This dataset contains model-based census tract level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the Census tract 2022 boundary file in a GIS system to produce maps for 40 measures at the census tract level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Harris County population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Harris County. The dataset can be utilized to understand the population distribution of Harris County by age. For example, using this dataset, we can identify the largest age group in Harris County.
Key observations
The largest age group in Harris County, GA was for the group of age 60 to 64 years years with a population of 2,690 (7.70%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Harris County, GA was the 85 years and over years with a population of 352 (1.01%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Harris County Population by Age. You can refer the same here
This dataset was created by Joe Martin
This dataset contains model-based place (incorporated and census designated places) estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia —at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2020 population estimates, and American Community Survey (ACS) 2018–2022 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the 2020 Census place boundary file in a GIS system to produce maps for 40 measures at the place level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7
How many households are in the U.S.?
In 2023, there were 131.43 million households in the United States. This is a significant increase from 1960, when there were 52.8 million households in the U.S.
What counts as a household?
According to the U.S. Census Bureau, a household is considered to be all persons living within one housing unit. This includes apartments, houses, or single rooms, and consists of both related and unrelated people living together. For example, two roommates who share a living space but are not related would be considered a household in the eyes of the Census. It should be noted that group living quarters, such as college dorms, are not counted as households in the Census.
Household changes
While the population of the United States has been increasing, the average size of households in the U.S. has decreased since 1960. In 1960, there was an average of 3.33 people per household, but in 2023, this figure had decreased to 2.51 people per household. Additionally, two person households make up the majority of American households, followed closely by single-person households.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Clark County population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Clark County. The dataset can be utilized to understand the population distribution of Clark County by age. For example, using this dataset, we can identify the largest age group in Clark County.
Key observations
The largest age group in Clark County, NV was for the group of age 30 to 34 years years with a population of 168,847 (7.45%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Clark County, NV was the 85 years and over years with a population of 30,802 (1.36%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Clark County Population by Age. You can refer the same here
This dataset contains model-based census tract estimates. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. The dataset includes estimates for 40 measures: 12 for health outcomes, 7 for preventive services use, 4 for chronic disease-related health risk behaviors, 7 for disabilities, 3 for health status, and 7 for health-related social needs. These estimates can be used to identify emerging health problems and to help develop and carry out effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2020 population data, and American Community Survey 2018–2022 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. More information about the methodology can be found at www.cdc.gov/places.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Plainfield population by age. The dataset can be utilized to understand the age distribution and demographics of Plainfield.
The dataset constitues the following three datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Hemet population by age. The dataset can be utilized to understand the age distribution and demographics of Hemet.
The dataset constitues the following three datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Island Areas: Share of Sales, Value of Shipments, or Revenue Accounted for by the 4, 8, 20, and 50 Largest Establishments for Puerto Rico: 2022.Table ID.ISLANDAREASIND2022.IA2200SIZE03.Survey/Program.Economic Census of Island Areas.Year.2022.Dataset.ECNIA Economic Census of Island Areas.Source.U.S. Census Bureau, 2022 Economic Census of Island Areas, Core Statistics.Release Date.2024-12-19.Release Schedule.The Economic Census occurs every five years, in years ending in 2 and 7.2022 Economic Census of Island Areas tables are released on a flow basis from June through December 2024.For more information about economic census planned data product releases, see 2022 Economic Census Release Schedule..Dataset Universe. The dataset universe consists of all establishments that are in operation for at least some part of 2022, are located in Puerto Rico, have paid employees, and are classified in one of eighteen in-scope sectors defined by the 2022 NAICS..Sponsor.U.S. Department of Commerce.Methodology.Data Items and Other Identifying Records.Number of establishmentsSales, value of shipments, or revenue ($1,000)Sales, value of shipments, or revenue of largest establishments as percent of total sales, value of shipments, or revenue (%)Herfindahl-Hirschman index for the 50 largest establishmentsRange indicating percent of total sales, value of shipments, or revenue imputedEach record includes a CONCENES code, which represents a specific concentration ratio category for establishments.The data are shown for concentration ratio ranges.Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the Economic Census of Island Areas are employer establishments. An establishment is generally a single physical location where business is conducted or where services or industrial operations are performed..Geography Coverage.The data are shown for employer establishments and firms that vary by industry:At the Territory level for Puerto RicoFor information about economic census geographies, including changes for 2022, see Geographies..Industry Coverage.The data are shown at the 2- through 4-digit 2022 NAICS code levels for selected economic census sectors and geographies.For information about NAICS, see Economic Census Code Lists..Sampling.The Economic Census of Island Areas is a complete enumeration of establishments located in the islands (i.e., all establishments on the sampling frame are included in the sample). Therefore, the accuracy of tabulations is not affected by sampling error..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504609, Disclosure Review Board (DRB) approval number: CBDRB-FY24-0044).The primary method of disclosure avoidance protection is noise infusion. Under this method, the quantitative data values such as sales or payroll for each establishment are perturbed prior to tabulation by applying a random noise multiplier (i.e., factor). Each establishment is assigned a single noise factor, which is applied to all its quantitative data value. Using this method, most published cell totals are perturbed by at most a few percentage points.To comply with disclosure avoidance guidelines, data rows with fewer than three contributing establishments are not presented. For more information on disclosure avoidance, see Methodology for the 2022 Economic Census- Island Areas..Technical Documentation/Methodology.For detailed information about the methods used to collect data and produce statistics, see Methodology for the 2022 Economic Census- Island Areas.For more information about survey questionnaires, Primary Business Activity/NAICS codes, and NAPCS codes, see Economic Census Technical Documentation..Weights.Because the Economic Census of Island Areas is a complete enumeration, there is no sample weighting..Table Information.FTP Download.https://www2.census.gov/programs-surveys/economic-census/data/2022/sector00.API Information.Economic census data are housed in the Census Bureau Application Programming Interface (API)..Symbols.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totalsN - Not available or not comparableS - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.X - Not applicableA - Relative standard error of 100% or morer - Reviseds - Relative standard error exceeds 40%For a complete list of symbols, see Economic Census Data ...
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
City map highlighting 2024 qualified census tracts (QCT) in Mesa. Low-Income Housing Tax Credit Qualified Census Tracts must have 50 percent of households with incomes below 60 percent of the Area Median Gross Income (AMGI) or have a poverty rate of 25 percent or more. Maps of Qualified Census Tracts are available at: https://huduser.gov/sadda/sadda_qct.html
The Government of Liberia and its Development Partners recognized agriculture as a pivotal sector in fostering economic growth, reducing poverty, and achieving food security. Since post-war, the Government in collaboration with development partners, has made substantial investments to develop and expand the agriculture sector. Over the years, policymakers and data users in the agriculture sector have experienced significant challenges in obtaining the requisite data needed to monitor and evaluate these interventions and make informed decisions on new interventions. To address these challenges, the Liberia Institute of Statistics and Geo-Information Services (LISGIS) and the Ministry of Agriculture (MoA) conducted several ad hoc agricultural surveys. While valuable, these surveys have often been limited in scope and unable to provide the comprehensive data needed for effective policymaking and planning. To support the sector more robustly, the government decided to undertake a comprehensive agricultural census. The Liberia Agriculture Census 2024, the second agricultural census in Liberia since 1971 and the first to be conducted digitally, aimed to collect structural and reliable data on various aspects of the agricultural sector.
The main objectives of the LAC-2024 was to: · Reduce the existing data gap in Liberia's agriculture sector. · Provide comprehensive data on the agriculture sector for policy formulation and evaluation of existing programs. · Enable LISGIS to establish an agriculture master sampling frame for the conduct of future agricultural surveys and research. · Identify the structural changes in the agriculture sector over time. · Provide information on crop, livestock, poultry, and aquaculture activities. · Determine the size, composition, practices and related characteristics of Liberia's agricultural holdings. · Generate disaggregated agriculture statistics. · Provide statistics for advocacy in Liberia's agriculture sector. · Identify agricultural practices and constraints at the community level.
To achieve these objectives, the LAC-2024 was designed to collect structural data at the household, non-household and community levels. The data collected at these three levels provide a wealth of information for understanding the state of agriculture in Liberia. This documentation provides a catalogue of information necessary for understanding how data was collected at the household level. The documentation also provides useful information for understanding the household anonymized dataset.
National coverage
Agricultural households
The universe for the Liberia Agriculture Census 2024 household level data collection encompasses: All households in Liberia having atleast one member engaged in agriculture activity during the 2022/2023 farming season.
Census/enumeration data [cen]
The Liberia Agriculture Census 2024 (LAC-2024) was a sampled census conducted in all 15 counties of Liberia. The sampling frame used for the LAC-2024 is based on the 2022 National Population and Housing Census (2022-NPHC), conducted by the LISGIS. The sample design for the census was a stratified cluster sampling with enumeration areas (EAs) as clusters and farming households as units of interest. In adequacy with budget availability, a large sample of 4,800 EAs was considered for the LAC-2024. These EAs had a total of 269,652 agricultural households in the frame. The sample was allocated in strata (districts, urban/rural) proportionally to the numbers of farming households computed in the frame. In total, about 78.8% of the sample was allocated to rural areas. The stratified sample of EAs was selected with a probability proportional to the number of farming households at EA level. A complete listing of all households (both agricultural and non-agricultural) was carried out in the selected EAs and detailed questions were addressed to all households that practiced agricultural activities during the 2022/2023 farming season. The results of the LAC-2024 are representative at the district level.
For more information on the LAC-2024 sampling methodology, see the methodology section of the Liberia Agriculture Census 2024 Household Report.
Computer Assisted Personal Interview [capi]
The LAC-2024 employed three questionnaires: the Household Questionnaire, the Community Questionnaire and the Non-Household Questionnaire. These three questionnaires were based on the 50x2030 Initiative standard model questionnaires. The Liberia Agriculture Census Technical Working Group (LAC-TWG), comprising technical staff from LISGIS,Ministry of Agriculture (MOA), National Fishery and Aquaculture Authority (NaFAA), Cooperative Development Agency (CDA) and the Ministry of Internal Affairs (MIA) worked with technicians from the 50x2030 Initiative to adapt the questionnaires to Liberia's context and realities. Suggestions and inputs were solicited from various stakeholders representing government ministries, commissions and agencies (MACs), nongovernmental and international organizations as well as accademic institutions involved with agriculture issues. All questionnaires were finalized in English. Some questions in the questionnaires were translated into simple Liberian English, for the purpose of easy administration. The household questionnaire include type of agricultural activities practice, household members characteristics, housing conditions, hired labor practice, agricultural parcels and plots characteristics, types of crops and methods of crop cultivation, inputs, tools and equipment use, type and number of livestock and poultry. The household questionnaire was administered to the household head or an adult member of the household who had vast knowledge of the household and its agricultural activities. The primary respondent (i.e., the household member that provided most of the information for the questionnaire or a given module, household member, or crop) sometimes varies across modules.
The data was edited using CSpro programs, version 7.7.3. The appropriate edit rules were established by programmers and subject matter specialists at LISGIS and MOA. In few cases, manual editing techniques were applied to recode responses generated from other specify options. The SPSS software was used for this purpose.
92.8%.
This layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
For financial year 2024, the East Indian state of Bihar received the highest budget allocation of 75.5 million Indian rupees for the agriculture census. This was followed by Uttar Pradesh with a value of around 57 million rupees during the same period.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Island Areas: Inventories by Stage of Fabrication by Manufacturing Industry for Puerto Rico and Metropolitan Areas: 2022.Table ID.ISLANDAREASIND2022.IA2200IND21.Survey/Program.Economic Census of Island Areas.Year.2022.Dataset.ECNIA Economic Census of Island Areas.Release Date.2024-12-19.Release Schedule.The Economic Census occurs every five years, in years ending in 2 and 7.2022 Economic Census of Island Areas tables are released on a flow basis from June through December 2024.For more information about economic census planned data product releases, see 2022 Economic Census Release Schedule..Dataset Universe. The dataset universe consists of all establishments that are in operation for at least some part of 2022, are located in Puerto Rico, have paid employees, and are classified in one of eighteen in-scope sectors defined by the 2022 NAICS..Sponsor.U.S. Department of Commerce.Methodology.Data Items and Other Identifying Records.Number of establishmentsTotal inventories, end of year ($1,000)Finished goods or minerals products, crude petroleum, and natural gas liquids inventories, end of year ($1,000)Work-in-process inventories, end of year ($1,000)Materials and/or supplies, parts, fuels, etc. inventories, end of year ($1,000)Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the Economic Census of Island Areas are employer establishments. An establishment is generally a single physical location where business is conducted or where services or industrial operations are performed..Geography Coverage.The data are shown for employer establishments and firms that vary by industry:At the Territory, Metropolitan and Micropolitan Statistical Area, and Combined Statistical Area level for Puerto RicoFor information about economic census geographies, including changes for 2022, see Economic Census: Economic Geographies..Industry Coverage.The data are shown for Puerto Rico at the 2- through 5-digit 2022 NAICS code levels for the manufacturing industry.For information about NAICS, see Economic Census Code Lists..Sampling.The Economic Census of Island Areas is a complete enumeration of establishments located in the islands (i.e., all establishments on the sampling frame are included in the sample). Therefore, the accuracy of tabulations is not affected by sampling error..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504609, Disclosure Review Board (DRB) approval number: CBDRB-FY24-0044).The primary method of disclosure avoidance protection is noise infusion. Under this method, the quantitative data values such as sales or payroll for each establishment are perturbed prior to tabulation by applying a random noise multiplier (i.e., factor). Each establishment is assigned a single noise factor, which is applied to all its quantitative data value. Using this method, most published cell totals are perturbed by at most a few percentage points.To comply with disclosure avoidance guidelines, data rows with fewer than three contributing establishments are not presented. For more information on disclosure avoidance, see Methodology for the 2022 Economic Census- Island Areas..Technical Documentation/Methodology.For detailed information about the methods used to collect data and produce statistics, see Methodology for the 2022 Economic Census- Island Areas.For more information about survey questionnaires, Primary Business Activity/NAICS codes, and NAPCS codes, see Economic Census Technical Documentation..Weights.Because the Economic Census of Island Areas is a complete enumeration, there is no sample weighting..Table Information.FTP Download.https://www2.census.gov/programs-surveys/economic-census/data/2022/sector00.API Information.Economic census data are housed in the Census Bureau Application Programming Interface (API)..Symbols.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totalsN - Not available or not comparableS - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.X - Not applicableA - Relative standard error of 100% or morer - Reviseds - Relative standard error exceeds 40%For a complete list of symbols, see Economic Census Data Dictionary..Data-Specific Notes.Data users who create their own estimates using data from this file should cite the U.S. Census Bureau as the source of the original data only.For more information about ...
Census Designated Places (CDPs) are the statistical counterparts of incorporated places and are delineated to provide data for settled concentrations of population that are identifiable by name but are not legally incorporated under the laws of the state in which they are located. The boundaries usually are defined in cooperation with local or tribal officials and generally updated prior to each decennial census. These boundaries, which usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity boundary, have no legal status, nor do these places have officials elected to serve traditional municipal functions. CDP boundaries may change from one decennial census to the next with changes in the settlement pattern; a CDP with the same name as in an earlier census does not necessarily have the same boundary. CDPs must be contained within a single state and may not extend into an incorporated place. There are no population size requirements for CDPs.Hawaii is the only state that has no incorporated places recognized by the Census Bureau. All places shown in decennial census data products for Hawaii are CDPs. By agreement with the State of Hawaii, the Census Bureau does not show data separately for the city of Honolulu, which is coextensive with Honolulu County. In Puerto Rico, which also does not have incorporated places, the Census Bureau recognizes only CDPs and refers to them as comunidades or zonas urbanas. Guam also has only CDPs.Download: https://www2.census.gov/geo/tiger/TGRGDB24/tlgdb_2024_a_us_substategeo.gdb.zip Layer: Census_Designated_PlaceMetadata: https://meta.geo.census.gov/data/existing/decennial/GEO/GPMB/TIGERline/Current_19115/series_tl_2023_place.shp.iso.xml
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Release Date: 2024-05-02.Release Schedule:.The data in this file come from the 2022 Annual Survey of School System Finances data files. For more information about the Annual Survey of School System Finances data, see About: Annual Survey of School System Finances...Key Table Information:.Payments to other school systems are excluded from this table. Expenditures for adult education, community services, and other nonelementary-secondary programs are also excluded. Enrollments used to calculate per pupil amounts represent fall memberships collected by the National Center for Education Statistics on the Common Core of Data (CCD) agency universe file - "Local Education Agency (School District) Universe Survey." ..Enrollments for state educational facilities, federal school systems, and charter schools whose charters are held by a nongovernmental entity have been excluded. Enrollments from the CCD agency universe file were subject to adjustment if the enrollments were inconsistent with the finances reported...See Appendix B in the state-level tables files for a description of state-specific reporting anomalies. ..Annual Survey of School System Finances statistics include the finances of charter schools whose charters are held directly by a government or a government agency. Charter schools whose charters are held by nongovernmental entities are deemed to be out of scope for the Annual Survey of School System Finances...Data Items and Other Identifying Records:.Total current spending per pupil.Current spending per pupil - All functions - Salaries and wages.Current spending per pupil - All functions - Employee benefits.Current spending per pupil - Instruction - Total.Current spending per pupil - Instruction - Salaries and wages.Current spending per pupil - Instruction - Employee benefits.Current spending per pupil - Support services - Total.Current spending per pupil - Support services - Pupil support.Current spending per pupil - Support services - Instructional staff support.Current spending per pupil - Support services - General administration.Current spending per pupil - Support services - School administration..For a complete list of Public Sector Survey data items and other identifying records, see Annual Public Sector Statistics API information webpage. For more detailed information, see Government Finance and Employment Classification Manual... .Geography Coverage:.The data are shown for education finance data include revenues, expenditures, debt, and assets of elementary and secondary public school systems..Statistics cover school systems in all states, and include the District of Columbia. For information about 2022 Annual Survey of School System Finances, see About: Annual Survey of School System Finances...Industry Coverage:.Not applicable...Footnotes:.Not applicable...FTP Download:.Download the entire table at: https://www2.census.gov/programs-surveys/school-finances/data/GS00SS05.zip..API Information:.For detailed description and more information for variables on the Public Sector API, see Public Sector: Annual and Census of Governments API Documentation...Methodology:.The Census Bureau has made arrangements with state government departments of education to use data from existing finance information collection systems where the data are compatible with this survey's categories. Every state department of education obtains information annually on a wide variety of financial data from elementary-secondary school systems by requiring reports or conducting surveys. The Census Bureau is able to gain access to this information through cooperative agreements with each state as summarized below:.. • Data compiled or reformatted by Census Bureau staff from state education agency electronic data files (17 states)... • Data reformatted by state education agency staff into survey categories before electronically transmitting data to the Census Bureau (33 states and DC)....A single office or database in the state departments of education did not always have all of the information needed for this survey. In these instances, other sources—most often different state offices—supplied information to supplement the basic data. The most common types of data needing supplementation were school lunch finances, indebtedness, cash and security holdings, and capital fund transactions...For detailed information about the methods used to collect and produce statistics, including sampling, questions, data collection and processing, editing, data quality, review, sampling error, nonsampling error, and more, see Annual Survey of School System Finances Technical Documentation...Symbols:.N - Not available.X - Not applicable.Z - Represents zero or rounds to zero.LEA - Local Education Agency..Source:.U.S. Census Bureau, 2022 Annual Survey of School System Finances.For information about the Annual Survey of School System Finances, see Annual Survey of School System Finances..Contact Information:.U.S. Census Bureau.For inquirie...
Less Developed Census Tracts are a part of DCA's tax credit incentives programO.C.G.A. § 48-7-40.1(b) requires that DCA also rank the state’s census tracts by December 31 of each year. The census tract detail is applicable to a 2021 tax year beginning on or after January 1, 2021, and includes “less developed” census tracts that are statistically similar to the bottom 71 (Tier 1) counties and are contiguous to at least nine other such tracts. To rank census tracts, DCA uses American Community Survey data available specifically for the less developed census tract designations as of December 31. These “less developed” areas are eligible for benefits similar to Tier 1 counties.Less Developed Census Tracts Information
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Imports - Generators, Transformers & Accessories (Census) in the United States decreased to 3331.03 USD Million in February from 3351.49 USD Million in January of 2024. This dataset includes a chart with historical data for the United States Imports of Generators, Transformers & Accessories.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Austin by race. It includes the population of Austin across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Austin across relevant racial categories.
Key observations
The percent distribution of Austin population by race (across all racial categories recognized by the U.S. Census Bureau): 63.22% are white, 7.87% are Black or African American, 0.79% are American Indian and Alaska Native, 8.37% are Asian, 0.05% are Native Hawaiian and other Pacific Islander, 8.22% are some other race and 11.47% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Austin Population by Race & Ethnicity. You can refer the same here
This dataset contains model-based census tract level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the Census tract 2022 boundary file in a GIS system to produce maps for 40 measures at the census tract level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7