Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset consists of multiple files which contain bug prediction training data.
The entries in the dataset are JavaScript functions either being buggy or non-buggy. Bug related information was obtained from the project EsLint contained in BugsJS (https://github.com/BugsJS/eslint). The buggy instances were collected throughout the lifetime of the project, however we added non-buggy entries from the latest version which is tagged as fix (entries which were previously included as buggy were not included as non-buggy later on).
The dataset is based on hybrid call graphs which are constructed by https://github.com/sed-szeged/hcg-js-framework. The result of this tool is a call graph where the edges are associated with a confidence level which shows how likely the given edge is a valid call edge.
We used different threshold values from which we considered the edges to be valid. The following threshold values were used:
0.00
0.05
0.20
0.30
The prefix in the dataset file names are coming from the used threshold. The the datasets include coupling metrics NII (Nubmer of Incoming Invocations) and NOI (Number of Outgoing Invocations) which were calculated by a static source code analyzer called SourceMeter. Hybrid counterparts of these metrics (HNII and HNOI) are based on the given threshold values.
There are four variants for all of these datasets:
Both static (NII, NOi) and hybrid (HNII, HNOI) coupling metrics are included with additional static source code metrics and information about the entries (file without any postfix). Column contained only in this dataset are:
ID
Name
Longname
Parent ID
Component ID
Path
Line
Column
EndLine
EndColumn
Both static (NII, NOi) and hybrid (HNII, HNOI) coupling metrics are included with additional static source code metrics (file with '_h+s' postfix)
Only static (NII, NOI) coupling metrics are included with additional static source code metrics (file with '_s' postfix)
Only hybrid (HNII, HNOI) coupling metrics are included with additional static source code metrics (file with '_h' postfix)
Static source code metrics which are contained in all dataset are the following:
McCC - McCabe Cyclomatic Complexity
NL - Nesting Level
NLE - Nesting Level Else If
CD - Comment Density
CLOC - Comment Lines of Code
DLOC - Documentation Lines of Code
TCD - Total Comment Density (Comment Lines in an emedded function will be also considered)
TCLOC - Total Comment Lines of Code (Comment Lines in an emedded function will be also considered)
LLOC - Logical Lines of Code (Comment and empty lines not counted)
LOC - Lines of Code (Comment and empty lines are counted)
NOS - Number of Statements
NUMPAR - Number of Parameters
TLLOC - Logical Lines of Code (Lines in embedded functions are also counted)
TLOC - Lines of Code (Lines in embedded functions are also counted)
TNOS - Total Number of Statements (Statements in embedded functions are also counted)
Facebook
TwitterAutoTrain Dataset for project: javascript-traing-1
Dataset Description
This dataset has been automatically processed by AutoTrain for project javascript-traing-1.
Languages
The BCP-47 code for the dataset's language is unk.
Dataset Structure
Data Instances
A sample from this dataset looks as follows: [ { "target": "test/NavbarSpec.js", "feat_repo_name": "aabenoja/react-bootstrap", "text": "import React from 'react'; import… See the full description on the dataset page: https://huggingface.co/datasets/ars-1/autotrain-data-javascript-traing-1.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
AbstractThe H1B is an employment-based visa category for temporary foreign workers in the United States. Every year, the US immigration department receives over 200,000 petitions and selects 85,000 applications through a random process and the U.S. employer must submit a petition for an H1B visa to the US immigration department. This is the most common visa status applied to international students once they complete college or higher education and begin working in a full-time position. The project provides essential information on job titles, preferred regions of settlement, foreign applicants and employers' trends for H1B visa application. According to locations, employers, job titles and salary range make up most of the H1B petitions, so different visualization utilizing tools will be used in order to analyze and interpreted in relation to the trends of the H1B visa to provide a recommendation to the applicant. This report is the base of the project for Visualization of Complex Data class at the George Washington University, some examples in this project has an analysis for the different relevant variables (Case Status, Employer Name, SOC name, Job Title, Prevailing Wage, Worksite, and Latitude and Longitude information) from Kaggle and Office of Foreign Labor Certification(OFLC) in order to see the H1B visa changes in the past several decades. Keywords: H1B visa, Data Analysis, Visualization of Complex Data, HTML, JavaScript, CSS, Tableau, D3.jsDatasetThe dataset contains 10 columns and covers a total of 3 million records spanning from 2011-2016. The relevant columns in the dataset include case status, employer name, SOC name, jobe title, full time position, prevailing wage, year, worksite, and latitude and longitude information.Link to dataset: https://www.kaggle.com/nsharan/h-1b-visaLink to dataset(FY2017): https://www.foreignlaborcert.doleta.gov/performancedata.cfmRunning the codeOpen Index.htmlData ProcessingDoing some data preprocessing to transform the raw data into an understandable format.Find and combine any other external datasets to enrich the analysis such as dataset of FY2017.To make appropriated Visualizations, variables should be Developed and compiled into visualization programs.Draw a geo map and scatter plot to compare the fastest growth in fixed value and in percentages.Extract some aspects and analyze the changes in employers’ preference as well as forecasts for the future trends.VisualizationsCombo chart: this chart shows the overall volume of receipts and approvals rate.Scatter plot: scatter plot shows the beneficiary country of birth.Geo map: this map shows All States of H1B petitions filed.Line chart: this chart shows top10 states of H1B petitions filed. Pie chart: this chart shows comparison of Education level and occupations for petitions FY2011 vs FY2017.Tree map: tree map shows overall top employers who submit the greatest number of applications.Side-by-side bar chart: this chart shows overall comparison of Data Scientist and Data Analyst.Highlight table: this table shows mean wage of a Data Scientist and Data Analyst with case status certified.Bubble chart: this chart shows top10 companies for Data Scientist and Data Analyst.Related ResearchThe H-1B Visa Debate, Explained - Harvard Business Reviewhttps://hbr.org/2017/05/the-h-1b-visa-debate-explainedForeign Labor Certification Data Centerhttps://www.foreignlaborcert.doleta.govKey facts about the U.S. H-1B visa programhttp://www.pewresearch.org/fact-tank/2017/04/27/key-facts-about-the-u-s-h-1b-visa-program/H1B visa News and Updates from The Economic Timeshttps://economictimes.indiatimes.com/topic/H1B-visa/newsH-1B visa - Wikipediahttps://en.wikipedia.org/wiki/H-1B_visaKey FindingsFrom the analysis, the government is cutting down the number of approvals for H1B on 2017.In the past decade, due to the nature of demand for high-skilled workers, visa holders have clustered in STEM fields and come mostly from countries in Asia such as China and India.Technical Jobs fill up the majority of Top 10 Jobs among foreign workers such as Computer Systems Analyst and Software Developers.The employers located in the metro areas thrive to find foreign workforce who can fill the technical position that they have in their organization.States like California, New York, Washington, New Jersey, Massachusetts, Illinois, and Texas are the prime location for foreign workers and provide many job opportunities. Top Companies such Infosys, Tata, IBM India that submit most H1B Visa Applications are companies based in India associated with software and IT services.Data Scientist position has experienced an exponential growth in terms of H1B visa applications and jobs are clustered in West region with the highest number.Visualization utilizing programsHTML, JavaScript, CSS, D3.js, Google API, Python, R, and Tableau
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This Website Statistics dataset has four resources showing usage of the Lincolnshire Open Data website. Web analytics terms used in each resource are defined in their accompanying Metadata file.
Website Usage Statistics: This document shows a statistical summary of usage of the Lincolnshire Open Data site for the latest calendar year.
Website Statistics Summary: This dataset shows a website statistics summary for the Lincolnshire Open Data site for the latest calendar year.
Webpage Statistics: This dataset shows statistics for individual Webpages on the Lincolnshire Open Data site by calendar year.
Dataset Statistics: This dataset shows cumulative totals for Datasets on the Lincolnshire Open Data site that have also been published on the national Open Data site Data.Gov.UK - see the Source link.
Note: Website and Webpage statistics (the first three resources above) show only UK users, and exclude API calls (automated requests for datasets). The Dataset Statistics are confined to users with javascript enabled, which excludes web crawlers and API calls.
These Website Statistics resources are updated annually in January by the Lincolnshire County Council Business Intelligence team. For any enquiries about the information contact opendata@lincolnshire.gov.uk.
Facebook
Twittersaurabh5/rlvr-code-data-JavaScript dataset hosted on Hugging Face and contributed by the HF Datasets community
Facebook
TwitterThis dataset was created by Margaritelli
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
After scenario questionnaire results. The data contains the results of the After Scenario Questionnaire answered by 14 participants. (CSV 149 kb)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data comes from an effort to render the top 1M domains on the web in a scripted browser, and recording performance metrics of each page. These metrics are published here in numpy format. See the starter notebook for an example showing how to use the data, and what the columns contain. The following posts for a more in depth write ups:
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Dataset from Smoothing Methods in Statistics (ftp stat.cmu.edu/datasets)
Simonoff, J.S. (1996). Smoothing Methods in Statistics. New York: Springer-Verlag.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Content of this repository
This is the repository that contains the scripts and dataset for the MSR 2019 mining challenge
Github Repository with the software used : here.
=======
DATASET
The dataset was retrived utilizing google bigquery and dumped to a csv
file for further processing, this original file with no treatment is called jsanswers.csv, here we can find the following information :
1. The Id of the question (PostId)
2. The Content (in this case the code block)
3. the lenght of the code block
4. the line count of the code block
5. The score of the post
6. The title
A quick look at this files, one can notice that a postID can have multiple rows related to it, that's how multiple codeblocks are saved in the database.
Filtered Dataset:
Extracting code from CSV
We used a python script called "ExtractCodeFromCSV.py" to extract the code from the original csv and merge all the codeblocks in their respective javascript file with the postID as name, this resulted in 336 thousand files.
Running ESlint
Due to the single threaded nature of ESlint, we needed to create a script to run ESlint because it took a huge toll on the machine to run it on 336 thousand files, this script is named "ESlintRunnerScript.py", it splits the files in 20 evenly distributed parts and runs 20 processes of esLinter to generate the reports, as such it generates 20 json files.
Number of Violations per Rule
This information was extracted using the script named "parser.py", it generated the file named "NumberofViolationsPerRule.csv" which contains the number of violations per rule used in the linter configuration in the dataset.
Number of violations per Category
As a way to make relevant statistics of the dataset, we generated the number of violations per rule category as defined in the eslinter website, this information was extracted using the same "parser.py" script.
Individual Reports
This information was extracted from the json reports, it's a csv file with PostID and violations per rule.
Rules
The file Rules with categories contains all the rules used and their categories.
Facebook
TwitterComprehensive YouTube channel statistics for JavaScript Mastery, featuring 1,200,000 subscribers and 104,656,847 total views. This dataset includes detailed performance metrics such as subscriber growth, video views, engagement rates, and estimated revenue. The channel operates in the Lifestyle category and is based in HR. Track 187 videos with daily and monthly performance data, including view counts, subscriber changes, and earnings estimates. Analyze growth trends, engagement patterns, and compare performance against similar channels in the same category.
Facebook
TwitterThis dataset contains the predicted prices of the asset JavaScript over the next 16 years. This data is calculated initially using a default 5 percent annual growth rate, and after page load, it features a sliding scale component where the user can then further adjust the growth rate to their own positive or negative projections. The maximum positive adjustable growth rate is 100 percent, and the minimum adjustable growth rate is -100 percent.
Facebook
TwitterDescriptive statistics of the number of missed frames for SVG+JavaScript animations.
Facebook
TwitterHere's a description of the columns in the dataset:
Employee_ID: A unique identifier for each employee. Name: The name of the employee. Age: The age of the employee. Gender: The gender of the employee. Department: The department in which the employee works. Salary: The salary of the employee. Years_Experience: The number of years of work experience the employee has. Performance_Rating: The performance rating of the employee on a scale of 1 to 5, with 5 being the highest.
Facebook
TwitterThis data was collected by the team https://dou.ua/ . This resource is very popular in Ukraine. It provides salary statistics, shows current vacancies and publishes useful articles related to the life of an IT specialist. This dataset was taken from the public repository https://github.com/devua/csv/tree/master/salaries . This dataset will include the following data for each of the developer: salary, position (f.e. Junior, Middle), experience, city, tech (f.e C#/.NET, JavaScript, Python). I think this dataset will be useful to our community. Thank you.
Facebook
Twitterjs-hyun/preprocess-videomme-data dataset hosted on Hugging Face and contributed by the HF Datasets community
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the extension of a publicly available dataset that was published initially by Ferenc et al. in their paper: “Ferenc, R.; Hegedus, P.; Gyimesi, P.; Antal, G.; Bán, D.; Gyimóthy, T. Challenging machine learning algorithms in predicting vulnerable javascript functions. 2019 IEEE/ACM 7th InternationalWorkshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE). IEEE, 2019, pp. 8–14.” The dataset contained software metrics for source code functions written in JavaScript (JS) programming language. Each function was labeled as vulnerable or clean. The authors gathered vulnerabilities from publicly available vulnerability databases. In our paper entitled: “Examining the Capacity of Text Mining and Software Metrics in Vulnerability Prediction” and cited as: “Kalouptsoglou I, Siavvas M, Kehagias D, Chatzigeorgiou A, Ampatzoglou A. Examining the Capacity of Text Mining and Software Metrics in Vulnerability Prediction. Entropy. 2022; 24(5):651. https://doi.org/10.3390/e24050651” , we presented an extended version of the dataset by extracting textual features for the labeled JS functions. In particular, we got the dataset provided by Ferenc et al. in CSV format and then we gathered all the GitHub URLs of the dataset's functions (i.e., methods). Using these URLs, we collected the source code of the corresponding JS files from GitHub. Subsequently, by utilizing the start and end line information for every function, we cut off the code of the functions. Each function was then tokenized to construct a list of tokens per function. To extract text features, we used a text mining technique called sequences of tokens. As a result, we created a repository with all methods' source code, the token sequences of each method, and their labels. To boost the generalizability of type-specific tokens, all comments were eliminated, as well as all integers and strings, which were replaced with two unique IDs. The dataset contains 12,106 JavaScript functions, from which 1,493 are considered vulnerable. This dataset was created and utilized during the Vulnerability Prediction Task of the Horizon2020 IoTAC Project as training and evaluation data for the construction of vulnerability prediction models. The dataset is provided in the csv format. Each row of the csv file has the following parts: Label: Flag with values ‘1’ for vulnerable and ‘0’ for non-vulnerable methods Name: The name of the JavaScript method Longname: The longname of the JavaScript method Path: The path of the file of the method in the repository Full_repo_path: The GitHub URL of the file of the method TokenX: Each next row corresponds to each token included in the method
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is the result of three crawls of the web performed in May 2018. The data contains raw crawl data and instrumentation captured by OpenWPM-Mobile, as well as analysis that identifies which scripts access mobile sensors, which ones perform some of browser fingerprinting, as well as clustering of scripts based on their intended use. The dataset is described in the included README.md file; more details about the methodology can be found in our ACM CCS'18 paper: Anupam Das, Gunes Acar, Nikita Borisov, Amogh Pradeep. The Web's Sixth Sense: A Study of Scripts Accessing Smartphone Sensors. In Proceedings of the 25th ACM Conference on Computer and Communications Security (CCS), Toronto, Canada, October 15–19, 2018. (Forthcoming)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Results from laboratory testing. The data contains the task identifier, the average time to completion, number of times the task was successfully completed and the total number of errors. (CSV 209 kb)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Open-source Dataset
This dataset contains the NPM packages that we built using our tool-chain. It consists of the diffoscope outputs, the versions built by our tool-chain, and the pre-built packages present on the npmjs registry.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset consists of multiple files which contain bug prediction training data.
The entries in the dataset are JavaScript functions either being buggy or non-buggy. Bug related information was obtained from the project EsLint contained in BugsJS (https://github.com/BugsJS/eslint). The buggy instances were collected throughout the lifetime of the project, however we added non-buggy entries from the latest version which is tagged as fix (entries which were previously included as buggy were not included as non-buggy later on).
The dataset is based on hybrid call graphs which are constructed by https://github.com/sed-szeged/hcg-js-framework. The result of this tool is a call graph where the edges are associated with a confidence level which shows how likely the given edge is a valid call edge.
We used different threshold values from which we considered the edges to be valid. The following threshold values were used:
0.00
0.05
0.20
0.30
The prefix in the dataset file names are coming from the used threshold. The the datasets include coupling metrics NII (Nubmer of Incoming Invocations) and NOI (Number of Outgoing Invocations) which were calculated by a static source code analyzer called SourceMeter. Hybrid counterparts of these metrics (HNII and HNOI) are based on the given threshold values.
There are four variants for all of these datasets:
Both static (NII, NOi) and hybrid (HNII, HNOI) coupling metrics are included with additional static source code metrics and information about the entries (file without any postfix). Column contained only in this dataset are:
ID
Name
Longname
Parent ID
Component ID
Path
Line
Column
EndLine
EndColumn
Both static (NII, NOi) and hybrid (HNII, HNOI) coupling metrics are included with additional static source code metrics (file with '_h+s' postfix)
Only static (NII, NOI) coupling metrics are included with additional static source code metrics (file with '_s' postfix)
Only hybrid (HNII, HNOI) coupling metrics are included with additional static source code metrics (file with '_h' postfix)
Static source code metrics which are contained in all dataset are the following:
McCC - McCabe Cyclomatic Complexity
NL - Nesting Level
NLE - Nesting Level Else If
CD - Comment Density
CLOC - Comment Lines of Code
DLOC - Documentation Lines of Code
TCD - Total Comment Density (Comment Lines in an emedded function will be also considered)
TCLOC - Total Comment Lines of Code (Comment Lines in an emedded function will be also considered)
LLOC - Logical Lines of Code (Comment and empty lines not counted)
LOC - Lines of Code (Comment and empty lines are counted)
NOS - Number of Statements
NUMPAR - Number of Parameters
TLLOC - Logical Lines of Code (Lines in embedded functions are also counted)
TLOC - Lines of Code (Lines in embedded functions are also counted)
TNOS - Total Number of Statements (Statements in embedded functions are also counted)