Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Learn state-of-the-art skills to build compelling, useful, and fun Web GIS apps easily, with no programming experience required.Building on the foundation of the previous three editions, Getting to Know Web GIS, fourth edition,features the latest advances in Esri’s entire Web GIS platform, from the cloud server side to the client side.Discover and apply what’s new in ArcGIS Online, ArcGIS Enterprise, Map Viewer, Esri StoryMaps, Web AppBuilder, ArcGIS Survey123, and more.Learn about recent Web GIS products such as ArcGIS Experience Builder, ArcGIS Indoors, and ArcGIS QuickCapture. Understand updates in mobile GIS such as ArcGIS Collector and AuGeo, and then build your own web apps.Further your knowledge and skills with detailed sections and chapters on ArcGIS Dashboards, ArcGIS Analytics for the Internet of Things, online spatial analysis, image services, 3D web scenes, ArcGIS API for JavaScript, and best practices in Web GIS.Each chapter is written for immediate productivity with a good balance of principles and hands-on exercises and includes:A conceptual discussion section to give you the big picture and principles,A detailed tutorial section with step-by-step instructions,A Q/A section to answer common questions,An assignment section to reinforce your comprehension, andA list of resources with more information.Ideal for classroom lab work and on-the-job training for GIS students, instructors, GIS analysts, managers, web developers, and other professionals, Getting to Know Web GIS, fourth edition, uses a holistic approach to systematically teach the breadth of the Esri Geospatial Cloud.AUDIENCEProfessional and scholarly. College/higher education. General/trade.AUTHOR BIOPinde Fu leads the ArcGIS Platform Engineering team at Esri Professional Services and teaches at universities including Harvard University Extension School. His specialties include web and mobile GIS technologies and applications in various industries. Several of his projects have won specialachievement awards. Fu is the lead author of Web GIS: Principles and Applications (Esri Press, 2010).Pub Date: Print: 7/21/2020 Digital: 6/16/2020 Format: Trade paperISBN: Print: 9781589485921 Digital: 9781589485938 Trim: 7.5 x 9 in.Price: Print: $94.99 USD Digital: $94.99 USD Pages: 490TABLE OF CONTENTSPrefaceForeword1 Get started with Web GIS2 Hosted feature layers and storytelling with GIS3 Web AppBuilder for ArcGIS and ArcGIS Experience Builder4 Mobile GIS5 Tile layers and on-premises Web GIS6 Spatial temporal data and real-time GIS7 3D web scenes8 Spatial analysis and geoprocessing9 Image service and online raster analysis10 Web GIS programming with ArcGIS API for JavaScriptPinde Fu | Interview with Esri Press | 2020-07-10 | 15:56 | Link.
World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15-meter TerraColor imagery at small and mid-scales (~1:591M down to ~1:288k) for the world. The map features Maxar imagery at 0.3-meter resolution for select metropolitan areas around the world, 0.5-meter resolution across the United States and parts of Western Europe, and 0.6-meter resolution imagery across the rest of the world. In addition to commercial sources, the World Imagery map features high-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 0.3-meter to 0.03-meter resolution, down to ~1:280 in select communities. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid (WGS84) web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.Precise Tile RegistrationThe World Imagery map uses the improved tiling scheme “WGS84 Geographic, Version 2” to ensure proper tile positioning at higher resolutions (neighborhood level and beyond). The new tiling scheme is much more precise than tiling schemes of the legacy basemaps Esri released years ago. We recommend that you start using this new basemap for any new web maps in WGS84 that you plan to author. Due to the number of differences between the old and new tiling schemes, some web clients will not be able to overlay tile layers in the old and new tiling schemes in one web map.
https://www.broward.org/Terms/Pages/Default.aspxhttps://www.broward.org/Terms/Pages/Default.aspx
Wayback imagery is a digital archive of the World Imagery basemap, enabling users to access more than 100 different versions of World Imagery archived over the past 10 years. Each record in the archive represents a version of World Imagery as it existed on the date it was published.This app offers a dynamic Wayback browsing and discovery experience where previous versions of the World Imagery basemap are presented within the map, along a timeline, and as a list. Versions that resulted in local changes are dynamically presented to the user based on location and scale. Preview changes by hovering over and/or selecting individual layers. When ready, one or more Wayback layers can be added to an export queue and pushed to a new ArcGIS Online web map. Browse, preview, select, and create, it’s all there!For more information on Wayback check out these articles.You can also find every Wayback tile layer in the Wayback imagery group.
ArcGIS Online Web Map containing ESRI Streets at small scales and FSTopo Basemap at scales larger than 1:144,448. This basemap web map is designed to be used in ArcGIS Online mapping applications with other map services or features services overlayed on the FSTopo basemap.
This vector tile layer presents Hybrid Reference Layer (WGS84) style (World Edition) and provides a detailed reference layer for the world, designed to be overlaid on imagery. The reference layer includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, and administrative boundaries. The layer is designed for use with World Imagery (WGS84). This vector tile layer provides unique capabilities for customization and high-resolution display, and use in mobile devices.This vector tile layer is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors Esri Vector Basemaps (WGS84) are updated quarterly.This layer is used in the Imagery Hybrid (WGS84) web map included in ArcGIS Living Atlas of the World.Check out other WGS84 basemaps in the World Basemaps (WGS84) group. Customize this StyleLearn more about customizing this vector basemap style using the Vector Tile Style Editor. Additional details are available in ArcGIS Online Blogs and the Esri Vector Basemaps Reference Document.Precise Tile RegistrationThe map uses the improved tiling scheme “WGS84 Geographic, Version 2” to ensure proper tile positioning at higher resolutions (neighborhood level and beyond). The new tiling scheme is much more precise than tiling schemes of the legacy basemaps Esri released years ago. We recommend that you start using this new basemap for any new web maps in WGS84 that you plan to author. Due to the number of differences between the old and new tiling schemes, some web clients will not be able to overlay tile layers in the old and new tiling schemes in one web map.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This ArcGIS Online hosted feature service displays perimeters from the National Incident Feature Service (NIFS) that meet ALL of the following criteria:
This layer represents CMIP6 future projections of the variation in monthly precipitation totals over the course of the year. This index is the ratio of the standard deviation of the monthly total precipitation to the mean monthly total precipitation (also known as the coefficient of variation) and is expressed as a percentage. The larger the percentage, the greater the variability of precipitation. In some regions the CV values exceed 100%. These regions, such as deserts, may have such little rainfall that any variation creates an extreme percentage. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: mmCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 BioclimateClimate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000
The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:
Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.
Wayback is a digital archive, providing users with access to the different versions of World Imagery created over time. Each layer in the archive represents a snapshot of the entire World Imagery map, as it existed on the date it was published. This Wayback layer is the July 21, 2022 version of World Imagery. See World Imagery (Wayback 2022-07-21) Metadata for detailed information about each image source in this layer.World Imagery provides one meter or better satellite and aerial imagery for much of the world, and lower resolution satellite imagery worldwide. As World Imagery is updated with more current imagery, new versions of the map are published. When and where updates occur, the previous imagery is replaced and is no longer visible. For many use cases, the new imagery is more desirable and typically preferred. Other times, however, the previous imagery may support use cases that the new imagery does not. In these cases, a user may need to access a previous version of World Imagery.Wayback currently provides access to all published versions of World Imagery, dating back to February 20, 2014. There is an ArcGIS Online item for every version which can be viewed in the Wayback Imagery group.
This dataset contains model-based place (incorporated and census designated places) estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia —at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2021 or 2020 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2023 release uses 2021 BRFSS data for 29 measures and 2020 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours) that the survey collects data on every other year. These data can be joined with the 2019 Census TIGER/Line place boundary file in a GIS system to produce maps for 36 measures at the place level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=2c3deb0c05a748b391ea8c9cf9903588
This layer represents CMIP6 future projections of temperature variation over an entire year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: deg CCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 BioclimateClimate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000
This web map is a subset of Modern Antique MapThis web map provides a customized vector layer for the world symbolized with a unique antique styled map, with a modern flair -- including the benefit of multi-scale mapping. This web map is built using the same data sources used for the World Topographic Map and other Esri basemaps. The comprehensive map data includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries. Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layer item referenced in this map.Customize this MapBecause this map contains a vector tile layer, you can customize the map to change its content and symbology. You are able to turn on and off layers, change symbols for layers, switch to alternate local language (in some areas), and refine the treatment of disputed boundaries. For details on how to customize this map, please refer to the Esri Vector Basemap Reference Document (v2) and vector basemap articles on the ArcGIS Online Blog.This map was designed and created by Cindy Prostak.
Important Note: This item is in mature support as of December 2024. See blog for more information.This web map presents a vector basemap of OpenStreetMap (OSM) data hosted by Esri. This version of the map is rendered in a style similar to the Esri Street Map (with Relief). It includes the World Hillshade layer. Created from the sunsetted Daylight map distribution, data updates supporting this layer are no longer available.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project. Precise Tile Registration: The web map uses the improved tiling scheme “WGS84 Geographic, Version 2” to ensure proper tile positioning at higher resolutions (neighborhood level and beyond). The new tiling scheme is much more precise than tiling schemes of the legacy basemaps Esri released years ago. We recommend that you start using this new basemap for any new web maps in WGS84 that you plan to author. Due to the number of differences between the old and new tiling schemes, some web clients will not be able to overlay tile layers in the old and new tiling schemes in one web map.
Maryland has 200+ higher education facilities located throughout the entire State. Maryland boasts a highly educated workforce with 300,000+ graduates from higher education institutions every year. Higher education opportunities range from two year, public and private institutions, four year, public and private institutions and regional education centers. Collectively, Maryland's higher education facilities offer every kind of educational experience, whether for the traditional college students or for students who have already begun a career and are working to learn new skills. Maryland is proud that nearly one-third of its residents 25 and older have a bachelor's degree or higher, ranking in the top 5 amongst all states. Maryland's economic diversity and educational vitality is what makes it one of the best states in the nation in which to live, learn, work and raise a family.This is a MD iMAP hosted service layer. Find more information at https://imap.maryland.gov.Feature Service Layer Link:https://geodata.md.gov/imap/rest/services/Education/MD_EducationFacilities/FeatureServer/3
This layer represents CMIP6 future projections of total precipitation during the three wettest months of the year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: mmCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 BioclimateClimate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000
Important Note: This item is in mature support as of December 2024. See blog for more information.This web map presents a vector basemap of OpenStreetMap (OSM) data hosted by Esri. This version of the map is rendered using OSM cartography. It includes the World Hillshade layer. Created from the sunsetted Daylight map distribution, data updates supporting this layer are no longer available.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project. Precise Tile Registration: The web map uses the improved tiling scheme “WGS84 Geographic, Version 2” to ensure proper tile positioning at higher resolutions (neighborhood level and beyond). The new tiling scheme is much more precise than tiling schemes of the legacy basemaps Esri released years ago. We recommend that you start using this new basemap for any new web maps in WGS84 that you plan to author. Due to the number of differences between the old and new tiling schemes, some web clients will not be able to overlay tile layers in the old and new tiling schemes in one web map.
This layer represents CMIP6 future projections of mean temperature during the three driest months of the year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: deg CCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 BioclimateClimate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000
This layer represents CMIP6 future projections of total precipitation during the three coldest months of the year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."
Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: mmCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 Bioclimate
Climate Scenarios
The CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.
SSP
Scenario
Estimated warming (2041–2060)
Estimated warming (2081–2100)
Very likely range in °C (2081–2100)
SSP2-4.5
intermediate GHG emissions: CO2 emissions around current levels until 2050, then falling but not reaching net zero by 2100
2.0 °C
2.7 °C
2.1 – 3.5
SSP3-7.0
high GHG emissions: CO2 emissions double by 2100
2.1 °C
3.6 °C
2.8 – 4.6
SSP5-8.5
very high GHG emissions: CO2 emissions triple by 20752.4 °C
4.4 °C
3.3 – 5.7
While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow.
Processing the Climate Data
WorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5.
Accessing the Multidimensional Information
The time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality Issues
Each model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.
Related Layers
Bioclimate 1 Annual Mean Temperature Bioclimate 2 Mean Diurnal Range Bioclimate 3 Isothermality Bioclimate 4 Temperature Seasonality Bioclimate 5 Max Temperature of Warmest Month Bioclimate 6 Min Temperature Of Coldest Month Bioclimate 7 Temperature Annual Range Bioclimate 8 Mean Temperature Of Wettest Quarter Bioclimate 9 Mean Temperature Of Driest Quarter Bioclimate 10 Mean Temperature Of Warmest Quarter Bioclimate 11 Mean Temperature Of Coldest Quarter Bioclimate 12 Annual Precipitation Bioclimate 13 Precipitation Of Wettest Month Bioclimate 14 Precipitation Of Driest Month Bioclimate 15 Precipitation Seasonality Bioclimate 16 Precipitation Of Wettest Quarter Bioclimate 17 Precipitation Of Driest Quarter Bioclimate 18 Precipitation Of Warmest Quarter Bioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000
This dataset contains model-based county-level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. Project was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2021 or 2020 data, Census Bureau 2021 or 2020 county population estimates, and American Community Survey (ACS) 2017–2021 or 2016–2020 estimates. The 2023 release uses 2021 BRFSS data for 29 measures and 2020 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours) that the survey collects data on every other year. These data can be joined with the census 2020 county boundary file in a GIS system to produce maps for 36 measures at the county level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=2c3deb0c05a748b391ea8c9cf9903588
This layer represents CMIP6 future projections of minimum temperature during the coldest month of the year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: deg CCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 BioclimateClimate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Learn state-of-the-art skills to build compelling, useful, and fun Web GIS apps easily, with no programming experience required.Building on the foundation of the previous three editions, Getting to Know Web GIS, fourth edition,features the latest advances in Esri’s entire Web GIS platform, from the cloud server side to the client side.Discover and apply what’s new in ArcGIS Online, ArcGIS Enterprise, Map Viewer, Esri StoryMaps, Web AppBuilder, ArcGIS Survey123, and more.Learn about recent Web GIS products such as ArcGIS Experience Builder, ArcGIS Indoors, and ArcGIS QuickCapture. Understand updates in mobile GIS such as ArcGIS Collector and AuGeo, and then build your own web apps.Further your knowledge and skills with detailed sections and chapters on ArcGIS Dashboards, ArcGIS Analytics for the Internet of Things, online spatial analysis, image services, 3D web scenes, ArcGIS API for JavaScript, and best practices in Web GIS.Each chapter is written for immediate productivity with a good balance of principles and hands-on exercises and includes:A conceptual discussion section to give you the big picture and principles,A detailed tutorial section with step-by-step instructions,A Q/A section to answer common questions,An assignment section to reinforce your comprehension, andA list of resources with more information.Ideal for classroom lab work and on-the-job training for GIS students, instructors, GIS analysts, managers, web developers, and other professionals, Getting to Know Web GIS, fourth edition, uses a holistic approach to systematically teach the breadth of the Esri Geospatial Cloud.AUDIENCEProfessional and scholarly. College/higher education. General/trade.AUTHOR BIOPinde Fu leads the ArcGIS Platform Engineering team at Esri Professional Services and teaches at universities including Harvard University Extension School. His specialties include web and mobile GIS technologies and applications in various industries. Several of his projects have won specialachievement awards. Fu is the lead author of Web GIS: Principles and Applications (Esri Press, 2010).Pub Date: Print: 7/21/2020 Digital: 6/16/2020 Format: Trade paperISBN: Print: 9781589485921 Digital: 9781589485938 Trim: 7.5 x 9 in.Price: Print: $94.99 USD Digital: $94.99 USD Pages: 490TABLE OF CONTENTSPrefaceForeword1 Get started with Web GIS2 Hosted feature layers and storytelling with GIS3 Web AppBuilder for ArcGIS and ArcGIS Experience Builder4 Mobile GIS5 Tile layers and on-premises Web GIS6 Spatial temporal data and real-time GIS7 3D web scenes8 Spatial analysis and geoprocessing9 Image service and online raster analysis10 Web GIS programming with ArcGIS API for JavaScriptPinde Fu | Interview with Esri Press | 2020-07-10 | 15:56 | Link.