Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan's main stock market index, the JP225, fell to 39519 points on July 14, 2025, losing 0.13% from the previous session. Over the past month, the index has climbed 3.15%, though it remains 4.25% lower than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on July of 2025.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Nikkei Stock Average, Nikkei 225 (NIKKEI225) from 1949-05-16 to 2025-07-15 about stocks, stock market, Japan, and indexes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan's main stock market index, the JP225, fell to 39411 points on July 16, 2025, losing 0.67% from the previous session. Over the past month, the index has climbed 2.27%, though it remains 4.10% lower than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Stock market return (%, year-on-year) in Japan was reported at 22.23 % in 2021, according to the World Bank collection of development indicators, compiled from officially recognized sources. Japan - Stock market return (%, year-on-year) - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
In 2024, the Nikkei 225 index closed at ********* points. The index surpassed a 34-year-old record in February and reached a new all-time high in July 2024. The Nikkei 225 is a price-weighted stock market index that has been calculated by the Nihon Keizai Shimbun (Nikkei) newspaper since 1950. It comprises 225 constituents listed on the Prime Market of the Tokyo Stock Exchange.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for Japan Stock Market Index (JPVIX) including live quotes, historical charts and news. Japan Stock Market Index (JPVIX) was last updated by Trading Economics this July 14 of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Japan P/E ratio
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Japan Nikkei 225 Stock
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Japan Market Capitalization
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan OSE: Turnover: Value: Nikkei 225 Call and Put Options data was reported at 516.962 JPY bn in Nov 2018. This records a decrease from the previous number of 749.344 JPY bn for Oct 2018. Japan OSE: Turnover: Value: Nikkei 225 Call and Put Options data is updated monthly, averaging 228.702 JPY bn from Jun 1989 (Median) to Nov 2018, with 354 observations. The data reached an all-time high of 1,544.252 JPY bn in May 2013 and a record low of 44.521 JPY bn in Jul 2005. Japan OSE: Turnover: Value: Nikkei 225 Call and Put Options data remains active status in CEIC and is reported by Japan Exchange Group. The data is categorized under Global Database’s Japan – Table JP.Z016: Osaka Exchange Inc: Futures and Options.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Japan Market Capitalization: % of GDP
https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer
With LSEG's Tokyo Stock Exchange (TSE) Data, gain full access to benchmarks, indices, reference data, market depth data, and more.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
The statistic shows the development of the MSCI World USD Index from 1986 to 2024. The 2024 year-end value of the MSCI World USD index amounted to ******** points. MSCI World USD index – additional information The MSCI World Index, developed by Morgan Stanley Capital International (MSCI), is one of the most important stock indices. It includes stocks from developed countries all over the world and is regarded as benchmark of global stock market. According to MSCI, this index covers about ** percent of the free float-adjusted market capitalization in each country. As seen on the statistics above, in 2024, MSCI World USD index reported its highest value since 1986 amounting, a threefold increase from the figure recorded in 2013, when the year-end value of the MSCI World index was equal to ********. Along with the S&P Global Broad Market, the MSCI World is one of the most important global stock market performance indexes. Aside of including markets around the globe, these two indexes are global in a sense that they disregard where the companies are domiciled or traded, whereas other important indexes such as the Dow Jones Industrial Average, the Japanese index Nikkei 225, Wilshire 5000, the NASDAQ 100 index, have different approaches.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
L'indice principale del mercato azionario del Giappone, il JP225, è salito a 39626 punti il 15 luglio 2025, guadagnando lo 0,42% rispetto alla sessione precedente. Nel corso dell'ultimo mese, l'indice è salito del 3,43%, anche se rimane inferiore del 4,00% rispetto all'anno precedente, secondo le negoziazioni su un contratto per differenza (CFD) che segue questo indice di riferimento dal Giappone. Valori correnti, dati storici, previsioni, statistiche, grafici e calendario economico - Giappone - Borsa.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan's main stock market index, the JP225, fell to 39519 points on July 14, 2025, losing 0.13% from the previous session. Over the past month, the index has climbed 3.15%, though it remains 4.25% lower than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on July of 2025.