2 datasets found
  1. P

    ChestX-ray14 Dataset

    • paperswithcode.com
    Updated Feb 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiaosong Wang; Yifan Peng; Le Lu; Zhiyong Lu; Mohammadhadi Bagheri; Ronald M. Summers (2021). ChestX-ray14 Dataset [Dataset]. https://paperswithcode.com/dataset/chestx-ray14
    Explore at:
    Dataset updated
    Feb 19, 2021
    Authors
    Xiaosong Wang; Yifan Peng; Le Lu; Zhiyong Lu; Mohammadhadi Bagheri; Ronald M. Summers
    Description

    ChestX-ray14 is a medical imaging dataset which comprises 112,120 frontal-view X-ray images of 30,805 (collected from the year of 1992 to 2015) unique patients with the text-mined fourteen common disease labels, mined from the text radiological reports via NLP techniques. It expands on ChestX-ray8 by adding six additional thorax diseases: Edema, Emphysema, Fibrosis, Pleural Thickening and Hernia.

  2. P

    SMR IU X-Ray Dataset

    • paperswithcode.com
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sujoy Nath; Arkaprabha Basu; Kushal Bose; Swagatam Das (2025). SMR IU X-Ray Dataset [Dataset]. https://paperswithcode.com/dataset/smr-iu-x-ray
    Explore at:
    Dataset updated
    Apr 10, 2025
    Authors
    Sujoy Nath; Arkaprabha Basu; Kushal Bose; Swagatam Das
    Description

    This paper introduces CPIR-MR (Chained Prompting for Improved Readability of Medical Reports), a method designed to simplify complex chest X-ray reports for better patient understanding. The authors extend the IU X-Ray dataset with Simplified Medical Reports (SMRs) generated via chained prompting and propose a multi-modal text decoder (MTD) that integrates BLIP embeddings with classification outputs to generate Simplified Medical Explanations (SMEs).

    Key highlights:
    - Uses few-shot and Chain-of-Thought (CoT) prompting for generating structured, readable outputs.
    - Maintains medical accuracy while improving readability and sentiment consistency.
    - Introduces CPMK-E, a chained prompting system for keyword extraction and evaluation using Gemini 1.5 Flash.
    - Shows strong performance in text complexity reduction and semantic similarity preservation.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Xiaosong Wang; Yifan Peng; Le Lu; Zhiyong Lu; Mohammadhadi Bagheri; Ronald M. Summers (2021). ChestX-ray14 Dataset [Dataset]. https://paperswithcode.com/dataset/chestx-ray14

ChestX-ray14 Dataset

Explore at:
8 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 19, 2021
Authors
Xiaosong Wang; Yifan Peng; Le Lu; Zhiyong Lu; Mohammadhadi Bagheri; Ronald M. Summers
Description

ChestX-ray14 is a medical imaging dataset which comprises 112,120 frontal-view X-ray images of 30,805 (collected from the year of 1992 to 2015) unique patients with the text-mined fourteen common disease labels, mined from the text radiological reports via NLP techniques. It expands on ChestX-ray8 by adding six additional thorax diseases: Edema, Emphysema, Fibrosis, Pleural Thickening and Hernia.

Search
Clear search
Close search
Google apps
Main menu