Facebook
TwitterThe ArcGIS Javascript API lets developers build GIS web applications. The Javascript API is one of many that could be used but it's a great starting place. Students may also be interested in the Python API or others!
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Author: Megan Banaski (mbanaski@esri.com) and Max Ozenberger (mozenberger@esri.com)Last Updated: 1/1/2024Intended Environment: WebPurpose:Exercise F6: Create a JS API 4.x WebMap App or Create a JS API 4.x WebScene App This lab is part of GitHub repository that contains short labs that step you through the process of developing a web application with ArcGIS API for JavaScript.The labs start from ground-zero and work through the accessing different aspects of the API and how to begin to build an application and add functionality.Requirements: Here are the resources you will use for the labs.ArcGIS for Developers - Account, Documentation, Samples, Apps, DownloadsEsri Open Source Projects - More source codeA simple guide for setting up a local web server (optional)Help with HTML, CSS, and JavaScript
Facebook
TwitterMeet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE
Facebook
TwitterLands Department of Hong Kong SAR has released Location Search API which is available in Hong Kong Geodata Store (https://geodata.gov.hk/gs/). This API is very useful to Esri Users in Hong Kong as it saves vast amount of time to carry out data conversion to support location searching. The API is HTTP-based for application developers to find any locations in Hong Kong by addresses, building names, place names or facility names.
This code sample contains sample HTML and JavaScript files. Users can follow This Guidelines to use the Location Search API with ArcGIS API for JavaScript to build web mapping applications with ArcGIS API for JavaScript.
Facebook
TwitterRTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development. Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis www.rtb.cgiar.org/RTBMaps
Facebook
TwitterMature Support Notice: This item is in mature support as of February 2024. A new version of this item is available for your use. This web application highlights some of the capabilities for accessing Landsat imagery layers, powered by ArcGIS for Server, accessing Landsat Public Datasets running on the Amazon Web Services Cloud. The layers are updated with new Landsat images on a daily basis. Created for you to visualize our planet and understand how the Earth has changed over time, the Esri Landsat Explorer app provides the power of Landsat satellites, which gather data beyond what the eye can see. Use this app to draw on Landsat's different bands to better explore the planet's geology, vegetation, agriculture, and cities. Additionally, access the entire Landsat archive to visualize how the Earth's surface has changed over the last forty years.Quick access to the following band combinations and indices is provided: Agriculture : Highlights agriculture in bright green; Bands 6, 5, 2Natural Color : Sharpened with 15m panchromatic band; Bands 4, 3, 2 +8Color Infrared : Healthy vegetation is bright red; Bands 5, 4 ,3 SWIR (Short Wave Infrared) : Highlights rock formations; Bands 7, 6, 4Geology : Highlights geologic features; Bands 7, 6, 2Bathymetric : Highlights underwater features; Bands 4, 3, 1Panchromatic : Panchromatic images at 15m; Band 8Vegetation Index : Normalized Difference Vegetation Index(NDVI); (Band 5 - Band 4)/(Band 5 + Band 4)Moisture Index : Normalized Difference Moisture Index (NDMI); (Band 5 - Band 6)/(Band 5 + Band 6)SAVI : Soil Adjusted Veg. Index); Offset + Scale*(1.5*(Band 5 - Band 4)/(Band 5 + Band 4 + 0.5))Water Index : Offset + Scale*(Band 3 - Band 6)/(Band 3 + Band 6)Burn Index : Offset + Scale*(Band 5 - Band 7)/(Band 5 + Band 7)Urban Index : Offset + Scale*(Band 5 - Band 6)/(Band 5 + Band 6)Optionally, you can also choose the "Custom Bands" or "Custom Index" option to create your own band combinations The Time tool enables access to a temporal time slider and a temporal profile of different indices for a selected point. The Time tool is only accessible at larger zoom scales. It provides temporal profiles for NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index) and Urban Index. The Identify tool enables access to information on the images, and can also provide a spectral profile for a selected point. The Stories tool will direct you to pre-selected interesting locations. The application is written using Web AppBuilder for ArcGIS accessing imagery layers using ArcGIS API for JavaScript. The following Imagery Layers are being accessed : Multispectral Landsat - Provides access to 30m 8-band multispectral imagery and a range of functions that provide different band combinations and indices.Pansharpened Landsat - Provides access to 15m 4-band (Red, Green, Blue and NIR) panchromatic-sharpened imagery.Panchromatic Landsat - Provides access to 15m panchromatic imagery. These imagery layers can be accessed through the public group Landsat Community on ArcGIS Online.
Facebook
TwitterMature Support Notice: This item is in mature support as of February 2025. A new version of this item is available for your use. This web application highlights some of the capabilities for accessing Sentinel-2 imagery layers, powered by ArcGIS for Server, accessing Landsat Public Datasets running on the Amazon Web Services Cloud. The layers are updated with new Sentinel-2 images on a daily basis.Created for you to visualize our planet and understand how the Earth has changed over time, the Esri Sentinel-2 Explorer app provides the power of Sentinel-2 satellites, which gather data beyond what the eye can see. Use this app to draw on Sentinel's different bands to better explore the planet's geology, vegetation, agriculture, and cities. Additionally, access the Sentinel-2 archive to visualize how the Earth's surface has changed over the last fourteen monthsQuick access to the following band combinations and indices is provided: BandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020 Agriculture : Highlights vigorous vegetation in bright green, stressed vegetation dull green and bare areas brown; Bands 11, 8, 2Natural Color : Bands 4, 3, 2Color Infrared : Healthy vegetation is bright red while stressed vegetation is dull red; Bands 8, 4 ,3 SWIR (Short-wave Infrared) : Highlights rock formations; Bands 12, 11, 4Geology : Highlights geologic features; Bands 12, 11, 2Bathymetric : Highlights underwater features; Bands 4, 3, 1Vegetation Index : Normalized Difference Vegetation Index(NDVI) with Colormap ; (Band 8 - Band 4)/(Band 8 + Band 4)Moisture Index : Normalized Difference Moisture Index (NDMI); (Band 8 - Band 11)/(Band 8 + Band 11)Normalized Burn Ratio : (Band 8 - Band 12)/(Band 8 + Band 12)Built-Up Index : (Band 11 - Band 8)/(Band 11 + Band 8)NDVI Raw : Normalized Difference Vegetation Index(NDVI); (Band 8 - Band 4)/(Band 8 + Band 4)NDVI - VRE only Raw : NDVI with VRE bands only; (Band 6 - Band 5)/(Band 6 + Band 5)NDVI - VRE only Colorized : NDVI with VRE bands only with Colormap; (Band 6 - Band 5)/(Band 6 + Band 5)NDVI - with VRE Raw : Also known as NDRE. NDVI with VRE band 5 and NIR band 8; (Band 8 - Band 5)/(Band 8 + Band 5)NDVI - with VRE Colorized : Also known as NDRE with Colormap; (Band 8 - Band 5)/(Band 8 + Band 5)NDWI Raw : Normalized Difference Water index with Green band and NIR band; (Band 3 - Band 8)/(Band 3 + Band 8)NDWI - with VRE Raw : Normalized Difference Water index with VRE band 5 and Green band 3; (Band 3 - Band 5)/(Band 3 + Band 5)NDWI - with VRE Colorized : NDWI index with VRE band 5 and Green band 3 with Colormap; (Band 3 - Band 5)/(Band 3 + Band 5)Custom SAVI : (Soil Adjusted Veg. Index); Offset + Scale*(1.5*(Band 8 - Band 4)/(Band 8 + Band 4 + 0.5))Custom Water Index : Offset + Scale*(Band 3 - Band 12)/(Band 3 + Band 12) Custom Burn Index : Offset + Scale*(Band 8 - Band 13)/(Band 8 + Band 13)Urban Index : Offset + Scale*(Band 8 - Band 12)/(Band 8 + Band 12)Optionally, you can also choose the "Custom Bands" or "Custom Index" option to create your own band combinations The Time tool enables access to a temporal time slider and a temporal profile of different indices for a selected point. The Time tool is only accessible at larger zoom scales. It provides temporal profiles for indices like NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index) and Urban Index. The Identify tool enables access to information on the images, and can also provide a spectral profile for a selected point. The Bookmark tool will direct you to pre-selected interesting locations.NOTE: Using the Time tool to access imagery in the Sentinel-2 archive requires an ArcGIS account. The application is written using Web AppBuilder for ArcGIS accessing imagery layers using ArcGIS API for JavaScript. The following Imagery Layer are being accessed : Sentinel-2 - Provides access to 10, 20, and 60m 13-band multispectral imagery and a range of functions that provide different band combinations and indices.
Facebook
TwitterThis web application highlights some of the capabilities for accessing Landsat imagery layers, powered by ArcGIS for Server, accessing Landsat Public Datasets running on the Amazon Web Services Cloud. The layers are updated with new Landsat images on a daily basis.
Created for you to visualize our planet and understand how the Earth has changed over time, the Esri Landsat Explorer app provides the power of Landsat satellites, which gather data beyond what the eye can see. Use this app to draw on Landsat's different bands to better explore the planet's geology, vegetation, agriculture, and cities. Additionally, access the entire Landsat archive to visualize how the Earth's surface has changed over the last forty years.
Quick access to the following band combinations and indices is provided:
The application is written using Web AppBuilder for ArcGIS accessing imagery layers using the ArcGIS API for JavaScript.
Facebook
TwitterBased on the World Ocean Atlas' global ocean variable measurements we classified the oceanic water bodies into 37 volumetric regions, called ecological marine units. These volumetric region units can be used to support climate change impact studies, conservation priority setting, and marine spatial planning. Read more about how these regions were created in the research article A Three-Dimensional Mapping of the Ocean based on Environmental Data, which appeared in March 2017 in the Oceanography journal. This application visualizes ecological marine units using voxel scene layers. You can read more about voxel layers in the ArcGIS Pro documentation. This application was built using ArcGIS API for JavaScript (read more about web voxel layers). The original netCDF dataset can be found here. Related work:Ecological Marine Units Explorer - a web application that visualizes the ocean as a 3D grid.Esri's website on Ecological Marine Units. View code on esri-codehub.
Facebook
TwitterThis web application highlights some of the capabilities for accessing Sentinel-2 imagery layers, powered by ArcGIS for Server, accessing Landsat Public Datasets running on the Amazon Web Services Cloud. The layers are updated with new Sentinel-2 images on a daily basis.Created for you to visualize our planet and understand how the Earth has changed over time, the Esri Sentinel-2 Explorer app provides the power of Sentinel-2 satellites, which gather data beyond what the eye can see. Use this app to draw on Sentinel's different bands to better explore the planet's geology, vegetation, agriculture, and cities. Additionally, access the Sentinel-2 archive to visualize how the Earth's surface has changed over the last fourteen monthsQuick access to the following band combinations and indices is provided:BandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020Agriculture : Highlights vigorous vegetation in bright green, stressed vegetation dull green and bare areas brown; Bands 11, 8, 2Natural Color : Bands 4, 3, 2Color Infrared : Healthy vegetation is bright red while stressed vegetation is dull red; Bands 8, 4 ,3 SWIR (Short-wave Infrared) : Highlights rock formations; Bands 12, 11, 4Geology : Highlights geologic features; Bands 12, 11, 2Bathymetric : Highlights underwater features; Bands 4, 3, 1Vegetation Index : Normalized Difference Vegetation Index(NDVI) with Colormap ; (Band 8 - Band 4)/(Band 8 + Band 4)Moisture Index : Normalized Difference Moisture Index (NDMI); (Band 8 - Band 11)/(Band 8 + Band 11)Normalized Burn Ratio : (Band 8 - Band 12)/(Band 8 + Band 12)Built-Up Index : (Band 11 - Band 8)/(Band 11 + Band 8)NDVI Raw : Normalized Difference Vegetation Index(NDVI); (Band 8 - Band 4)/(Band 8 + Band 4)NDVI - VRE only Raw : NDVI with VRE bands only; (Band 6 - Band 5)/(Band 6 + Band 5)NDVI - VRE only Colorized : NDVI with VRE bands only with Colormap; (Band 6 - Band 5)/(Band 6 + Band 5)NDVI - with VRE Raw : Also known as NDRE. NDVI with VRE band 5 and NIR band 8; (Band 8 - Band 5)/(Band 8 + Band 5)NDVI - with VRE Colorized : Also known as NDRE with Colormap; (Band 8 - Band 5)/(Band 8 + Band 5)NDWI Raw : Normalized Difference Water index with Green band and NIR band; (Band 3 - Band 8)/(Band 3 + Band 8)NDWI - with VRE Raw : Normalized Difference Water index with VRE band 5 and Green band 3; (Band 3 - Band 5)/(Band 3 + Band 5)NDWI - with VRE Colorized : NDWI index with VRE band 5 and Green band 3 with Colormap; (Band 3 - Band 5)/(Band 3 + Band 5)Custom SAVI : (Soil Adjusted Veg. Index); Offset + Scale*(1.5*(Band 8 - Band 4)/(Band 8 + Band 4 + 0.5))Custom Water Index : Offset + Scale*(Band 3 - Band 12)/(Band 3 + Band 12)Custom Burn Index : Offset + Scale*(Band 8 - Band 13)/(Band 8 + Band 13)Urban Index : Offset + Scale*(Band 8 - Band 12)/(Band 8 + Band 12)Optionally, you can also choose the "Custom Bands" or "Custom Index" option to create your own band combinationsThe Time tool enables access to a temporal time slider and a temporal profile of different indices for a selected point. The Time tool is only accessible at larger zoom scales. It provides temporal profiles for indices like NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index) and Urban Index. The Identify tool enables access to information on the images, and can also provide a spectral profile for a selected point. The Bookmark tool will direct you to pre-selected interesting locations.NOTE: Using the Time tool to access imagery in the Sentinel-2 archive requires an ArcGIS account.The application is written using Web AppBuilder for ArcGIS accessing imagery layers using ArcGIS API for JavaScript.The following Imagery Layer are being accessed : Sentinel-2 - Provides access to 10, 20, and 60m 13-band multispectral imagery and a range of functions that provide different band combinations and indices.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Author: Megan Banaski (mbanaski@esri.com) and Max Ozenberger (mozenberger@esri.com)Last Updated: 1/1/2024Intended Environment: WebPurpose:Exercise E5: Style layer popup This lab is part of GitHub repository that contains short labs that step you through the process of developing a web application with ArcGIS API for JavaScript.The labs start from ground-zero and work through the accessing different aspects of the API and how to begin to build an application and add functionality.Requirements: Here are the resources you will use for the labs.ArcGIS for Developers - Account, Documentation, Samples, Apps, DownloadsEsri Open Source Projects - More source codeA simple guide for setting up a local web server (optional)Help with HTML, CSS, and JavaScript
Facebook
TwitterWeb servis koji objavljuje DMR 5G podatke, dizajniran za prikaz detaljnog modela nadmorske visine u 3D web okruženju, u koordinatnom sustavu Web Mercator. Podatke pruža usluga u specijaliziranom formatu LERC (https://github.com/Esri/lerc), što omogućuje učinkovitu kompresiju u pogledu brzog prijenosa podataka i prikazivanja u 3D aplikacijama. Izvorni podaci za uslugu nalaze se u koordinatnom sustavu WGS 84/Pseudo-Mercator (EPSG 3857 alias 900913). Postojeće aplikacije Esri kao što su Scene Viewer (https://www.esri.com/software/scene-viewer), ArcGIS Pro (http://www.esri.com/en/software/arcgis-pro) ili ArcGIS Earth (http://www.esri.com/software/arcgis-earth) mogu se koristiti za prikaz modela visine u 3D-u u vlastitim web aplikacijama, koristeći ArcGIS API za JavaScript 4.x biblioteku ili izvorne aplikacije pomoću ArcGIS Runtime SDK-a.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Author: Megan Banaski (mbanaski@esri.com) and Max Ozenberger (mozenberger@esri.com)Last Updated: 1/1/2024Intended Environment: WebPurpose:Exercise L12: Query plus calculating stats or Query plus calculating stats in 3D This lab is part of GitHub repository that contains short labs that step you through the process of developing a web application with ArcGIS API for JavaScript.The labs start from ground-zero and work through the accessing different aspects of the API and how to begin to build an application and add functionality.Requirements: Here are the resources you will use for the labs.ArcGIS for Developers - Account, Documentation, Samples, Apps, DownloadsEsri Open Source Projects - More source codeA simple guide for setting up a local web server (optional)Help with HTML, CSS, and JavaScript
Facebook
TwitterStyler is a configurable app template that allows you to easily design and style mapping applications with Calcite colors, themes and layouts. The template produces modern applications that allow you to visualize and explore a web map. The user interface includes a navigation bar, dropdown menu and a set of window panels for common operations such as changing basemaps and toggling full screen view. The template is built with Calcite Maps, Bootstrap, and the new ArcGIS API for Javascript 4.0. This application can be easily customized by downloading the source code and changing the default HTML and CSS styles.Configurable OptionsUse Styler to present a web map and configure it using the following options:Title, Subtitle and About panel.Light and dark themes for application and widgetsBackground and foreground colors for Navbar, Dropdown and PanelsSize of title bar and text.Top and bottom layouts.Display a Search box to enable navigation to addresses and places.Use CasesApply custom colors, themes and layouts to the Navbar, Dropdown Menu, Panels, and WidgetsPresent a map based application that includes a legend and the ability to change the basemap.Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.Click Create a Web App on the item detail page for a web map.
Facebook
TwitterThe Urban Observatory Compare app shows maps of the same subject for three cities, in a side by side comparison view. The app allows quick visual comparisons of the patterns at work in cities around the world.The app allows people to interact with rich datasets for each city. People can use the Urban Observatory web application to easily compare cities by using a simple web browser. As a user zooms in to one digital city map, other city maps will zoom in parallel, revealing similarities and differences in density and distribution. For instance, a person can simultaneously view traffic density for Abu Dhabi and Paris or simultaneously view vegetation in London and Tokyo.The Urban Observatory is brought to you by Richard Saul Wurman, creator of Technology/Entertainment/Design (TED) and 19.20.21; Jon Kamen of the Academy Award-, Emmy Award-, and Golden Globe Award-winning film company @radical.media; and Esri president Jack Dangermond. "A map is a pattern made understandable, and patterns must be compared to understand successes, failures, and opportunities of our global cities," says Wurman. "The Urban Observatory demonstrates this new paradigm, using cartographic language and constructive data display. People and cities can use maps as a common language," said Wurman. The application utilizes Esri's ArcGIS API for JavaScript. Once a web map is created, it is added to a group and tagged to indicated its city and subject information. Those tags are read by the application as it starts up in the browser.
Facebook
TwitterWeb-palvelu, joka julkaisee DMR 4G -dataa, joka on suunniteltu näyttämään yksityiskohtainen korkeusmalli verkkoympäristössä 3D: ssä, S-JTSK-koordinaattijärjestelmässä Křovákin näkökulmasta. Palvelun tarjoamat tiedot ovat erikoistuneessa muodossa LERC (https://github.com/Esri/lerc), mikä mahdollistaa tehokkaan pakkaamisen nopeaan tiedonsiirtoon ja renderointiin 3D-sovelluksissa. Palvelun lähdetiedot sijaitsevat koordinaattijärjestelmässä S-JTSK/Krovak East North (EPSG 5514). Olemassa olevia Esri-sovelluksia, kuten Scene Viewer (https://www.esri.com/software/scene-viewer), ArcGIS Pro (http://www.esri.com/en/software/arcgis-pro) tai ArcGIS Earth (http://www.esri.com/en/software/arcgis-pro), voidaan käyttää korkeusmallin näyttämiseen 3D-muodossa omissa verkkosovelluksissasi käyttämällä ArcGIS API JavaScript 4.x -kirjastoa tai natiivisovelluksia ArcGIS Runtime SDK: n avulla.
Facebook
TwitterEn webtjeneste, der udgiver DMR 4G-data, der er designet til at vise en detaljeret højdemodel i et 3D-webmiljø, i Web Mercator-koordinatsystemet. Data leveres af tjenesten i et specialiseret format LERC (https://github.com/Esri/lerc), som giver mulighed for effektiv komprimering med hensyn til hurtig dataoverførsel og rendering i 3D-applikationer. Kildedataene for tjenesten er placeret i WGS 84/Pseudo-Mercator-koordinatsystemet (EPSG 3857 alias 900913). Eksisterende Esri-applikationer som Scene Viewer (https://www.esri.com/software/scene-viewer), ArcGIS Pro (http://www.esri.com/en/software/arcgis-pro) eller ArcGIS Earth (http://www.esri.com/software/arcgis-earth) kan bruges til at vise højdemodellen i 3D i dine egne webapplikationer ved hjælp af ArcGIS API til JavaScript 4.x-biblioteket eller indfødte applikationer ved hjælp af ArcGIS Runtime SDK.
Facebook
TwitterThese layers are used in the The U.S. Vessel Traffic application; a web-based visualization and data-access utility created by Esri. Explore U.S. maritime activity, look for patterns of vessel activity such as around ports and fishing grounds, or download manageable subsets of this massive data set. Vessel traffic data are an invaluable resource made available to our community by the US Coast Guard, NOAA and BOEM through Marine Cadastre. This information can help marine spatial planners better understand users of ocean space and identify potential space-use conflicts.To download this data for your own analysis, explore the Download Options, navigate to a NOAA Electronic Navigation Chart area of interest, and make your selection. This data was sourced from the Automatic Identification System (AIS) provided by USCG, NOAA, and BOEM through Marine Cadastre and aggregated for visualization and sharing in ArcGIS Pro. This application was built with the ArcGIS API for JavaScript.Access this data as an ArcGIS Online collection here. Learn more about AIS tracking here. Find more ocean and maritime resources in Living Atlas. Inquiries can be sent to Keith VanGraafeiland.
Facebook
TwitterRetirement Notice: This item is in mature support as of July 2024 and will retire in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This web application enables the exploration of Arctic elevation based on the 2m resolution Arctic Digital Elevation Models (DEM) created by the Polar Geospatial Center. The app displays multiple different renderings as well as profiles of the data. In many areas the coverage is available from multiple dates and the app displays temporal profiles as well as computing the differences. The current datasets consisting of 2m DEMs, cover the Arctic from 60*N to the Pole and will gradually, and incrementally be replaced with better 2m versions as they are produced during 2018. The elevations are digital surface models photogrammetrically generated from stereo satellite imagery and have not been edited to create terrain heights. The current datasets are preliminary and are known to contain some errors and artifacts. As more control becomes available, the elevation values will be refined and adjusted. The original PGC datasets have been adjusted according to the PGC proposed correction parameters, to give WGS84 ellipsoidal heights, but available in this service also as orthometric heights computed using the EGM2008 geoid separation. Details on how the DEMs are generated and their use can be found in ArcticDEM datasets. The DEMs were created from DigitalGlobe, Inc., imagery and funded under National Science Foundation awards 1043681, 1559691, and 1542736.The app also provides access to the Arctic Landsat imagery that is updated daily and also served through ArcGIS Online.Quick access to server functions defined for the following elevation derivatives are provided:Hillshade – Hillshaded surface generated dynamically on elevation layer, with a solar azimuth of 315 degrees and solar altitude of 45 degreesMulti-Directional Hillshade – Multi-directional hillshaded surface generated dynamically on elevation layer, computing hillshade from 6 different directionsElevation Tinted Hillshade – Elevation tinted hillshade surface generated dynamically on elevation layerSlopeMap – A color visualization of Slope surface generated dynamically on elevation layer, where flat surfaces is gray, shallow slopes are yellow and steep slopes are orangeAspectMap - A color visualization of aspect generated dynamically on elevation layerContour – Dynamically generated contours with specified contour intervals and options for smoothing to create more cartographically pleasing contours.The Time tool enables access to a temporal time slider and temporal profile for a selected point. The Time tool is only accessible at larger zoom scales. The Identify tool enables access to elevation, slope and aspect values for the specified point as well as information on the source image and links to download the source data. From the app it is also possible to export defined areas of the DEMs. These can be exported in user defined projections and resolutions. The Bookmark tool link to pre-selected interesting locations.For more information on the underlying services see Arctic DEM layer.The application is written using Web AppBuilder for ArcGIS accessing imagery layers using the ArcGIS API for JavaScript.
Facebook
TwitterSerwis internetowy publikujący dane DMR 5G, zaprojektowany do wyświetlania szczegółowego modelu elewacji w środowisku 3D, w systemie współrzędnych S-JTSK w widoku Křováka. Dane dostarczane są przez serwis w specjalistycznym formacie LERC (https://github.com/Esri/lerc), co pozwala na sprawną kompresję w zakresie szybkiego przesyłania i renderowania danych w aplikacjach 3D. Dane źródłowe dla usługi znajdują się w układzie współrzędnych S-JTSK/Krovak East North (EPSG 5514). Istniejące aplikacje Esri, takie jak Scene Viewer (https://www.esri.com/software/scene-viewer), ArcGIS Pro (http://www.esri.com/en/software/arcgis-pro) lub ArcGIS Earth, mogą być używane do wyświetlania modelu wysokości w 3D we własnych aplikacjach internetowych, przy użyciu API ArcGIS dla biblioteki JavaScript 4.x lub aplikacji natywnych, przy użyciu ArcGIS Runtime SDK.
Facebook
TwitterThe ArcGIS Javascript API lets developers build GIS web applications. The Javascript API is one of many that could be used but it's a great starting place. Students may also be interested in the Python API or others!