one census or with a small sample size (Core 5) were not included in the life history and matrix model analyses of this paper due to the lack of population transition information, but they were included in the analysis on the correlation between herbivory and fruit rate, as well as the use of mortality observations from logging for modeling. All Cuban sites were located between Western and Central Cuba, spanning four provinces: Mayabeque (Core 1), Pinar del Rio (Core 2 and Core 6), Matanzas (Core 3 and Core 5), and Sancti Spiritus (Core 4, Core 7, Core 8). At each population of T. undulatum presented in this study, individuals were studied within ~1-km strips where T. undulatum occurrence was deemed representative of the site, mostly occurring along informal forest trails. Once an individual of T. undulatum was located, all trees within a 5-m radius were searched for additional individuals. Since tagging was not permitted, we used a combination of information to track individual plants for the repeated censuses. These include the host species, height of the orchid, DBH of the host tree, and hand-drawn maps. Individual plants were also marked by GPS at the Everglades Peripheral site. If a host tree was found bearing more than one T. undulatum, then we systematically recorded the orchids in order from the lowest to highest as well as used the previous years’ observations in future censuses for individualized notes and size records. We recorded plant size and reproductive variables during each census including: the number of leaves, length of the longest leaf (cm), number of inflorescence stalks, number of flowers, and the number of mature fruits. We also noted any presence of herbivory, such as signs of being bored by M. miamensis, and whether an inflorescence was partially or completely affected by the fly, and whether there was other herbivory, such as D. boisduvalii on leaves. We used logistic regression analysis to examine the effects of year (at the Peripheral site) and sites (all sites) on the presence or absence of inflorescence herbivory at all the sites. Cross tabulation and chi-square analysis were done to examine the associations between whether a plant was able to fruit and the presence of floral herbivory by M. miamensis. The herbivory was scored as either complete or partial. During the orchid population scouting expeditions, we came across a small population in the Matanzas province (Core 5, within 10 km of the Core 3 site) and recorded the demographic information. Although the sampled population was small (N = 17), we were able to observe logging impacts at the site and recorded logging-associated mortality on the subsequent return to the site. Matrix modeling Definition of size-stage classes To assess the life stage transitions and population structures for each plant for each population’s census period we first defined the stage classes for the species. The categorization for each plant’s stage class depended on both its size and reproductive capabilities, a method deemed appropriate for plants (Lefkovitch 1965, Cochran and Ellner 1992). A size index score was calculated for each plant by taking the total number of observed leaves and adding the length of the longest leaf, an indication of accumulated biomass (Borrero et al. 2016). The smallest plant size that attempted to produce an inflorescence is considered the minimum size for an adult plant. Plants were classified by stage based on their size index and flowering capacity as the following: (1) seedlings (or new recruits), i.e., new and small plants with a size index score of less than 6, (2) juveniles, i.e., plants with a size index score of less than 15 with no observed history of flowering, (3) adults, plants with size index scores of 15 or greater. Adult plants of this size or larger are capable of flowering but may not produce an inflorescence in a given year. The orchid’s population matrix models were constructed based on these stages. In general, orchid seedlings are notoriously difficult to observe and easily overlooked in the field due to the small size of protocorms. A newly found juvenile on a subsequent site visit (not the first year) may therefore be considered having previously been a seedling in the preceding year. In this study, we use the discovered “seedlings” as indicatory of recruitment for the populations. Adult plants are able to shrink or transition into the smaller juvenile stage class, but a juvenile cannot shrink to the seedling stage. Matrix elements and population vital rates calculations Annual transition probabilities for every stage class were calculated. A total of 16 site- and year-specific matrices were constructed. When seedling or juvenile sample sizes were < 9, the transitions were estimated using the nearest year or site matrix elements as a proxy. Due to the length of the study and variety of vegetation types with a generally large population size at each site, transition substitutions were made with the average stage transition from all years at the site as priors. If the sample size of the averaged stage was still too small, the averaged transition from a different population located at the same vegetation type was used. We avoided using transition values from populations found in different vegetation types to conserve potential environmental differences. A total of 20% (27/135) of the matrix elements were estimated in this fashion, the majority being seedling stage transitions (19/27) and noted in the Appendices alongside population size (Appendix S1: Table S1). The fertility element transitions from reproductive adults to seedlings were calculated as the number of seedlings produced (and that survived to the census) per adult plant. Deterministic modeling analysis We used integral projection models (IPM) to project the long-term population growth rates for each time period and population. The finite population growth rate (?), stochastic long-term growth rate (?s), and the elasticity were projected for each matrices using R Popbio Package 2.4.4 (Stubben and Milligan 2007, Caswell 2001). The elasticity matrices were summarized by placing each element into one of three categories: fecundity (transition from reproductive adults to seedling stage), growth (all transitions to new and more advanced stage, excluding the fecundity), and stasis (plants that transitioned into the same or a less advanced stage on subsequent census) (Liu et al. 2005). Life table response experiments (LTREs) were conducted to identify the stage transitions that had the greatest effects on observed differences in population growth between select sites and years (i.e., pre-post hurricane impact and site comparisons of same vegetation type). Due to the frequent disturbances that epiphytes in general experience as well as our species’ distribution in hurricane-prone areas, we ran transient dynamic models that assume that the populations censused were not at stable stage distributions (Stott et al. 2011). We calculated three indices for short-term transient dynamics to capture the variation during a 15-year transition period: reactivity, maximum amplification, and amplified inertia. Reactivity measures a population’s growth in a single measured timestep relative to the stable-stage growth, during the simulated transition period. Maximum amplification and amplified inertia are the maximum of future population density and the maximum long-term population density, respectively, relative to a stable-stage population that began at the same initial density (Stott et al. 2011). For these analyses, we used a mean matrix for Core 1, Core 2 Core 3, and Core 4 sites and the population structure of their last census. For the Peripheral site, we averaged the last three matrices post-hurricane disturbance and used the most-recent population structure. We standardized the indices across sites with the assumption of initial population density equal to 1 (Stott et al. 2011). Analysis was done using R Popdemo version 1.3-0 (Stott et al. 2012b). Stochastic simulation We created matrices to simulate the effects of episodic recruitment, hurricane impacts, herbivory, and logging (Appendix S1: Table S2). The Peripheral population is the longest-running site with nine years of censuses (eight
The world's population first reached one billion people in 1805, and reached eight billion in 2022, and will peak at almost 10.2 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two-thirds of the world's population lives in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a few years later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Human reproductive patterns have been well studied, but the mechanisms by which physiology, ecology and existing kin interact to affect the life history need quantification. Here, we create a model to investigate how age-specific interbirth intervals adapt to environmental and intrinsic mortality, and how birth patterns can be shaped by competition and help between siblings. The model provides a flexible framework for studying the processes underlying human reproductive scheduling. We developed a state-based optimality model to determine age-dependent and family-dependent sets of reproductive strategies, including the state of the mother and her offspring. We parameterized the model with realistic mortality curves derived from five human populations. Overall, optimal birth intervals increase until the age of 30 after which they remain relatively constant until the end of the reproductive lifespan. Offspring helping each other does not have much effect on birth intervals. Increasing infant and senescent mortality in different populations decreases interbirth intervals. We show that sibling competition and infant mortality interact to lengthen interbirth intervals. In lower-mortality populations, intense sibling competition pushes births further apart. Varying the adult risk of mortality alone has no effect on birth intervals between populations; competition between offspring drives the differences in birth intervals only when infant mortality is low. These results are relevant to understanding the demographic transition, because our model predicts that sibling competition becomes an important determinant of optimal interbirth intervals only when mortality is low, as in post-transition societies. We do not predict that these effects alone can select for menopause.
Abstract copyright UK Data Service and data collection copyright owner. The aims of the project were to examine and analyse demographic processes of fertility, nuptiality, marital fertility, mortality and migration during periods encompassing the demographic transition in England and Wales. In particular, the goal was to reveal underlying relationships between demographic processes in the context of changing socio-economic conditions. With this goal in mind, population, occupational, and education data were compilated, and demographic and statistical models were employed to estimate key measures and indicators of demographic change. The large majority of the data and estimates were compiled and made at the registration district level for the period 1851-1911. In addition decennial inter-county migration flows were estimated for the period 1851-1911. Main Topics: This digital resource is based on two sources of official data that were published regularly for the registration districts and counties of England and Wales between 1851 and 1911. The published volumes of seven censuses provided most of the information on age, sex and marital status distributions. Census data also provided information on occupational distributions. Vital registration provided the intercensal numbers of births, deaths and marriages. Some supplementary data were also used such as the series of English life tables. From these data demographic and statistical models were employed to estimate key measures and indicators of demographic change at the registration district level, such as population growth rates, population density, birth and death rates, net migration rates, Coale's indices of nuptiality, marital fertility and overall fertility, estimates of the timing of the onset of fertility transition, estimates of life expectancy and more. Most of the district level variables are available for the period 1841-1911, although the data is less complete and less reliable for the period 1841-1850. In addition, decennial inter-county migration flows were estimated from lifetime migration information for the period 1851-1911. Please note: this study does not include information on named individuals and would therefore not be useful for personal family history research. Convenience sample Compilation or synthesis of existing material
The American black bear (Ursus americanus) has one of the broadest geographic distributions of any mammalian carnivore in North America. Populations occur from high to low elevations and from mesic to arid environments, and their demographic traits have been documented in a wide variety of environments. However, the demography of American black bears in semiarid environments, which comprise a significant portion of the geographic range, is poorly documented. To fill this gap in understanding, we used data from a long-term mark-recapture study of black bears in the semiarid environment of eastern Utah, USA. Cub and yearling survival were low and adult survival was high relative to other populations. Adult life stages had the highest reproductive value, comprised the largest proportion of the population, and exhibited the highest elasticity contribution to the population growth rate (i.e., λ). Vital rates of black bears in this semiarid environment are skewed toward higher survival of adu..., Mark-Recapture study We estimated survival rates from long-term mark-recapture data gathered as part of a 27-year study on American black bears of the East Tavaputs Plateau. During the first 12 years of the study (June to August 1991-2003) female bears were captured and radio-collared, and all bears were tagged in the ear, except for cubs and yearlings. For the entire study (1992 – 2019), collared females were visited in their dens annually during their winter hibernation to count newborn cubs and surviving yearlings. Age of individual bears was determined by 2 methods: (1) direct observation of cubs or yearlings (i.e., year of birth was known) or (2) cementum annuli analysis of a cross-section of the root of an extracted premolar (Palochak, 2004; Willey, 1974). The data we used to derive survival and fecundity rates consisted of the ID_number, cohort (cub, yearling, subadult, prime-aged adult, and old adult), age in years, sex (female, male, unknown), number of cubs, number of yearling..., , # Demography of American black bears (Ursus americanus) in a semiarid environment
https://doi.org/10.5061/dryad.98sf7m0t8
Description:Â
This CSV file contains data collected from a mark-recapture study during 1991 - 2019. We calculated the age-specific average survival rate for each cohort. The average survival rate of each cohort was later used in the matrix transition model as matrix elements to retrieve important demographic information about this population of North American black bears (Ursus americanus) found in a semiarid environment.Â
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe birth rate is an important indicator of the health of the population. However, persistently low birth rate has become a pressing demographic challenge for many countries, including China. This has significant implications for sustainable population planning.MethodsThis study applied hot spot analysis and the spatiotemporal geographically weighted regression (GTWR) modeling, used panel data of 286 cities in China from 2012 to 2021 to explore the spatiotemporal heterogeneity of the relationship between the socioeconomic development and birth rate.ResultsThe research has found that 2017 was an important turning point in China’s demographic transition. The hot spot analysis reveals that the birth rate hot spots are characterized by a multipolar kernel distribution, shifting from spatial diffusion to convergence, with the cold spots mainly located in the northeast. And the GTWR modeling found that the relationship between socioeconomic development and birth rate varies and change dynamically over space and time. Key findings include: (1) the negative impact of GDP per capita on birth rates has intensified; (2) housing prices exhibit both wealth and crowding-out effects on birth rates, and there are obvious regional differences between the north and the south; (3) fiscal education expenditure on birth rates has the most pronounced income effect in the eastern region.ConclusionThis study adopts spatiotemporal perspective to reveal the spatiotemporal heterogeneity of the association between socioeconomic development and birth rate. It provides new evidence on the influence of macro factors on fertility in China. And emphasizes the importance of incorporating regional variations into population policy design.
In 2025, there are six countries, all in Sub-Saharan Africa, where the average woman of childbearing age can expect to have between 5-6 children throughout their lifetime. In fact, of the 20 countries in the world with the highest fertility rates, Afghanistan and Yemen are the only countries not found in Sub-Saharan Africa. High fertility rates in Africa With a fertility rate of almost six children per woman, Chad is the country with the highest fertility rate in the world. Population growth in Chad is among the highest in the world. Lack of healthcare access, as well as food instability, political instability, and climate change, are all exacerbating conditions that keep Chad's infant mortality rates high, which is generally the driver behind high fertility rates. This situation is common across much of the continent, and, although there has been considerable progress in recent decades, development in Sub-Saharan Africa is not moving as quickly as it did in other regions. Demographic transition While these countries have the highest fertility rates in the world, their rates are all on a generally downward trajectory due to a phenomenon known as the demographic transition. The third stage (of five) of this transition sees birth rates drop in response to decreased infant and child mortality, as families no longer feel the need to compensate for lost children. Eventually, fertility rates fall below replacement level (approximately 2.1 children per woman), which eventually leads to natural population decline once life expectancy plateaus. In some of the most developed countries today, low fertility rates are creating severe econoic and societal challenges as workforces are shrinking while aging populations are placin a greater burden on both public and personal resources.
Population dynamics, its types. Population migration (external, internal), factors determining it, main trends. Impact of migration on population health.
Under the guidance of Moldoev M.I. Sir By Riya Patil and Rutuja Sonar
Abstract
Population dynamics influence development and vice versa, at various scale levels: global, continental/world-regional, national, regional, and local. Debates on how population growth affects development and how development affects population growth have already been subject of intensive debate and controversy since the late 18th century, and this debate is still ongoing. While these two debates initially focused mainly on natural population growth, the impact of migration on both population dynamics and development is also increasingly recognized. While world population will continue growing throughout the 21st century, there are substantial and growing contrasts between and within world-regions in the pace and nature of that growth, including some countries where population is stagnating or even shrinking. Because of these growing contrasts, population dynamics and their interrelationships with development have quite different governance implications in different parts of the world.
1. Population Dynamics
Population dynamics refers to the changes in population size, structure, and distribution over time. These changes are influenced by four main processes:
Birth rate (natality)
Death rate (mortality)
Immigration (inflow of people)
Emigration (outflow of people)
Types of Population Dynamics
Natural population change: Based on birth and death rates.
Migration-based change: Caused by people moving in or out of a region.
Demographic transition: A model that explains changes in population growth as societies industrialize.
Population distribution: Changes in where people live (urban vs rural).
2. Population Migration
Migration refers to the movement of people from one location to another, often across political or geographical boundaries.
Types of Migration
External migration (international):
Movement between countries.
Examples: Refugee relocation, labor migration, education.
Internal migration:
Movement within the same country or region.
Examples: Rural-to-urban migration, inter-state migration.
3. Factors Determining Migration
Migration is influenced by push and pull factors:
Push factors (reasons to leave a place):
Unemployment
Conflict or war
Natural disasters
Poverty
Lack of services or opportunities
Pull factors (reasons to move to a place):
Better job prospects
Safety and security
Higher standard of living
Education and healthcare access
Family reunification
4. Main Trends in Migration
Urbanization: Mass movement to cities for work and better services.
Global labor migration: Movement from developing to developed countries.
Refugee and asylum seeker flows: Due to conflict or persecution.
Circular migration: Repeated movement between two or more locations.
Brain drain/gain: Movement of skilled labor away from (or toward) a country.
5. Impact of Migration on Population Health
Positive Impacts:
Access to better healthcare (for migrants moving to better systems).
Skills and knowledge exchange among health professionals.
Remittances improving healthcare affordability in home countries.
Negative Impacts:
Migrants’ health risks: Increased exposure to stress, poor living conditions, and occupational hazards.
Spread of infectious diseases: Especially when health screening is lacking.
Strain on health services: In receiving areas, especially with sudden or large influxes.
Mental health challenges: Due to cultural dislocation, discrimination, or trauma.
Population dynamics is one of the fundamental areas of ecology, forming both the basis for the study of more complex communities and of many applied questions. Understanding population dynamics is the key to understanding the relative importance of competition for resources and predation in structuring ecological communities, which is a central question in ecology.
Population dynamics plays a central role in many approaches to preserving biodiversity, which until now have been primarily focused on a single species approach. The calculation of the intrinsic growth rate of a species from a life table is often the central piece of conservation plans. Similarly, management of natural resources, such as fisheries, depends on population dynamics as a way to determine appropriate management actions.
Population dynamics can be characterized by a nonlinear system of difference or differential equations between the birth sizes of consecutive periods. In such a nonlinear system, when the feedback elasticity of previous events on current birth size is larger, the more likely the dynamics will be volatile. Depending on the classification criteria of the population, the revealed cyclical behavior has various interpretations. Under different contextual scenarios, Malthusian cycles, Easterlin cycles, predator–prey cycles, dynastic cycles, and capitalist–laborer cycles have been introduced and analyzed
Generally, population dynamics is a nonlinear stochastic process. Nonlinearities tend to be complicated to deal with, both when we want to do analytic stochastic modelling and when analysing data. The way around the problem is to approximate the nonlinear model with a linear one, for which the mathematical and statistical theories are more developed and tractable. Let us assume that the population process is described as:
(1)Nt=f(Nt−1,εt)
where Nt is population density at time t and εt is a series of random variables with identical distributions (mean and variance). Function f specifies how the population density one time step back, plus the stochastic environment εt, is mapped into the current time step. Let us assume that the (deterministic) stationary (equilibrium) value of the population is N* and that ε has mean ε*. The linear approximation of Eq. (1) close to N* is then:
(2)xt=axt−1+bϕt
where xt=Nt−N*, a=f
f(N*,ε*)/f
N, b=ff(N*,ε*)/fε, and ϕt=εt−ε*
The term population refers to the members of a single species that can interact with each other. Thus, the fish in a lake, or the moose on an island, are clear examples of a population. In other cases, such as trees in a forest, it may not be nearly so clear what a population is, but the concept of population is still very useful.
Population dynamics is essentially the study of the changes in the numbers through time of a single species. This is clearly a case where a quantitative description is essential, since the numbers of individuals in the population will be counted. One could begin by looking at a series of measurements of the numbers of particular species through time. However, it would still be necessary to decide which changes in numbers through time are significant, and how to determine what causes the changes in numbers. Thus, it is more sensible to begin with models that relate changes in population numbers through time to underlying assumptions. The models will provide indications of what features of changes in numbers are important and what measurements are critical to make, and they will help determine what the cause of changes in population levels might be.
To understand the dynamics of biological populations, the study starts with the simplest possibility and determines what the dynamics of the population would be in that case. Then, deviations in observed populations from the predictions of that simplest case would provide information about the kinds of forces shaping the dynamics of populations. Therefore, in describing the dynamics in this simplest case it is essential to be explicit and clear about the assumptions made. It would not be argued that the idealized population described here would ever be found, but that focusing on the idealized population would provide insight into real populations, just as the study of Newtonian mechanics provides understanding of more realistic situations in physics.
Population migration
The vast majority of people continue to live in the countries where they were born —only one in 30 are migrants.
In most discussions on migration, the starting point is usually numbers. Understanding changes in scale, emerging trends, and shifting demographics related to global social and economic transformations, such as migration, help us make sense of the changing world we live in and plan for the future. The current global estimate is that there were around 281 million international migrants in the world in 2020, which equates to 3.6 percent of the global population.
Overall, the estimated number of international migrants has increased over the past five decades. The total estimated 281 million people living in a country other than their countries of birth in 2020 was 128 million more than in 1990 and over three times the estimated number in 1970.
There is currently a larger number of male than female international migrants worldwide and the growing gender gap has increased over the past 20 years. In 2000, the male to female split was 50.6 to 49.4 per cent (or 88 million male migrants and 86 million female migrants). In 2020 the split was 51.9 to 48.1 per cent, with 146 million male migrants and 135 million female migrants. The share of
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Resumo The demographic dividend has aroused interest among demographers and economists because it is seen as a window of oportunity for the economic development of countries that have experienced a demographic transition. There are reasons to question the sole virtuosity of the pure demographic dividend in economic growth. Crespo-Cuaresma et al. (2014) found that educational expansion has an important role in economic gains during the demographic dividend. To verify these results for the Brazilian case, we performed a decomposition exercise of economic support ratio (ESR), an alternative to demographic dependency ratio, to analyze the first demographic dividend. A simulation, applied for the period from 1970 to 2100 considering three scenarios of educational expansion, shows that educational expansion was and will be responsible for a big share of the economic gains of the Brazilian demographic dividend period, outperforming the change in age structure effect. In addition, an increase in a work-age population with post-secondary education appears to potentialize these results.
Social Transition in the North (STN), was a four-year research study funded by the National Science Foundation (NSF; OPP-9213137 and OPP-9496351). STN was a longitudinal study analyzing four circumpolar regions, two in Russia (Chukotka and Kamchatka) and two in Alaska (Nana and Aleutian-Pribilof Islands), looking at demographic, epidemiologic, and domestic social transitions (Mason, 2004). Demographic transitions were the study of change in mortality and birth rate. Epidemiologic transitions were studied by watching the change of infectious disease and increase of lifestyle diseases. The third transition was domestic, and is summarized as the redefinition of family, family member roles, and the family’s role within the community. The overall goal was to predict future changes, especially of high-risk conditions, and encourage institutional change that would improve services for these conditions. During the final year of the study, while in the Russian region of Chukotka, the principal investigators, two additional research staff, and 10 villagers, died in a tragic boating accident in September of 1995. It was decided that the documents would be given to the Institute for Circumpolar Health Studies (ICHS) at the University of Alaska Anchorage where they are now housed. If researchers are interested in accessing any STN material, a data use agreement will be set in place with the following requirements: to submit an application the UAA IRB, to honor the content of the original consent forms, and in their UAA IRB application specify how they intend to be responsive to the NSF Principles for the Conduct of Research in the Arctic. Further, ICHS will require a copy of UAA IRB's approval prior to release of STN materials. Anyone interested in accessing the data can also contact: Dr. Janet Johnston (jmjohnston2@alaska.edu) or the University of Alaska at Anchorage Institute for Circumpolar Health Studies (uaa_ichs@alaska.edu)
In 2025, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth.
Abstract copyright UK Data Service and data collection copyright owner. The aims of this study were : to examine trends in fertility, nuptiality and mortality in Sri Lanka (Ceylon became Sri Lanka in 1972) in the period prior to demographic transition, i.e. prior to the 1950s. There is a tendency to suppose that, prior to transition, developing world countries had more or less constant fertility and mortality - at high levels - albeit with the fluctuations in both caused by famines and epidemics. There may have been more complex movements in Sri Lanka; to search for the reasons for changes which occurred, by examining how these varied across the approximately 20 administrative districts of the island and considering whether this variation was associated with district characteristics such as literacy, availability of health services, etc. Main Topics: Some problems were encountered by the Archive with the original files supplied for this dataset. More details are given below under 'Availability'. The following files comprise the data available to users : Births SLVSBS.WK1 : contains Sri Lanka vital statistics, giving births by gender from 1900 to 1954 for the 21 administrative districts, ethnic groups, (Sinhalese, Tamils, Moors) and Estates. It further subdivides Tamil births from 1940 into Ceylon and Indian Tamils. SLVSBMTH.WK1 : contains Sri Lanka vital statistics, giving births by sex by month from 1949 to 1954 for 21 administrative districts. SLVSBMTH.WK1 : this file was recovered by the Archive using Norton Utilities software. This process only recovered part of the data (45,565 out of 232,795 bytes). The file contains births by gender per quarter for the years 1900-1913 for all races, but only for 7 out of 21 districts. The unrecovered part includes 1914-1921 births by gender by quarter for all Sri Lanka, districts, and also Estates - total births by quarter 1900-25. Deaths SLVSCDQ.WK2 : causes of death, 1910 to 1921. SLVSDAS.WK3 : deaths by age by gender, 1920 to 1922. SLVSDMTH.WK3 : deaths by gender and by month, 1937 to 1945. Census Information The Census files contain information on population in age ranges, by gender and by marital status. Age ranges and marital status differ between the Censuses. The Census of 1931 only contains the total population for administrative districts and does not include marital status or age ranges.
Between 1800 and 2021, the total population of each continent experienced consistent growth, however as growth rates varied by region, population distribution has fluctuated. In the early 19th century, almost 70 percent of the world's population lived in Asia, while fewer than 10 percent lived in Africa. By the end of this century, it is believed that Asia's share will fall to roughly 45 percent, while Africa's will be on course to reach 40 percent. 19th and 20th centuries Fewer than 2.5 percent of the world's population lived in the Americas in 1800, however the demographic transition, along with waves of migration, would see this share rise to almost 10 percent a century later, peaking at almost 14 percent in the 1960s. Europe's share of the global population also grew in the 19th century, to roughly a quarter in 1900, but fell thereafter and saw the largest relative decline during the 20th century. Asia, which has consistently been the world's most populous continent, saw its population share drop by the mid-1900s, but it has been around 60 percent since the 1970s. It is important to note that the world population has grown from approximately one to eight billion people between 1800 and the 2020s, and that declines in population distribution before 2020 have resulted from different growth rates across the continents. 21st century Africa's population share remained fairly constant throughout this time, fluctuating between 7.5 and 10 percent until the late-1900s, but it is set to see the largest change over the 21st century. As Europe's total population is now falling, and it is estimated that the total populations of Asia and the Americas will fall by the 2050s and 2070s respectively, rapid population growth in Africa will see a significant shift in population distribution. Africa's population is predicted to grow from 1.3 to 3.9 billion people over the next eight decades, and its share of the total population will rise to almost 40 percent. The only other continent whose population will still be growing at this time will be Oceania, although its share of the total population has never been more than 0.7 percent.
The SWEDD is a regional project aiming to accelerate the demographic transition by addressing both supply- and demand-side constraints to family planning and reproductive and sexual health. To achieve its objective, the project targets adolescent girls and young women mainly between the ages of 8 and 24, who are vulnerable to early marriage, teenage pregnancy, and early school drop-out. The project targeted 9 countries of the Sahel and Western Africa (Benin, Burkina Faso, Cameroon, Chad, Côte d’Ivoire, Guinea, Mali, Mauritania, and Niger) and is expanding in other African countries. The SWEDD is structured into three main components: component 1 seeks to generate demand for reproductive, maternal, neonatal, child health and nutrition products and services; component 2 seeks to improve supply of these products and qualified personnel; and component 3 seeks to strengthen national capacity and policy dialogue.
The World Bank Africa Gender Innovation Lab and its partners are conducting rigorous impact evaluations of key interventions under component 1 to assess their effects on child marriage, fertility, and adolescent girls and young women’s empowerment. The interventions were a set of activities targeting adolescent girls and their communities, designed in collaboration with the government of Mauritania. These were (i) safe spaces to empower girls through the provision of life skills and SRH education; (ii) Cash transfer to cover girls’ expenses (transportation cost, food…); (iii) support to income-generating activities (IGA) with the provision of grants and entrepreneurship training and finally (iv) community sensitization by religious and village leaders. The latter two have the objective to change restrictive social norms and create an enabling environment for girls’ empowerment.
These data represent the first round of data collection (baseline) for the impact evaluation. The sample comprises 5,324 households and girls living in the regions of Assaba, Guidimagha, Hodh Charghy et Hodh Gharby.
The information gathered from the survey may aid decision makers in the formulation of economic and social policies to: - reduce fertility and child marriage by improving access to contraceptive methods and improving reproductive health knowledge. - foster women’s empowerment through enhancing their access to economic activities.
The survey can be an important source of information for planners to know how to improve the quality of people's living standards, in particular women’s living conditions. The Ministry of Social Affairs, Children and Families and the Ministry of National Education of Mauritania would benefit from the data of this survey, together with other public organizations working on girls and women empowerment and reproductive health. District Authorities, Research Institutions, Non-Governmental Organizations and the general public will also benefit from the survey data.
Four regions of Mauritania : Assaba, Guidimagha, Hodh Charghy et Hodh Gharby.
Households, individuals
Sample survey data [ssd]
The study was conducted in 74 localities and 55 secondary schools in the regions of de Assaba, Guidimagha, Hodh Charghy et Hodh Gharby. The sampling procedure involves several steps to ensure comprehensive coverage of the target populations. For the Ministry of National Education (MEN), 55 eligible secondary schools located in the chief towns of communes have been identified. The census is conducted in these chief towns and surrounding localities where students reside. In localities with fewer than 400 households, the entire locality is surveyed. In larger localities, the survey is conducted in the enumeration zones containing the schools and one or two adjacent zones. For the Ministry of Social Affairs, Childhood and Family (MASEF), the program targets chief towns of communes not part of the "Tekavoul" program and excludes chief towns of Mougataa and Wilaya. In chief towns with fewer than 400 households, the entire town is surveyed, while in larger towns, the two enumeration zones with the highest number of women are surveyed. The MASEF safe spaces target women aged 15 to 29 who are out of school or never attended school, from households with the lowest socio-economic scores based on durable goods, access to basic infrastructure, and housing characteristics. Similarly, the MEN safe spaces target school-going girls from households with the lowest scores. The scholarship program involves individual randomization of girls sampled for MEN safe spaces, forming two groups: one receiving scholarships (1084 girls) and the other not receiving scholarships (1080 girls). This systematic approach ensures a thorough evaluation of the project's impact across different regions and target populations.
The objective of the baseline survey was to build a comprehensive dataset, which would serve as a reference point for the entire sample, before treatment and control assignment and program implementation.
Computer Assisted Personal Interview [capi]
The data consists of responses from households to questions pertaining to: 1. List of household members 2. Education and employment of household members 3. Characteristics of housing and durable goods 4. Chocs and food security 5. Household head's aspirations for their children 6. Attitudes on women's empowerment and gender equality
The questionnaire administrated to girls contains the following sections: 1. Education 2. Marriage and children 3. Aspirations 4. Reproductive health and family planning 5. Psycho-social 6. Women's empowerment 7. Gender-based violence 8. Income-generating activities 9. Savings and credits 10. Personal relationships and social networks 11. Migration
The household questionnaire was administered to the head of the household or to an authorized person capable of answering questions about all individuals in the household. The adolescent questionnaire was administered to an eligible pre-selected girl within the household. Considering the modules of the adolescent questionnaire, it was only administered by female enumerators. The questionnaires were written in French and programmed on tablets in French using the CAPI program.
In 2023, it is estimated that the BRICS countries have a combined population of 3.25 billion people, which is over 40 percent of the world population. The majority of these people live in either China or India, which have a population of more than 1.4 billion people each, while the other three countries have a combined population of just under 420 million. Comparisons Although the BRICS countries are considered the five foremost emerging economies, they are all at various stages of the demographic transition and have different levels of population development. For all of modern history, China has had the world's largest population, but rapidly dropping fertility and birth rates in recent decades mean that its population growth has slowed. In contrast, India's population growth remains much higher, and it is expected to overtake China in the next few years to become the world's most populous country. The fastest growing population in the BRICS bloc, however, is that of South Africa, which is at the earliest stage of demographic development. Russia, is the only BRICS country whose population is currently in decline, and it has been experiencing a consistent natural decline for most of the past three decades. Growing populations = growing opportunities Between 2000 and 2026, the populations of the BRICS countries is expected to grow by 625 million people, and the majority of this will be in India and China. As the economies of these two countries grow, so too do living standards and disposable income; this has resulted in the world's two most populous countries emerging as two of the most profitable markets in the world. China, sometimes called the "world's factory" has seen a rapid growth in its middle class, increased potential of its low-tier market, and its manufacturing sector is now transitioning to the production of more technologically advanced and high-end goods to meet its domestic demand.
Environmental change continually perturbs populations from a stable state, leading to transient dynamics that can last multiple generations. Several long-term studies have reported changes in trait distributions along with demographic response to environmental change. Here we conducted an experimental study on soil mites and investigated the interaction between demography and an individual trait over a period of nonstationary dynamics. By following individual fates and body sizes at each life-history stage, we investigated how body size and population density influenced demographic rates. By comparing the ability of two alternative approaches, a matrix projection model and an integral projection model, we investigated whether consideration of trait-based demography enhances our ability to predict transient dynamics. By utilizing a prospective perturbation analysis, we addressed which stage-specific demographic or trait-transition rate had the greatest influence on population dynamics. Both body size and population density had important effects on most rates; however, these effects differed substantially among life-history stages. Considering the observed trait-demography relationships resulted in better predictions of a population’s response to perturbations, which highlights the role of phenotypic plasticity in transient dynamics. Although the perturbation analyses provided comparable predictions of stage-specific elasticities between the matrix and integral projection models, the order of importance of the life-history stages differed between the two analyses. In conclusion, we demonstrate how a trait-based demographic approach provides further insight into transient population dynamics. Daily sampling of individual mitesday: day of the study (day t) | no: individual ID for each day | surv: survival to day t+1? | stage: life-history stage at day t | stage1: life-history stage at day t+1 | trns: transition to next stage at day t+1? | tsex: transition to female stage at day t+1? | dens: weighted population density at day t | size: log(body size) at day t | size1: log(body size) at day t+1 | rep: produced eggs at day t+1? | rec: number of eggs produced on day t+1 | day2: number of eggs hatched on day t+2 | day3: number of eggs hatched on day t+3 | day4: number of eggs hatched on day t+4 | day5: number of eggs hatched on day t+5 | day6: number of eggs hatched on day t+6 | day7: number of eggs hatched after day t+6 | eggsurv: proportion of eggs hatched | hrate: daily hatching rate | eggsize: average log(egg size)ind_data.csvAdditional experiment measuring egg-to-larva size transitioneggSize: log(egg size) | larvaSize: log(larva size)egg_data.csvDaily population censusday: day of the study (day t) | e: number of eggs | l: number of larvae | p: number of protonymphs | t: number of tritonymphs | f: number of female adults | m: number of male adults | group: (c)ontrol or (s)ample group? | dens: weighted population densitypop_census.csv
The region of present-day China has historically been the most populous region in the world; however, its population development has fluctuated throughout history. In 2022, China was overtaken as the most populous country in the world, and current projections suggest its population is heading for a rapid decline in the coming decades. Transitions of power lead to mortality The source suggests that conflict, and the diseases brought with it, were the major obstacles to population growth throughout most of the Common Era, particularly during transitions of power between various dynasties and rulers. It estimates that the total population fell by approximately 30 million people during the 14th century due to the impact of Mongol invasions, which inflicted heavy losses on the northern population through conflict, enslavement, food instability, and the introduction of bubonic plague. Between 1850 and 1870, the total population fell once more, by more than 50 million people, through further conflict, famine and disease; the most notable of these was the Taiping Rebellion, although the Miao an Panthay Rebellions, and the Dungan Revolt, also had large death tolls. The third plague pandemic also originated in Yunnan in 1855, which killed approximately two million people in China. 20th and 21st centuries There were additional conflicts at the turn of the 20th century, which had significant geopolitical consequences for China, but did not result in the same high levels of mortality seen previously. It was not until the overlapping Chinese Civil War (1927-1949) and Second World War (1937-1945) where the death tolls reached approximately 10 and 20 million respectively. Additionally, as China attempted to industrialize during the Great Leap Forward (1958-1962), economic and agricultural mismanagement resulted in the deaths of tens of millions (possibly as many as 55 million) in less than four years, during the Great Chinese Famine. This mortality is not observable on the given dataset, due to the rapidity of China's demographic transition over the entire period; this saw improvements in healthcare, sanitation, and infrastructure result in sweeping changes across the population. The early 2020s marked some significant milestones in China's demographics, where it was overtaken by India as the world's most populous country, and its population also went into decline. Current projections suggest that China is heading for a "demographic disaster", as its rapidly aging population is placing significant burdens on China's economy, government, and society. In stark contrast to the restrictive "one-child policy" of the past, the government has introduced a series of pro-fertility incentives for couples to have larger families, although the impact of these policies are yet to materialize. If these current projections come true, then China's population may be around half its current size by the end of the century.