Facebook
TwitterAfter entering Italy, the coronavirus (COVID-19) spread fast. The strict lockdown implemented by the government during the Spring 2020 helped to slow down the outbreak. However, in the following months the country had to face four new harsh waves of contagion. As of January 1, 2025, 198,638 deaths caused by COVID-19 were reported by the authorities, of which approximately 48.7 thousand in the region of Lombardy, 20.1 thousand in the region of Emilia-Romagna, and roughly 17.6 thousand in Veneto, the regions mostly hit. The total number of cases reported in the country reached over 26.9 million. The north of the country was mostly hit, and the region with the highest number of cases was Lombardy, which registered almost 4.4 million of them. The north-eastern region of Veneto counted about 2.9 million cases. Italy's death toll was one of the most tragic in the world. In the last months, however, the country saw the end to this terrible situation: as of November 2023, 85 percent of the total Italian population was fully vaccinated. For a global overview, visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.
Facebook
TwitterThis data was gathered as part of the data mining project for the General Assembly Data Science course. using the API from https://rapidapi.com/astsiatsko/api/coronavirus-monitor .
The Covid-19 is a contagious coronavirus that hailed from Wuhan, China. This new strain of the virus has strike fear in many countries as cities are quarantined and hospitals are overcrowded. This dataset will help us understand how Covid-19 in Italy.
On March 8, 2020 - Italy’s prime minister announced a sweeping coronavirus quarantine early Sunday, restricting the movements of about a quarter of the country’s population in a bid to limit contagions at the epicenter of Europe’s outbreak.
### High Light: - Spread to various overtime in Italy - Try to predict the spread of COVID-19 ahead of time to take preventive measures
https://www.livescience.com/why-italy-coronavirus-deaths-so-high.html
Facebook
TwitterBased on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Facebook
Twitterhttps://github.com/disease-sh/API/blob/master/LICENSEhttps://github.com/disease-sh/API/blob/master/LICENSE
In past 24 hours, Italy, Europe had N/A new cases, N/A deaths and N/A recoveries.
Facebook
TwitterThis repository contains datasets about the number of Italian Sars-CoV-2 confirmed cases and deaths disaggregated by age group and sex. The data is (automatically) extracted from pdf reports (like this) published by Istituto Superiore di Sanità (ISS) two times a week. A link to the most recent report can be found in this page under section "Documento esteso".
PDF reports are usually published on Tuesday and Friday and contains data updated to the 4 p.m. of the day day before their release.
I wrote a script that is runned periodically in order to automatically update this repository when a new report is published. The code is hosted in a separate repository.
For feedback and issues refers to the GitHub repository.
The data folder is structured as follows:
data
├── by-date
│ └── iccas_{date}.csv Dataset with cases/deaths updated to 4 p.m. of {date}
└── iccas_full.csv Dataset with data from all reports (by date)
The full dataset is obtained by concatenating all datasets in by-date and has an additional date column. If you use pandas, I suggest you to read this dataset using a multi-index on the first two columns:
python
import pandas as pd
df = pd.read_csv('iccas_full.csv', index_col=(0, 1)) # ('date', 'age_group')
NOTE: {date} is the date the data refers to, NOT the release date of the report it was extracted from: as written above, a report is usually released with a day of delay. For example, iccas_2020-03-19.csv contains data relative to 2020-03-19 which was extracted from the report published in 2020-03-20.
Each dataset in the by-date folder contains the same data you can find in "Table 1" of the corresponding ISS report. This table contains the number of confirmed cases, deaths and other derived information disaggregated by age group (0-9, 10-19, ..., 80-89, >=90) and sex.
WARNING: the sum of male and female cases is not equal to the total number of cases, since the sex of some cases is unknown. The same applies to deaths.
Below, {sex} can be male or female.
| Column | Description |
|---|---|
date | (Only in iccas_full.csv) Date the format YYYY-MM-DD; numbers are updated to 4 p.m of this date |
age_group | Values: "0-9", "10-19", ..., "80-89", ">=90" |
cases | Number of confirmed cases (both sexes + unknown-sex; active + closed) |
deaths | Number of deaths (both sexes + unknown-sex) |
{sex}_cases | Number of cases of sex {sex} |
{sex}_deaths | Number of cases of sex {sex} ended up in death |
cases_percentage | 100 * cases / cases_of_all_ages |
deaths_percentage | 100 * deaths / deaths_of_all_ages |
fatality_rate | 100 * deaths / cases |
{sex}_cases_percentage | 100 * {sex}_cases / (male_cases + female_cases) (cases of unknown sex excluded) |
{sex}_deaths_percentage | 100 * {sex}_deaths / (male_deaths + female_deaths) (cases of unknown sex excluded) |
{sex}_fatality_rate | 100 * {sex}_deaths / {sex}_cases |
All columns that can be computed from absolute counts of cases and deaths (bottom half of the table above) were all re-computed to increase precision.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Updated with cases as of April 6st, 1830 hrs
Check the completely interactive Uber-KeplerGL map of the cases as shown in the image below
Coronavirus Emergency: Nation-wide Quarantine
10th Match 2020, Italian Prime Minister Giuseppe Conte announced the extension of Italy's emergency coronavirus measures, which include travel restrictions and a ban on public gatherings, from 15 provinces to the entire nation. Italy is by far the most affected country outside China with thousands of cases and hundreds of deaths.
The Department of Civil Protection of Italy has taken actions to keep citizens well informed on the spread of the virus while the country is in lockdown. The department has released an interactive geographical dashboard to monitor the crisis [Desktop] [Mobile] and is updated every day at 18:30 after the department's press conference.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1396051%2Fefc24e6ff01f03289c957e1dd4790c3a%2Fmy_keplergl_map%20html.png?generation=1584807526886981&alt=media" alt="">
This Kaggle dataset is created only to make it easy for the community to draw further and useful insights from the data.
This inspiration to put this data on Kaggle is not only to draw raw statistics on cases and deaths but to mine more useful data that could be actively used right now. How?
Leveraging the longitude and latitude information of cases, visualizing them with the distinction between old and new cases along with the temporal information would give better insight into the spread of the virus in a much-magnified perspective. This could be very helpful for the locals to avoid going through those regions
This dataset currently provides national, provincial, and regional data of the CoVID-19 cases in Italy. Check out the script to used to convert the original json files and the started notebook in the kernels.
The time-series data starts from 24th February 2020 till the epidemic ends.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
WHO: COVID-2019: Number of Patients: Death: New: Italy data was reported at 0.000 Person in 24 Dec 2023. This stayed constant from the previous number of 0.000 Person for 23 Dec 2023. WHO: COVID-2019: Number of Patients: Death: New: Italy data is updated daily, averaging 60.000 Person from Jan 2020 (Median) to 24 Dec 2023, with 1426 observations. The data reached an all-time high of 993.000 Person in 04 Dec 2020 and a record low of 0.000 Person in 24 Dec 2023. WHO: COVID-2019: Number of Patients: Death: New: Italy data remains active status in CEIC and is reported by World Health Organization. The data is categorized under High Frequency Database’s Disease Outbreaks – Table WHO.D002: World Health Organization: Coronavirus Disease 2019 (COVID-2019): by Country and Region (Discontinued). Negative data reflects the number of retrospective adjustments made by national authorities due to reconciliation exercises, and consequently deducted to the corresponding “To-Date” series.
Facebook
TwitterAs of January 1, 2025, Rome (Lazio) was the Italian province which registered the highest number of coronavirus (COVID-19) cases in the country. Milan (Lombardy) came second in this ranking, while Naples (Campania) and Turin (Piedmont) followed. These four areas are also the four most populated provinces in Italy. The region of Lombardy was the mostly hit by the spread of the virus, recording almost one sixth of all coronavirus cases in the country. The provinces of Milan and Brescia accounted for a large part of this figure. For a global overview, visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.
So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.
Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.
Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.
2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC
This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.
The data is available from 22 Jan, 2020.
Here’s a polished version suitable for a professional Kaggle dataset description:
This dataset contains time-series and case-level records of the COVID-19 pandemic. The primary file is covid_19_data.csv, with supporting files for earlier records and individual-level line list data.
This is the primary dataset and contains aggregated COVID-19 statistics by location and date.
This file contains earlier COVID-19 records. It is no longer updated and is provided only for historical reference. For current analysis, please use covid_19_data.csv.
This file provides individual-level case information, obtained from an open data source. It includes patient demographics, travel history, and case outcomes.
Another individual-level case dataset, also obtained from public sources, with detailed patient-level information useful for micro-level epidemiological analysis.
✅ Use covid_19_data.csv for up-to-date aggregated global trends.
✅ Use the line list datasets for detailed, individual-level case analysis.
If you are interested in knowing country level data, please refer to the following Kaggle datasets:
India - https://www.kaggle.com/sudalairajkumar/covid19-in-india
South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset
Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy
Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil
USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa
Switzerland - https://www.kaggle.com/daenuprobst/covid19-cases-switzerland
Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases
Johns Hopkins University for making the data available for educational and academic research purposes
MoBS lab - https://www.mobs-lab.org/2019ncov.html
World Health Organization (WHO): https://www.who.int/
DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia.
BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/
National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm
Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html
Macau Government: https://www.ssm.gov.mo/portal/
Taiwan CDC: https://sites.google....
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This file contains data on cases and deaths by the new coronavirus in China and the first wave in Italy, collected since May 13. Due to the high amount of contaminated and dead launched in February 13th and April 17th, in China, we redistributed the data, maintaining the original shape of the curve. These data were used to build the epidemiological curves of the countries, aiming to enable the analysis of health management.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Italy was the first European country to be significantly impacted by the COVID-19 pandemic. The lack of similar previous experiences and the initial uncertainty regarding the new virus resulted in an unpredictable health crisis with 243,506 total confirmed cases and 34,997 deaths between February and July 2020. Despite the panorama of precariousness and the impelling calamity, the country successfully managed many aspects of the early stages of the health and socio-economic crisis. Nevertheless, many disparities can be identified at the regional level. The study aims to determine which aspects of regional management were considered more important by the citizens regarding economic and health criteria. A survey was designed to gather responses from the population on the Italian regions’ response and provide a ranking of the regions. The 29-item online survey was provided to 352 individuals, and the collected data were analyzed using the Analytic Hierarchy Process methodology. The results show a general agreement in considering of greater relevance the healthcare policies rather than the economic countermeasures adopted by regional governments. Our analysis associated a weight of 64% to the healthcare criteria compared to the economic criteria with a weight of 36%. In addition to the results obtained from the Analytic Hierarchy Process, the sample’s composition was analyzed to provide an overall assessment of the Italian regions. To do so, we collected objective data for each region and multiplied them by the overall weight obtained for each sub-criteria. Looking at the propensity to vaccination or the belief in a relation between COVID-19 and 5G according to age and educational qualification helps understand how public opinion is structured according to cultural and anthropological differences.
Facebook
TwitterAs of January 13, 2023, Bulgaria had the highest rate of COVID-19 deaths among its population in Europe at 548.6 deaths per 100,000 population. Hungary had recorded 496.4 deaths from COVID-19 per 100,000. Furthermore, Russia had the highest number of confirmed COVID-19 deaths in Europe, at over 394 thousand.
Number of cases in Europe During the same period, across the whole of Europe, there have been over 270 million confirmed cases of COVID-19. France has been Europe's worst affected country with around 38.3 million cases, this translates to an incidence rate of approximately 58,945 cases per 100,000 population. Germany and Italy had approximately 37.6 million and 25.3 million cases respectively.
Current situation In March 2023, the rate of cases in Austria over the last seven days was 224 per 100,000 which was the highest in Europe. Luxembourg and Slovenia both followed with seven day rates of infections at 122 and 108 respectively.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team, except for aggregation of individual case count data into daily counts when that was the best data available for a disease and location. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretability. We also formatted the data into a standard data format. All geographic locations at the country and admin1 level have been represented at the same geographic level as in the data source, provided an ISO code or codes could be identified, unless the data source specifies that the location is listed at an inaccurate geographical level. For more information about decisions made by the curation team, recommended data processing steps, and the data sources used, please see the README that is included in the dataset download ZIP file.
Facebook
TwitterThis is that Dataset of covid-19 of Total deaths and Total Cases in 11 countries (Australia, United States, Indonesia, Pakistan, Bangladesh, Russia, United Kingdom, South Africa, Brazil, Italy and India) for comparison that how covid-19 impact these countries from 1st March 2020 to 1st March 2022, Monthly wise.
Data taken from WHO Website.
Data is based on accumulation means the cases of previous month are add to the new month and in the last row of Dataset contain the Total of all.
Facebook
TwitterOn March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.-- Esri COVID-19 Trend Report for 3-9-2023 --0 Countries have Emergent trend with more than 10 days of cases: (name : # of active cases) 41 Countries have Spreading trend with over 21 days in new cases curve tail: (name : # of active cases)Monaco : 13, Andorra : 25, Marshall Islands : 52, Kyrgyzstan : 79, Cuba : 82, Saint Lucia : 127, Cote d'Ivoire : 148, Albania : 155, Bosnia and Herzegovina : 172, Iceland : 196, Mali : 198, Suriname : 246, Botswana : 247, Barbados : 274, Dominican Republic : 304, Malta : 306, Venezuela : 334, Micronesia : 346, Uzbekistan : 356, Afghanistan : 371, Jamaica : 390, Latvia : 402, Mozambique : 406, Kosovo : 412, Azerbaijan : 427, Tunisia : 528, Armenia : 594, Kuwait : 716, Thailand : 746, Norway : 768, Croatia : 847, Honduras : 1002, Zimbabwe : 1067, Saudi Arabia : 1098, Bulgaria : 1148, Zambia : 1166, Panama : 1300, Uruguay : 1483, Kazakhstan : 1671, Paraguay : 2080, Ecuador : 53320 Countries may have Spreading trend with under 21 days in new cases curve tail: (name : # of active cases)61 Countries have Epidemic trend with over 21 days in new cases curve tail: (name : # of active cases)Liechtenstein : 48, San Marino : 111, Mauritius : 742, Estonia : 761, Trinidad and Tobago : 1296, Montenegro : 1486, Luxembourg : 1540, Qatar : 1541, Philippines : 1915, Ireland : 1946, Brunei : 2010, United Arab Emirates : 2013, Denmark : 2111, Sweden : 2149, Finland : 2154, Hungary : 2169, Lebanon : 2208, Bolivia : 2838, Colombia : 3250, Switzerland : 3321, Peru : 3328, Slovakia : 3556, Malaysia : 3608, Indonesia : 3793, Portugal : 4049, Cyprus : 4279, Argentina : 5050, Iran : 5135, Lithuania : 5323, Guatemala : 5516, Slovenia : 5689, South Africa : 6604, Georgia : 7938, Moldova : 8082, Israel : 8746, Bahrain : 8932, Netherlands : 9710, Romania : 12375, Costa Rica : 12625, Singapore : 13816, Serbia : 14093, Czechia : 14897, Spain : 17399, Ukraine : 19568, Canada : 24913, New Zealand : 25136, Belgium : 30599, Poland : 38894, Chile : 41055, Australia : 50192, Mexico : 65453, United Kingdom : 65697, France : 68318, Italy : 70391, Austria : 90483, Brazil : 134279, Korea - South : 209145, Russia : 214935, Germany : 257248, Japan : 361884, US : 6440500 Countries may have Epidemic trend with under 21 days in new cases curve tail: (name : # of active cases) 54 Countries have Controlled trend: (name : # of active cases)Palau : 3, Saint Kitts and Nevis : 4, Guinea-Bissau : 7, Cabo Verde : 8, Mongolia : 8, Benin : 9, Maldives : 10, Comoros : 10, Gambia : 12, Bhutan : 14, Cambodia : 14, Syria : 14, Seychelles : 15, Senegal : 16, Libya : 16, Laos : 17, Sri Lanka : 19, Congo (Brazzaville) : 19, Tonga : 21, Liberia : 24, Chad : 25, Fiji : 26, Nepal : 27, Togo : 30, Nicaragua : 32, Madagascar : 37, Sudan : 38, Papua New Guinea : 38, Belize : 59, Egypt : 60, Algeria : 64, Burma : 65, Ghana : 72, Haiti : 74, Eswatini : 75, Guyana : 79, Rwanda : 83, Uganda : 88, Kenya : 92, Burundi : 94, Angola : 98, Congo (Kinshasa) : 125, Morocco : 125, Bangladesh : 127, Tanzania : 128, Nigeria : 135, Malawi : 148, Ethiopia : 248, Vietnam : 269, Namibia : 422, Cameroon : 462, Pakistan : 660, India : 4290 41 Countries have End Stage trend: (name : # of active cases)Sao Tome and Principe : 1, Saint Vincent and the Grenadines : 2, Somalia : 2, Timor-Leste : 2, Kiribati : 8, Mauritania : 12, Oman : 14, Equatorial Guinea : 20, Guinea : 28, Burkina Faso : 32, North Macedonia : 351, Nauru : 479, Samoa : 554, China : 2897, Taiwan* : 249634 -- SPIKING OF NEW CASE COUNTS --20 countries are currently experiencing spikes in new confirmed cases:Armenia, Barbados, Belgium, Brunei, Chile, Costa Rica, Georgia, India, Indonesia, Ireland, Israel, Kuwait, Luxembourg, Malaysia, Mauritius, Portugal, Sweden, Ukraine, United Kingdom, Uzbekistan 20 countries experienced a spike in new confirmed cases 3 to 5 days ago: Argentina, Bulgaria, Croatia, Czechia, Denmark, Estonia, France, Korea - South, Lithuania, Mozambique, New Zealand, Panama, Poland, Qatar, Romania, Slovakia, Slovenia, Switzerland, Trinidad and Tobago, United Arab Emirates 47 countries experienced a spike in new confirmed cases 5 to 14 days ago: Australia, Austria, Bahrain, Bolivia, Brazil, Canada, Colombia, Congo (Kinshasa), Cyprus, Dominican Republic, Ecuador, Finland, Germany, Guatemala, Honduras, Hungary, Iran, Italy, Jamaica, Japan, Kazakhstan, Lebanon, Malta, Mexico, Micronesia, Moldova, Montenegro, Netherlands, Nigeria, Pakistan, Paraguay, Peru, Philippines, Russia, Saint Lucia, Saudi Arabia, Serbia, Singapore, South Africa, Spain, Suriname, Thailand, Tunisia, US, Uruguay, Zambia, Zimbabwe 194 countries experienced a spike in new confirmed cases over 14 days ago: Afghanistan, Albania, Algeria, Andorra, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burma, Burundi, Cabo Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Comoros, Congo (Brazzaville), Congo (Kinshasa), Costa Rica, Cote d'Ivoire, Croatia, Cuba, Cyprus, Czechia, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kiribati, Korea - South, Kosovo, Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Lesotho, Liberia, Libya, Liechtenstein, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Marshall Islands, Mauritania, Mauritius, Mexico, Micronesia, Moldova, Monaco, Mongolia, Montenegro, Morocco, Mozambique, Namibia, Nauru, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, North Macedonia, Norway, Oman, Pakistan, Palau, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Samoa, San Marino, Sao Tome and Principe, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovakia, Slovenia, Solomon Islands, Somalia, South Africa, South Sudan, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Taiwan*, Tajikistan, Tanzania, Thailand, Timor-Leste, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Tuvalu, US, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam, West Bank and Gaza, Yemen, Zambia, Zimbabwe Strongest spike in past two days was in US at 64,861 new cases.Strongest spike in past five days was in US at 64,861 new cases.Strongest spike in outbreak was 424 days ago in US at 1,354,505 new cases. Global Total Confirmed COVID-19 Case Rate of 8620.91 per 100,000Global Active Confirmed COVID-19 Case Rate of 37.24 per 100,000Global COVID-19 Mortality Rate of 87.69 per 100,000 21 countries with over 200 per 100,000 active cases.5 countries with over 500 per 100,000 active cases.3 countries with over 1,000 per 100,000 active cases.1 country with over 2,000 per 100,000 active cases.Nauru is worst at 4,354.54 per 100,000.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Italy was the first European country to be significantly impacted by the COVID-19 pandemic. The lack of similar previous experiences and the initial uncertainty regarding the new virus resulted in an unpredictable health crisis with 243,506 total confirmed cases and 34,997 deaths between February and July 2020. Despite the panorama of precariousness and the impelling calamity, the country successfully managed many aspects of the early stages of the health and socio-economic crisis. Nevertheless, many disparities can be identified at the regional level. The study aims to determine which aspects of regional management were considered more important by the citizens regarding economic and health criteria. A survey was designed to gather responses from the population on the Italian regions’ response and provide a ranking of the regions. The 29-item online survey was provided to 352 individuals, and the collected data were analyzed using the Analytic Hierarchy Process methodology. The results show a general agreement in considering of greater relevance the healthcare policies rather than the economic countermeasures adopted by regional governments. Our analysis associated a weight of 64% to the healthcare criteria compared to the economic criteria with a weight of 36%. In addition to the results obtained from the Analytic Hierarchy Process, the sample’s composition was analyzed to provide an overall assessment of the Italian regions. To do so, we collected objective data for each region and multiplied them by the overall weight obtained for each sub-criteria. Looking at the propensity to vaccination or the belief in a relation between COVID-19 and 5G according to age and educational qualification helps understand how public opinion is structured according to cultural and anthropological differences.
Facebook
TwitterCOVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
A word on the flaws of numbers like this
People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.
Facebook
TwitterThe novel coronavirus has taken the world by storm . Italy alone has doubled the no of cases in the last week only . The dataset is aimed to track #no of confirmed cases ,deaths and recovery per day
The data was acquired from github page of John Hopkins university.
Update: As of 23rd March data , recovery cases are not getting updated . Confirmed cases and deaths remain unaffected . Will update on recovery cases in some time
Update: As of 25th March , recovery cases are getting updated . There could possibly some issues as source data is regularly changing as per blog https://github.com/CSSEGISandData/COVID-19/issues/1250
The data will help form interesting insights , trends if any for number of confirmed ,deaths and recovery cases . The data will be updated daily
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Different modeling approaches can be used to calculate excess deaths for the COVID-19 pandemic period. We compared 6 calculations of excess deaths (4 previously published and two new ones that we performed with and without age-adjustment) for 2020-2021. With each approach, we calculated excess deaths metrics and the ratio R of excess deaths over recorded COVID-19 deaths. The main analysis focused on 33 high-income countries with weekly deaths in the Human Mortality Database (HMD at mortality.org) and reliable death registration. Secondary analyses compared calculations for other countries, whenever available. Across the 33 high-income countries, excess deaths were 2.0-2.8 million without age-adjustment, and 1.6-2.1 million with age-adjustment with large differences across countries. In our analyses after age-adjustment, 8 of 33 countries had no overall excess deaths; there was a death deficit in children; and 0.478 million (29.7%) of the excess deaths were in people <65 years old. In countries like France, Germany, Italy, and Spain excess death estimates differed 2 to 4-fold between highest and lowest figures. The R values’ range exceeded 0.3 in all 33 countries. In 16 of 33 countries, the range of R exceeded 1. In 25 of 33 countries some calculations suggest R>1 (excess deaths exceeding COVID-19 deaths) while others suggest R<1 (excess deaths smaller than COVID-19 deaths). Inferred data from 4 evaluations for 42 countries and from 3 evaluations for another 98 countries are very tenuous Estimates of excess deaths are analysis-dependent and age-adjustment is important to consider. Excess deaths may be lower than previously calculated.
Facebook
TwitterThis record contains raw data related to article “Quantitative chest CT analysis in COVID-19 to predict the need for oxygenation support and intubation"
Objective: Lombardy (Italy) was the epicentre of the COVID-19 pandemic in March 2020. The healthcare system suffered from a shortage of ICU beds and oxygenation support devices. In our Institution, most patients received chest CT at admission, only interpreted visually. Given the proven value of quantitative CT analysis (QCT) in the setting of ARDS, we tested QCT as an outcome predictor for COVID-19.
Methods: We performed a single-centre retrospective study on COVID-19 patients hospitalised from January 25, 2020, to April 28, 2020, who received CT at admission prompted by respiratory symptoms such as dyspnea or desaturation. QCT was performed using a semi-automated method (3D Slicer). Lungs were divided by Hounsfield unit intervals. Compromised lung (%CL) volume was the sum of poorly and non-aerated volumes (- 500, 100 HU). We collected patient's clinical data including oxygenation support throughout hospitalisation.
Results: Two hundred twenty-two patients (163 males, median age 66, IQR 54-6) were included; 75% received oxygenation support (20% intubation rate). Compromised lung volume was the most accurate outcome predictor (logistic regression, p < 0.001). %CL values in the 6-23% range increased risk of oxygenation support; values above 23% were at risk for intubation. %CL showed a negative correlation with PaO2/FiO2 ratio (p < 0.001) and was a risk factor for in-hospital mortality (p < 0.001).
Conclusions: QCT provides new metrics of COVID-19. The compromised lung volume is accurate in predicting the need for oxygenation support and intubation and is a significant risk factor for in-hospital death. QCT may serve as a tool for the triaging process of COVID-19.
Key points: • Quantitative computer-aided analysis of chest CT (QCT) provides new metrics of COVID-19. • The compromised lung volume measured in the - 500, 100 HU interval predicts oxygenation support and intubation and is a risk factor for in-hospital death. • Compromised lung values in the 6-23% range prompt oxygenation therapy; values above 23% increase the need for intubation.
Facebook
TwitterAfter entering Italy, the coronavirus (COVID-19) spread fast. The strict lockdown implemented by the government during the Spring 2020 helped to slow down the outbreak. However, in the following months the country had to face four new harsh waves of contagion. As of January 1, 2025, 198,638 deaths caused by COVID-19 were reported by the authorities, of which approximately 48.7 thousand in the region of Lombardy, 20.1 thousand in the region of Emilia-Romagna, and roughly 17.6 thousand in Veneto, the regions mostly hit. The total number of cases reported in the country reached over 26.9 million. The north of the country was mostly hit, and the region with the highest number of cases was Lombardy, which registered almost 4.4 million of them. The north-eastern region of Veneto counted about 2.9 million cases. Italy's death toll was one of the most tragic in the world. In the last months, however, the country saw the end to this terrible situation: as of November 2023, 85 percent of the total Italian population was fully vaccinated. For a global overview, visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.