23 datasets found
  1. world_population

    • kaggle.com
    zip
    Updated Feb 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    farzam ajili (2023). world_population [Dataset]. https://www.kaggle.com/datasets/farzamajili/world-population
    Explore at:
    zip(16061 bytes)Available download formats
    Dataset updated
    Feb 8, 2023
    Authors
    farzam ajili
    Area covered
    World
    Description

    Context The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion in 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

    China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.

    The following 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.

    Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.

    In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.

    This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growing more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Content In this Dataset, we have Historical Population data for every Country/Territory in the world by different parameters like Area Size of the Country/Territory, Name of the Continent, Name of the Capital, Density, Population Growth Rate, Ranking based on Population, World Population Percentage, etc.

  2. Top 6 Economies in the world by GDP

    • kaggle.com
    zip
    Updated Aug 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charan Chandrasekaran (2022). Top 6 Economies in the world by GDP [Dataset]. https://www.kaggle.com/datasets/charanchandrasekaran/top-6-economies-in-the-world-by-gdp/code
    Explore at:
    zip(21659 bytes)Available download formats
    Dataset updated
    Aug 26, 2022
    Authors
    Charan Chandrasekaran
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Area covered
    World
    Description

    CONTENT

    This dataset contains data on key indicators of world's top 6 Economies (by GDP) which includes USA, China, Japan, Germany, United Kingdom, India between the time interval of 30 years from 1990 to 2020. Data scraped from World Bank Data website and processed using Python Pandas library. This dataset could be used to do Time Series Analysis and Forecasting.

    Code notebook:

    https://deepnote.com/workspace/charan-chandrasekaran-9b7f-9e1375d3-f150-44ca-a9fb-feb08a1e8585/project/Data-extraction-from-World-bank-data-on-Top-6-Economies-2cdf8112-d412-4044-a58e-5e464804e9b6

    INDICATORS

    1. GDP (current US$)
    2. GDP, PPP (current international $)
    3. GDP per capita (current US$)
    4. GDP growth (annual %)
    5. Imports of goods and services (% of GDP)
    6. Exports of goods and services (% of GDP)
    7. Central government debt, total (% of GDP)
    8. Total reserves (includes gold, current US$)
    9. Unemployment, total (% of total labor force) (modelled ILO estimate)
    10. Inflation, consumer prices (annual %)
    11. Personal remittances, received (% of GDP)
    12. Population, total
    13. Population growth (annual %)
    14. Life expectancy at birth, total (years)
    15. Poverty headcount ratio at $1.90 a day (2011 PPP) (% of population)

    SOURCE

    The World Bank : https://data.worldbank.org/country

  3. k

    International Macroeconomic Dataset (2015 Base)

    • datasource.kapsarc.org
    Updated Oct 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). International Macroeconomic Dataset (2015 Base) [Dataset]. https://datasource.kapsarc.org/explore/dataset/international-macroeconomic-data-set-2015/
    Explore at:
    Dataset updated
    Oct 26, 2025
    Description

    TThe ERS International Macroeconomic Data Set provides historical and projected data for 181 countries that account for more than 99 percent of the world economy. These data and projections are assembled explicitly to serve as underlying assumptions for the annual USDA agricultural supply and demand projections, which provide a 10-year outlook on U.S. and global agriculture. The macroeconomic projections describe the long-term, 10-year scenario that is used as a benchmark for analyzing the impacts of alternative scenarios and macroeconomic shocks.

    Explore the International Macroeconomic Data Set 2015 for annual growth rates, consumer price indices, real GDP per capita, exchange rates, and more. Get detailed projections and forecasts for countries worldwide.

    Annual growth rates, Consumer price indices (CPI), Real GDP per capita, Real exchange rates, Population, GDP deflator, Real gross domestic product (GDP), Real GDP shares, GDP, projections, Forecast, Real Estate, Per capita, Deflator, share, Exchange Rates, CPI

    Afghanistan, Albania, Algeria, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burundi, Côte d'Ivoire, Cabo Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Congo, Costa Rica, Croatia, Cuba, Cyprus, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Lesotho, Liberia, Libya, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Mauritania, Mauritius, Mexico, Moldova, Mongolia, Morocco, Mozambique, Myanmar, Namibia, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway, Oman, Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Samoa, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovakia, Slovenia, Solomon Islands, South Africa, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Tajikistan, Tanzania, Thailand, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam, Yemen, Zambia, Zimbabwe, WORLD Follow data.kapsarc.org for timely data to advance energy economics research. Notes:

    Developed countries/1 Australia, New Zealand, Japan, Other Western Europe, European Union 27, North America

    Developed countries less USA/2 Australia, New Zealand, Japan, Other Western Europe, European Union 27, Canada

    Developing countries/3 Africa, Middle East, Other Oceania, Asia less Japan, Latin America;

    Low-income developing countries/4 Haiti, Afghanistan, Nepal, Benin, Burkina Faso, Burundi, Central African Republic, Chad, Democratic Republic of Congo, Eritrea, Ethiopia, Gambia, Guinea, Guinea-Bissau, Liberia, Madagascar, Malawi, Mali, Mozambique, Niger, Rwanda, Senegal, Sierra Leone, Somalia, Tanzania, Togo, Uganda, Zimbabwe;

    Emerging markets/5 Mexico, Brazil, Chile, Czech Republic, Hungary, Poland, Slovakia, Russia, China, India, Korea, Taiwan, Indonesia, Malaysia, Philippines, Thailand, Vietnam, Singapore

    BRIICs/5 Brazil, Russia, India, Indonesia, China; Former Centrally Planned Economies

    Former centrally planned economies/7 Cyprus, Malta, Recently acceded countries, Other Central Europe, Former Soviet Union

    USMCA/8 Canada, Mexico, United States

    Europe and Central Asia/9 Europe, Former Soviet Union

    Middle East and North Africa/10 Middle East and North Africa

    Other Southeast Asia outlook/11 Malaysia, Philippines, Thailand, Vietnam

    Other South America outlook/12 Chile, Colombia, Peru, Bolivia, Paraguay, Uruguay

    Indicator Source

    Real gross domestic product (GDP) World Bank World Development Indicators, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service all converted to a 2015 base year.

    Real GDP per capita U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, GDP table and Population table.

    GDP deflator World Bank World Development Indicators, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service, all converted to a 2015 base year.

    Real GDP shares U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, GDP table.

    Real exchange rates U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, CPI table, and Nominal XR and Trade Weights tables developed by the Economic Research Service.

    Consumer price indices (CPI) International Financial Statistics International Monetary Fund, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service, all converted to a 2015 base year.

    Population Department of Commerce, Bureau of the Census, U.S. Department of Agriculture, Economic Research Service, International Data Base.

  4. World Population Live Dataset 2022

    • kaggle.com
    zip
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aman Chauhan (2022). World Population Live Dataset 2022 [Dataset]. https://www.kaggle.com/datasets/whenamancodes/world-population-live-dataset/code
    Explore at:
    zip(10169 bytes)Available download formats
    Dataset updated
    Sep 10, 2022
    Authors
    Aman Chauhan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion from 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

    China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.

    The next 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.

    Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.

    In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.

    This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growth more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by the year 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Global life expectancy has also improved in recent years, increasing the overall population life expectancy at birth to just over 70 years of age. The projected global life expectancy is only expected to continue to improve - reaching nearly 77 years of age by the year 2050. Significant factors impacting the data on life expectancy include the projections of the ability to reduce AIDS/HIV impact, as well as reducing the rates of infectious and non-communicable diseases.

    Population aging has a massive impact on the ability of the population to maintain what is called a support ratio. One key finding from 2017 is that the majority of the world is going to face considerable growth in the 60 plus age bracket. This will put enormous strain on the younger age groups as the elderly population is becoming so vast without the number of births to maintain a healthy support ratio.

    Although the number given above seems very precise, it is important to remember that it is just an estimate. It simply isn't possible to be sure exactly how many people there are on the earth at any one time, and there are conflicting estimates of the global population in 2016.

    Some, including the UN, believe that a population of 7 billion was reached in October 2011. Others, including the US Census Bureau and World Bank, believe that the total population of the world reached 7 billion in 2012, around March or April.

    ColumnsDescription
    CCA33 Digit Country/Territories Code
    NameName of the Country/Territories
    2022Population of the Country/Territories in the year 2022.
    2020Population of the Country/Territories in the year 2020.
    2015Population of the Country/Territories in the year 2015.
    2010Population of the Country/Territories in the year 2010.
    2000Population of the Country/Territories in the year 2000.
    1990Population of the Country/Territories in the year 1990.
    1980Population of the Country/Territories in the year 1980.
    1970Population of the Country/Territories in the year 1970.
    Area (km²)Area size of the Country/Territories in square kilometer.
    Density (per km²)Population Density per square kilometer.
    Grow...
  5. 💰 Global GDP Dataset (Latest)

    • kaggle.com
    zip
    Updated Oct 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Asadullah Shehbaz (2025). 💰 Global GDP Dataset (Latest) [Dataset]. https://www.kaggle.com/datasets/asadullahcreative/global-gdp-explorer-2024-world-bank-un-data
    Explore at:
    zip(6672 bytes)Available download formats
    Dataset updated
    Oct 17, 2025
    Authors
    Asadullah Shehbaz
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    🧾 About Dataset

    🌍 Global GDP by Country — 2024 Edition

    📖 Overview

    The Global GDP by Country (2024) dataset provides an up-to-date snapshot of worldwide economic performance, summarizing each country’s nominal GDP, growth rate, population, and global economic contribution.

    This dataset is ideal for economic analysis, data visualization, policy modeling, and machine learning applications related to global development and financial forecasting.

    📊 Dataset Information

    • Total Records: 181 countries
    • Time Period: 2024 (latest available global data)
    • Geographic Coverage: Worldwide
    • File Format: CSV
    • File Size: ~10 KB
    • Missing Values: None (100% complete dataset)

    🎯 Target Use-Cases:
    - Economic growth trend analysis
    - GDP-based country clustering
    - Per capita wealth comparison
    - Share of world economy visualization

    🧩 Key Features

    Feature NameDescription
    CountryOfficial country name
    GDP (nominal, 2023)Total nominal GDP in USD
    GDP (abbrev.)Simplified GDP format (e.g., “$25.46 Trillion”)
    GDP GrowthAnnual GDP growth rate (%)
    Population 2023Estimated population for 2023
    GDP per capitaAverage income per person (USD)
    Share of World GDPPercentage contribution to global GDP

    📈 Statistical Summary

    Population Overview

    • Mean Population: 43.6 million
    • Standard Deviation: 155.5 million
    • Minimum Population: 9,816 (small island nations)
    • Median Population: 9.1 million
    • Maximum Population: 1.43 billion (China)

    🌟 Highlights

    💰 Top Economies (Nominal GDP):
    United States, China, Japan, Germany, India

    📈 Fastest Growing Economies:
    India, Bangladesh, Vietnam, and Rwanda

    🌐 Global Insights:
    - The dataset covers 181 countries representing 100% of global GDP.
    - Suitable for data visualization dashboards, AI-driven economic forecasting, and educational research.

    💡 Example Use-Cases

    • Build a choropleth map showing GDP distribution across continents.
    • Train a regression model to predict GDP per capita based on population and growth.
    • Compare economic inequality using population vs GDP share.

    📚 Dataset Citation

    Source: Worldometers — GDP by Country (2024)
    Dataset compiled and cleaned by: Asadullah Shehbaz
    For open research and data analysis.

  6. d

    Loudoun County 2020 Census Population Patterns by Race and Hispanic or...

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Nov 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loudoun County GIS (2025). Loudoun County 2020 Census Population Patterns by Race and Hispanic or Latino Ethnicity [Dataset]. https://catalog.data.gov/dataset/loudoun-county-2020-census-population-patterns-by-race-and-hispanic-or-latino-ethnicity
    Explore at:
    Dataset updated
    Nov 15, 2025
    Dataset provided by
    Loudoun County GIS
    Area covered
    Loudoun County
    Description

    Use this application to view the pattern of concentrations of people by race and Hispanic or Latino ethnicity. Data are provided at the U.S. Census block group level, one of the smallest Census geographies, to provide a detailed picture of these patterns. The data is sourced from the U.S Census Bureau, 2020 Census Redistricting Data (Public Law 94-171) Summary File. Definitions: Definitions of the Census Bureau’s categories are provided below. This interactive map shows patterns for all categories except American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander. The total population countywide for these two categories is small (1,582 and 263 respectively). The Census Bureau uses the following race categories:Population by RaceWhite – A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.Black or African American – A person having origins in any of the Black racial groups of Africa.American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment.Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.Native Hawaiian or Other Pacific Islander – A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.Some Other Race - this category is chosen by people who do not identify with any of the categories listed above. People can identify with more than one race. These people are included in the Two or More Races Hispanic or Latino PopulationThe Hispanic/Latino population is an ethnic group. Hispanic/Latino people may be of any race.Other layers provided in this tool included the Loudoun County Census block groups, towns and Dulles airport, and the Loudoun County 2021 aerial imagery.

  7. k

    Midyear population

    • datasource.kapsarc.org
    • data.kapsarc.org
    Updated Dec 17, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Midyear population [Dataset]. https://datasource.kapsarc.org/explore/dataset/midyear-population-2015/
    Explore at:
    Dataset updated
    Dec 17, 2016
    Description

    Explore the dataset on midyear population statistics for 2015, including data on non-infectious diseases, infectious diseases, accidents, malnutrition, congenital diseases, and more. Gain insights on population health trends globally.

    Non-infectious, Midyear population, Annual, Infectious disease, Accident/Trauma, Malnutrition, Congenital disease, Other (including ageing), Disease, Health, Population

    China, Germany, India, Japan, Russia, United States Follow data.kapsarc.org for timely data to advance energy economics research.

  8. Indian Population 2011

    • kaggle.com
    zip
    Updated Jul 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sandra Grace Nelson (2022). Indian Population 2011 [Dataset]. https://www.kaggle.com/datasets/sandragracenelson/indian-population-2011
    Explore at:
    zip(4054 bytes)Available download formats
    Dataset updated
    Jul 19, 2022
    Authors
    Sandra Grace Nelson
    Area covered
    India
    Description

    India is the second most populated country in the world with a sixth of the world's population. According to the 2022 revision of the World Population Prospects the population stood at 1,402,807,867.

    Between 1975 and 2010, the population doubled to 1.2 billion, reaching the billion mark in 1998. India is projected to surpass China to become the world's most populous country by 2023. It is expected to become the first country to be home to more than 1.5 billion people by 2030, and its population is set to reach 1.7 billion by 2050. Its population growth rate is 0.98%, down from 2.3% from 1972 to 1983, ranking 112th in the world in 2017.

    India has more than 50% of its population below the age of 25 and more than 65% below the age of 35. In 2022, the average age of an Indian is 28.7 years, compared to 38.4 for China and 48.6 for Japan; and, by 2030, India's dependency ratio will be just over 0.4. However, the number of children in India peaked more than a decade ago and is now falling. The number of children under the age of five peaked in 2007, and since then the number has been falling. The number of Indians under 15 years old peaked slightly later (in 2011) and is now also declining. India has more than two thousand ethnic groups, and every major religion is represented, as are four major families of languages (Indo-European, Dravidian, Austroasiatic and Sino-Tibetan languages) as well as two language isolates: the Nihali language, spoken in parts of Maharashtra, and the Burushaski language, spoken in parts of Jammu and Kashmir. 1,000,000 people in India are Anglo-Indians and 700,000 United States citizens are living in India. They represent over 0.1% of the total population of India. Overall, only the continent of Africa exceeds the linguistic, genetic and cultural diversity of the nation of India.

    The sex ratio was 944 females for 1000 males in 2016, and 940 per 1000 in 2011. This ratio has been showing an upward trend for the last two decades after a continuous decline in the last century.

  9. n

    Japanese 25-year Reanalysis Project, Monthly Means

    • access.earthdata.nasa.gov
    • gdex.ucar.edu
    • +4more
    Updated Apr 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Japanese 25-year Reanalysis Project, Monthly Means [Dataset]. https://access.earthdata.nasa.gov/collections/C1214110975-SCIOPS
    Explore at:
    Dataset updated
    Apr 20, 2017
    Time period covered
    Jan 1, 1979 - Aug 1, 2008
    Area covered
    Earth
    Description

    The Japanese 25-year Reanalysis (JRA-25) represents the first long-term global atmospheric reanalysis undertaken in Asia. Covering the period 1979-2004, it was completed using the Japan Meteorological Agency (JMA) numerical assimilation and forecast system and specially collected and prepared observational and satellite data from many sources including the European Center for Medium-Range Weather Forecasts (ECMWF), the National Climatic Data Center (NCDC), and the Meteorological Research Institute (MRI) of JMA. A primary goal of JRA-25 is to provide a consistent and high-quality reanalysis dataset for climate research, monitoring, and operational forecasts, especially by improving the coverage and quality of analysis in the Asian region. In JRA-25, three-dimensional variational (3D-Var) data assimilation and a global spectral model were employed to produce 6-hourly atmospheric analysis and forecast cycles. The global spectral model was based on a 320 by 160 (~1.125 degree) Gaussian grid with T106 truncation. Vertical discretization employed a hybrid sigma-pressure coordinate utilizing 40 levels where 0.4 hPa represents the model top level. A predictive mass-flux Arakawa-Schubert scheme was utilized for cumulus parameterization, and Simple Biosphere (SiB) parameterizations for land-surface processes. Assimilated variables include temperature, relative humidity, and surface pressure from conventional observations, and also winds retrieved from geostationary satellites, radiative brightness temperature from TIROS Operational Vertical Sounder (TOVS), and precipitable water from Special Sensor Microwave/Imager (SSM/I). Variables not directly assimilated include daily sea surface temperature (SST) and sea ice based on Centennial in-situ Observation-Based Estimates (COBE), and ozone profiles based on chemical transport models constrained by observations from Total Ozone Mapping Spectrometer (TOMS).

    The JRA-25 shows marked improvement over previous reanalyses in several notable areas, especially predicted (both 6-hourly and long term) precipitation, with more realistic variability and fewer spurious trends due to contamination of satellite data by volcanic eruptions. JRA-25 is also the first reanalysis to assimilate wind profiles around tropical cyclones deduced from best-track data, resulting in improved tropical cyclone analysis in a global context. In addition, low-level (stratus) cloud decks along the western subtropical coasts of continents are also better simulated, improving radiation budgets in these regions. In 2006, JMA started real-time operation of the JMA Climate Data Assimilation System (JCDAS). JCDAS employs the same system as JRA-25 and the data assimilation cycle is extended to the present time. JRA-25 and JCDAS products will enable users to conduct climate diagnostics with a long-term, and current, homogeneous reanalysis dataset. The JMA has also engaged in ongoing cooperation with ECMWF (European Center for Medium-Range Weather Forecasts) on reanalysis, including the ECMWF CDAS (ECDAS), more commonly known as ERA-Interim.

  10. Population Based Global Carbon Emissions Dataset in 0.1°Resolution (2014)

    • datacore-gn.unepgrid.ch
    Updated Sep 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Science and Technology of P. R. China (2016YFA0602704) (2017). Population Based Global Carbon Emissions Dataset in 0.1°Resolution (2014) [Dataset]. https://datacore-gn.unepgrid.ch/geonetwork/srv/api/records/9de4e1dd-9186-4901-9631-fcb5bdbbd4a5
    Explore at:
    www:link-1.0-http--link, ogc:wms-1.3.0-http-get-mapAvailable download formats
    Dataset updated
    Sep 23, 2017
    Dataset provided by
    United Nations Environment Programmehttp://www.unep.org/
    Ministry of Science and Technology of P. R. China (2016YFA0602704)
    Area covered
    Description

    Since mid of 20th century, anthropogenic greenhouse gas emissions have increased, it is very possible of being driven largely by economic and population growth, and causing the global warming. Based on the global carbon emissions data of 2014 in each country from CDIAC (Carbon Dioxide Information Analysis Center) and population density data in 2015 from SEDAC (Socioeconomic Data and Applications Center), the population based global carbon emissions dataset in 0.1° resolution (2014) was developed by the model of integrating population density as an economic-population composite indicator to weighted carbon emissions. The result shows the main carbon emission areas are located in the eastern United States, eastern China, Japan, Korea, India, Southeast Asia and Europe, and there are spatial differences in each region. The result can reflect spatial distribution of the current global carbon emissions and provide basic data for global change research. The dataset was archived in .tif data format with the data size of 22.7 MB (3.92MB in compressed file).

    Foundation Item: Ministry of Science and Technology of P. R. China (2016YFA0602704) Data Citation: "FAN Zhixin,SU Yun*,FANG Xiuqi.2017.Population Based Global Carbon Emissions Dataset in 0.1°Resolution (2014) ( GlobalPopCarbonEmis2014 ) ,Global Change Research Data Publishing & Repository,DOI:10.3974/geodb.2017.03.12.V1"

  11. n

    Geography, Land Use and Population data for Counties in the Contiguous...

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Apr 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Geography, Land Use and Population data for Counties in the Contiguous United States [Dataset]. https://access.earthdata.nasa.gov/collections/C1214610539-SCIOPS
    Explore at:
    Dataset updated
    Apr 21, 2017
    Time period covered
    Jan 1, 1990 - Dec 31, 1990
    Area covered
    Description

    Two datasets provide geographic, land use and population data for US Counties within the contiguous US. Land area, water area, cropland area, farmland area, pastureland area and idle cropland area are given along with latitude and longitude of the county centroid and the county population. Variables in this dataset come from the US Dept. of Agriculture (USDA) Natural Resources Conservation Service (NRCS) and the US Census Bureau.

    EOS-WEBSTER provides seven datasets which provide county-level data on agricultural management, crop production, livestock, soil properties, geography and population. These datasets were assembled during the mid-1990's to provide driving variables for an assessment of greenhouse gas production from US agriculture using the DNDC agro-ecosystem model [see, for example, Li et al. (1992), J. Geophys. Res., 97:9759-9776; Li et al. (1996) Global Biogeochem. Cycles, 10:297-306]. The data (except nitrogen fertilizer use) were all derived from publicly available, national databases. Each dataset has a separate DIF.

    The US County data has been divided into seven datasets.

    US County Data Datasets:

    1) Agricultural Management 2) Crop Data (NASS Crop data) 3) Crop Summary (NASS Crop data) 4) Geography and Population 5) Land Use 6) Livestock Populations 7) Soil Properties

  12. n

    JRA-55C: Monthly Means and Variances

    • access.earthdata.nasa.gov
    • rda-web-prod.ucar.edu
    • +6more
    Updated Apr 20, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). JRA-55C: Monthly Means and Variances [Dataset]. https://access.earthdata.nasa.gov/collections/C1214111026-SCIOPS
    Explore at:
    Dataset updated
    Apr 20, 2017
    Time period covered
    Nov 1, 1972 - Dec 31, 2012
    Area covered
    Earth
    Description

    As a subset of the Japanese 55-year Reanalysis (JRA-55) project, the Meteorological Research Institute of the Japan Meteorological Agency has conducted a global atmospheric reanalysis that assimilates only conventional surface and upper air observations, with no use of satellite observations, using the same data assimilation system as the JRA-55. The project, named the JRA-55 Conventional (JRA-55C), aims to produce a more homogeneous dataset over a long period, unaffected by changes in historical satellite observing systems. The dataset is intended to be suitable for studies of climate change or multidecadal variability. The reanalysis period of JRA-55C is from November 1972 to December 2012. The JMA recommends the use of JRA-55 to extend JRA-55C back to January 1958.

    The Data Support Section at NCAR has downloaded all JRA-55C data. The entire archive has been reorganized into single parameter time series, and model resolution data has been transformed to a regular Gaussian grid. The JRA-55C products are currently being made accessible to RDA registered users of JRA-55, and will appear incrementally via the Data Access tab.

  13. GDP-BY-COUNTRY-2022

    • kaggle.com
    zip
    Updated Oct 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muneeb_Qureshi3131 (2024). GDP-BY-COUNTRY-2022 [Dataset]. https://www.kaggle.com/datasets/muneebqureshi3131/gdp-by-country/code
    Explore at:
    zip(6044 bytes)Available download formats
    Dataset updated
    Oct 24, 2024
    Authors
    Muneeb_Qureshi3131
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset provides key economic indicators for five of the world's largest economies, based on their nominal Gross Domestic Product (GDP) in 2022. It includes the GDP values, population, GDP growth rates, per capita GDP, and each country's share of the global economy.

    Columns: Country: Name of the country. GDP (nominal, 2022): The total nominal GDP in 2022, represented in USD. GDP (abbrev.): The abbreviated GDP in trillions of USD. GDP growth: The percentage growth in GDP compared to the previous year. Population: Total population of each country in 2022. GDP per capita: The GDP per capita, representing average economic output per person in USD. Share of world GDP: The percentage of global GDP contributed by each country. Key Highlights: The dataset includes some of the largest global economies, such as the United States, China, Japan, Germany, and India. The data can be used to analyze the economic standing of countries in terms of overall GDP and per capita wealth. It offers insights into the relative growth rates and population sizes of these leading economies. This dataset is ideal for exploring economic trends, performing country-wise comparisons, or studying the relationship between population size and GDP growth.

  14. f

    Table of binomial log likelihood calculated from 6 models in 2000...

    • plos.figshare.com
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuwei Cheng; Nhat Tran Minh; Quan Tran Minh; Shreya Khandelwal; Hannah E. Clapham (2023). Table of binomial log likelihood calculated from 6 models in 2000 bootstrapped datasets sampled from the dataset collated from systematic review. [Dataset]. http://doi.org/10.1371/journal.pntd.0010361.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS Neglected Tropical Diseases
    Authors
    Yuwei Cheng; Nhat Tran Minh; Quan Tran Minh; Shreya Khandelwal; Hannah E. Clapham
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In each bootstrapped dataset we computed binomial log likelihood for each model. For each model summary statistics of the distribution of log likelihood was presented. Abbreviations: LASSO: Least Absolute Shrinkage and Selection Operator; PCR: Principal Component Regression; GBM: Gradient Boosting Machine; NN: Neural Network; MLR: Multiple Linear Regression.

  15. Population of top 800 major cities in the world

    • kaggle.com
    zip
    Updated Jul 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ibrar Hussain (2024). Population of top 800 major cities in the world [Dataset]. https://www.kaggle.com/datasets/dataanalyst001/population-top-800-major-cities-in-the-world-2024
    Explore at:
    zip(12130 bytes)Available download formats
    Dataset updated
    Jul 7, 2024
    Authors
    Ibrar Hussain
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    World
    Description

    The below dataset shows the top 800 biggest cities in the world and their populations in the year 2024. It also tells us which country and continent each city is in, and their rank based on population size. Here are the top ten cities:

    • Tokyo, Japan - in Asia, with 37,115,035 people.
    • Delhi, India - in Asia, with 33,807,403 people.
    • Shanghai, China - in Asia, with 29,867,918 people.
    • Dhaka, Bangladesh - in Asia, with 23,935,652 people.
    • Sao Paulo, Brazil - in South America, with 22,806,704 people.
    • Cairo, Egypt - in Africa, with 22,623,874 people.
    • Mexico City, Mexico - in North America, with 22,505,315 people.
    • Beijing, China - in Asia, with 22,189,082 people.
    • Mumbai, India - in Asia, with 21,673,149 people.
    • Osaka, Japan - in Asia, with 18,967,459 people.
  16. l

    Data from: Supplementary information files for Height and body-mass index...

    • repository.lboro.ac.uk
    • search.datacite.org
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCD Risk Factor Collaboration; Oonagh Markey (2023). Supplementary information files for Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants [Dataset]. http://doi.org/10.17028/rd.lboro.13241105.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Loughborough University
    Authors
    NCD Risk Factor Collaboration; Oonagh Markey
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Supplementary files for article Supplementary information files for Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants.BackgroundComparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents.MethodsFor this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence.FindingsWe pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls.InterpretationThe height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks.

  17. i

    Asian Barometer Survey 2010-2011, Wave 3 - China, Hong Kong SAR, China,...

    • catalog.ihsn.org
    Updated Aug 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute of Political Science (2021). Asian Barometer Survey 2010-2011, Wave 3 - China, Hong Kong SAR, China, Indonesia, India, Japan, Cambodia, Korea, Rep., Sri Lanka, Mongolia, Ma [Dataset]. https://catalog.ihsn.org/index.php/catalog/3001
    Explore at:
    Dataset updated
    Aug 26, 2021
    Dataset provided by
    Institute of Political Science
    East Asia Democratic Studies
    Time period covered
    2010 - 2011
    Area covered
    Mongolia, India, Indonesia, South Korea, Hong Kong, Cambodia, Sri Lanka, Japan
    Description

    Abstract

    The third wave of the Asian Barometer survey (ABS) conducted in 2010 and the database contains nine countries and regions in East Asia - the Philippines, Taiwan, Thailand, Mongolia, Singapore, Vietnam, Indonesia, Malaysia and South Korea. The ABS is an applied research program on public opinion on political values, democracy, and governance around the region. The regional network encompasses research teams from 13 East Asian political systems and 5 South Asian countries. Together, this regional survey network covers virtually all major political systems in the region, systems that have experienced different trajectories of regime evolution and are currently at different stages of political transition.

    The mission and task of each national research team are to administer survey instruments to compile the required micro-level data under a common research framework and research methodology to ensure that the data is reliable and comparable on the issues of citizens' attitudes and values toward politics, power, reform, and democracy in Asia.

    The Asian Barometer Survey is headquartered in Taipei and co-hosted by the Institute of Political Science, Academia Sinica and The Institute for the Advanced Studies of Humanities and Social Sciences, National Taiwan University.

    Geographic coverage

    13 East Asian political systems: Japan, Mongolia, South Koreas, Taiwan, Hong Kong, China, the Philippines, Thailand, Vietnam, Cambodia, Singapore, Indonesia, and Malaysia; 5 South Asian countries: India, Pakistan, Bangladesh, Sri Lanka, and Nepal

    Analysis unit

    -Individuals

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Compared with surveys carried out within a single nation, cross-nation survey involves an extra layer of difficulty and complexity in terms of survey management, research design, and database modeling for the purpose of data preservation and easy analysis. To facilitate the progress of the Asian Barometer Surveys, the survey methodology and database subproject is formed as an important protocol specifically aiming at overseeing and coordinating survey research designs, database modeling, and data release.

    As a network of Global Barometer Surveys, Asian Barometer Survey requires all country teams to comply with the research protocols which Global Barometer network has developed, tested, and proved practical methods for conducting comparative survey research on public attitudes.

    Research Protocols:

    • National probability samples that give every citizen in each country an equal chance of being selected for interview. Whether using census household lists or a multistage area approach, the method for selecting sampling units is always randomized. The samples may be stratified, or weights applied, to ensure coverage of rural areas and minority populations in their correct proportions. As such, Asian Barometer samples represent the adult, voting-age population in each country surveyed.

    A model Asian Barometer Survey has a sample size of 1,200 respondents, which allows a minimum confidence interval of plus or minus 3 percent at 95 percent probability.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    A standard questionnaire instrument containing a core module of identical or functionally equivalent questions. Wherever possible, theoretical concepts are measured with multiple items in order to enable testing for construct validity. The wording of items is determined by balancing various criteria, including: the research themes emphasized in the survey, the comprehensibility of the item to lay respondents, and the proven effectiveness of the item when tested in previous surveys.

    Survey Topics: 1.Economic Evaluations: What is the economic condition of the nation and your family: now, over the last five years, and in the next five years? 2.Trust in institutions: How trustworthy are public institutions, including government branches, the media, the military, and NGOs. 3.Social Capital: Membership in private and public groups, the frequency and degree of group participation, trust in others, and influence of guanxi. 4.Political Participatio: Voting in elections, national and local, country-specific voting patterns, and active participation in the political process as well as demonstrations and strikes. Contact with government and elected officials, political organizations, NGOs and media. 5.Electoral Mobilization: Personal connections with officials, candidates, and political parties; influence on voter choice. 6.Psychological Involvement and Partisanship: Interest in political news coverage, impact of government policies on daily life, and party allegiance. 7.Traditionalism: Importance of consensus and family, role of the elderly, face, and woman in theworkplace. 8.Democratic Legitimacy and Preference for Democracy: Democratic ranking of present and previous regime, and expected ranking in the next five years; satisfaction with how democracy works, suitability of democracy; comparisons between current and previous regimes, especially corruption; democracy and economic development, political competition, national unity, social problems, military government, and technocracy. 9.Efficacy, Citizen Empowerment, System Responsiveness: Accessibility of political system: does a political elite prevent access and reduce the ability of people to influence the government. 10.Democratic vs. Authoritarian Values: Level of education and political equality, government leadership and superiority, separation of executive and judiciary. 11.Cleavage: Ownership of state-owned enterprises, national authority over local decisions, cultural insulation, community and the individual. 12.Belief in Procedural Norms of Democracy: Respect of procedures by political leaders: compromise, tolerance of opposing and minority views. 13.Social-Economic Background Variables: Gender, age, marital status, education level, years of formal education, religion and religiosity, household, income, language and ethnicity. 14.Interview Record: Gender, age, class, and language of the interviewer, people present at the interview; did the respondent: refuse, display impatience, and cooperate; the language or dialect spoken in interview, and was an interpreter present.

    Cleaning operations

    Quality checks are enforced at every stage of data conversion to ensure that information from paper returns is edited, coded, and entered correctly for purposes of computer analysis. Machine readable data are generated by trained data entry operators and a minimum of 20 percent of the data is entered twice by independent teams for purposes of cross-checking. Data cleaning involves checks for illegal and logically inconsistent values.

  18. m

    Economic, demographic and corruption data - Latin America and Asian...

    • data.mendeley.com
    Updated Mar 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leonardo Köppe Malanski (2021). Economic, demographic and corruption data - Latin America and Asian countries [Dataset]. http://doi.org/10.17632/8zcxr9wvrm.4
    Explore at:
    Dataset updated
    Mar 1, 2021
    Authors
    Leonardo Köppe Malanski
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Asia, Latin America, Americas
    Description

    The file contains the dataset used for the empirical analysis of the study titled "Economic Growth and Corruption in Emerging Markets: Does Economic Freedom Matter?”. The dataset includes annual data from 19 countries of Latin America (Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Ecuador, El Salvador, Guatemala, Haiti, Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru, Dominican Republic, Uruguay, and Venezuela), 9 countries of Asia (China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, Thailand, and Vietnam), and 2 countries of Oceania (Australia and New Zealand). The investigation period spans 2000 through 2017. The data consists about economic, social, demographic, corruption, political e freedom related indexes and variables [Natural logarithm of Gross Domestic Product per capita; Corruption Perception Index; Economic Freedom Index; Economic Freedom of the World; Foreign Direct Investment as % of GDP (net inflows); Gross fixed capital formation as % of GDP; Inflation Rate as ∆% of consumer price indices; Schooling as average number of years of education received by people ages 25 and older; % of the population living in urban areas; Number of years a newborn infant would live; Number of births per woman (average); Annual population growth rate (%); Index that reflects perceptions of the extent to which a country's citizens are able to participate in selecting their government, as well as freedom of expression/media; Index that reflects perceptions of the likelihood of political instability or politically motivated violence, including terrorism; Index that reflects perceptions of the quality of public and civil services; Index that reflects perceptions of the ability of the government to formulate and implement policies and regulations that promote the development of the private sector; Index that reflects perceptions of the extent to which agents have confidence in and abide by the rules of society (contract enforcement, property rights, police and justice); Index that measures a mature and internally coherent democracy vs. autocracies sharply restrict that suppress competitive political participation; HDI_dummy: Human Development Index related; Tropical_Dummy: related to country’s geographic position (located between the Tropics of Cancer and Capricorn)].

  19. GDP of all Country 2023

    • kaggle.com
    Updated Jul 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Engr. Mubashir Hussain (2023). GDP of all Country 2023 [Dataset]. https://www.kaggle.com/datasets/ourfuture/gdp-of-all-country-2023/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 27, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Engr. Mubashir Hussain
    Description

    Gross Domestic Product (GDP) is a measure of the total economic output of a country. It is the sum of all the goods and services produced within a country over a given period. The GDP of a country is an important indicator of its economic health and can be used to compare the economic performance of different countries.

    According to the World Bank, the United States has the highest GDP of any country in the world, with a value of $23.3 trillion. The American economy is one of the most diversified and technologically advanced in the world which contributes to the US’s large GDP. China is the second-largest economy in the world, with a GDP of $17.7 trillion. Japan, Germany, India, the United Kingdom, and France round out the top seven, all with GDPs over $3 trillion.

    On the other hand, there are countries with low GDPs. The country with the lowest GDP in the world is Nauru, with a value of $133.2 million. Palau, Marshall Islands, Federated States of Micronesia, and São Tomé and Príncipe are some other countries with low GDPs. These countries are typically characterized by limited natural resources, small populations, geographic isolation, and a heavy reliance on tourism or foreign aid.

    It is important to note that GDP is not necessarily an accurate reflection of the economic well-being of a country’s citizens. While a high GDP indicates a large and productive economy, it does not necessarily mean that all citizens are equally prosperous. Countries with lower GDPs may also have a higher standard of living if income is distributed more equally among the population.

  20. n

    Geographical Survey Institute (GSI) 1:25,000 Topographic Maps for the Japan...

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Apr 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Geographical Survey Institute (GSI) 1:25,000 Topographic Maps for the Japan Antarctic Research Expedition (JARE) [Dataset]. https://access.earthdata.nasa.gov/collections/C1214610459-SCIOPS
    Explore at:
    Dataset updated
    Apr 21, 2017
    Time period covered
    Apr 1, 1966 - Present
    Area covered
    Description

    The data set consists of 1:25,000 topographic maps covering Lutzow-Holm Bukt coast and major bare rock areas and inland mountains. The contour interval is 10 m. Maps of Lutzow-Holm Bukt coast were published in 1965 - 1986, and those of Prince Olav coast in 1974 - 1985. Total number of map sheets for these areas is 61. Maps of Yamato Mountains were published in 1980 with 11 sheets. All maps have been digitized into raster data and are available with TIFF format.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
farzam ajili (2023). world_population [Dataset]. https://www.kaggle.com/datasets/farzamajili/world-population
Organization logo

world_population

Explore at:
zip(16061 bytes)Available download formats
Dataset updated
Feb 8, 2023
Authors
farzam ajili
Area covered
World
Description

Context The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion in 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.

The following 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.

Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.

In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.

This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growing more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

Content In this Dataset, we have Historical Population data for every Country/Territory in the world by different parameters like Area Size of the Country/Territory, Name of the Continent, Name of the Capital, Density, Population Growth Rate, Ranking based on Population, World Population Percentage, etc.

Search
Clear search
Close search
Google apps
Main menu